JPS58135578A - Air-cooled fuel cell - Google Patents

Air-cooled fuel cell

Info

Publication number
JPS58135578A
JPS58135578A JP57017270A JP1727082A JPS58135578A JP S58135578 A JPS58135578 A JP S58135578A JP 57017270 A JP57017270 A JP 57017270A JP 1727082 A JP1727082 A JP 1727082A JP S58135578 A JPS58135578 A JP S58135578A
Authority
JP
Japan
Prior art keywords
air
unit
fed
manifold
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57017270A
Other languages
Japanese (ja)
Inventor
Mutsuya Saito
斎藤 六弥
Masahiro Ide
井出 正裕
Hideo Hagino
秀雄 萩野
Osamu Tajima
収 田島
Yasuo Miyake
泰夫 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57017270A priority Critical patent/JPS58135578A/en
Publication of JPS58135578A publication Critical patent/JPS58135578A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To stabilize the cell performance and to improve the cell life by making a partial laminated body including a cooling plate one unit and by reversing the air flow direction to each other for individual adjoining units so as to keep the temperature distribution of the inlet side and the outlet side of a cell stack uniform. CONSTITUTION:The air fed by a blower 18 is branched into the first and the second introduction pipes 20, 21 through a feed pipe 19 and is fed to a stack 1 in the opposite direction to each other for individual units U through an introduction manifold 7. The air having passed through a reaction air feed groove 5 and an air passage 17 for each unit is collected to the first and the second efferent pipes 22, 23 through an efferent manifold 8, and a large part of the air collected by the efferent pipes 22, 23 is returned to a circulating pipe 24, but a part of the air is discharged outside through a discharge pipe 16 with a damper 14 and a cock 15. About 75% of the air fed to each unit U is fed to the cooling air passage 17 and the remaining about 25% is fed to the reaction air feed groove 5, and the temperature gradient rising from the inlet side toward the outlet side of each unit is heat-exchanged by the air stream flowing in the opposite direction to each other for the adjoining units.

Description

【発明の詳細な説明】 本発明は空冷式燃料電池に関するもので、電池スタ゛ツ
クの湿度分布の均一化を図ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-cooled fuel cell, and an object of the present invention is to make the humidity distribution of a cell stack uniform.

電池スタック(1)は第1図に示すように単位セル(2
)とガス分jllh13)とを交互に梼重し、数セル(
4〜5−にル」毎に冷却板(4)を介在させて構成する
The battery stack (1) consists of unit cells (2) as shown in Figure 1.
) and gas portion jllh13) alternately, several cells (
A cooling plate (4) is interposed every 4 to 5 inches.

前記ガス分離板(3)のl1IiI#Jには互に交錯イ
ーるよう反応空気供給溝(5)と反応水素供給溝(6)
とを有し、これら溝を介して夫々空気及び水素ガスを夫
々陽。
In l1IiI#J of the gas separation plate (3), there are a reaction air supply groove (5) and a reaction hydrogen supply groove (6) so as to intersect with each other.
and air and hydrogen gas are respectively supplied through these grooves.

嵯各極の背面に供給し、対同極板間に介在するマトリ゛
ソクス′4IIJ1質を介して電池反応が行われる。
The battery reaction is carried out through the matrix material supplied to the back surface of each electrode and interposed between the opposite electrode plates.

従来の空冷式燃料′電池は第2図に示すように電池スタ
ック(1)の対向側面に空気用マニホルド(71(8)
と水素用マニホルド19>(10を設け、空気用マニホ
ルド(7081を結ぶ循環径路αυにはコック■を有す
る空気取入管口及びダンパーα4とコツターな有する排
出管α・を今岐形成している。この場合導入マニホルド
(7)に送られた空気は、反応空気供給溝(5)と冷却
板(4)の冷却空気進路αηに分流して後導出マニホル
ド(8)で合流する。
As shown in Figure 2, a conventional air-cooled fuel cell has an air manifold (71 (8)) on the opposite side of the cell stack (1).
A hydrogen manifold 19>(10) is provided, and an air intake pipe opening having a cock (■) and a damper α4 and an exhaust pipe (α) having a cock are formed in the circulation path αυ connecting the air manifold (7081). In this case, the air sent to the introduction manifold (7) is divided into the reaction air supply groove (5) and the cooling air path αη of the cooling plate (4), and then merges at the outlet manifold (8).

この間反応空気は電池反応によりその酸素分圧が低下す
ると共に、冷却空気は′鴫池反応熱を奪って作動温度を
180前後に保つ。このような反応め、循環径路Ql)
を峰てスタック(1)流れる空気量はその約10憾程度
が前記空気取入WaJからの新鮮空気の給気と、排出管
(至)からの排気によって常に更新される。
During this time, the oxygen partial pressure of the reaction air decreases due to the cell reaction, and the cooling air absorbs the heat of the Shizuike reaction to maintain the operating temperature at around 180℃. Due to such a reaction, the circulation path Ql)
Approximately 10% of the amount of air flowing through the stack (1) is constantly renewed by supplying fresh air from the air intake WaJ and exhausting air from the exhaust pipe (to).

従ってスタック入口側の湿度は出口側に比して低くなり
、これは極板面の湿度分布で示すと第3図(イtb+の
ように入口と出口側の湿度差は40℃以上にもなり、電
池特性を劣化させる原因となっていた。
Therefore, the humidity on the stack inlet side is lower than that on the outlet side, and this can be seen in the humidity distribution on the electrode plate surface as shown in Figure 3 (as shown in tb+, the humidity difference between the inlet and outlet sides is over 40 degrees Celsius). , which caused deterioration of battery characteristics.

本発明は、各冷却板間の単位セルと一方の冷却板を1ユ
ニツトとし、各ユニット毎に、反応空気供給溝及び空気
通路に連通する一対のマニホルドを設け、隣接各ユニッ
トの供給空気を互に逆方向に流通せしめるものである。
In the present invention, a unit cell between each cooling plate and one cooling plate are used as one unit, and each unit is provided with a pair of manifolds communicating with a reaction air supply groove and an air passage, so that the air supplied to each adjacent unit is mutually distributed. This allows the flow to flow in the opposite direction.

以下本発明の実施例を図について説明するが、該当部分
は前記図面と同一符号を付した。
Embodiments of the present invention will be described below with reference to the drawings, and corresponding parts are designated by the same reference numerals as in the drawings.

第4図は本発明電池の作動径路図、第5図は要部詳細図
、第6図は要部断面図である。先づ第6図において空気
極P、水素極(至)及びその間に介在する電w質マトリ
ックス−よりなる単位セル(2)とガス分離板(3)と
の積重体は冷却板(4)で多数の部分積重体に分けられ
ているが、この部分積重体と冷却板(4)とを1ユニツ
トとしてこのユニ・ソトih毎に夫々マニホルド(75
(85が取付けられていζ電池スタック(1)の対向面
に取付けられたこれらマニホルド(7)(8)は、各側
面において隣接マニホルドが交互に導入用、導出用とし
て用いられる。
FIG. 4 is an operating path diagram of the battery of the present invention, FIG. 5 is a detailed view of the main part, and FIG. 6 is a sectional view of the main part. First, in Fig. 6, a stack of a unit cell (2) consisting of an air electrode P, a hydrogen electrode (1) and an electrolyte matrix interposed therebetween and a gas separation plate (3) is a cooling plate (4). The cooling plate (4) is divided into a large number of partial stacks, and each manifold (75
These manifolds (7) and (8), on which ζ 85 are attached, are attached to opposite sides of the battery stack (1), and the adjacent manifolds on each side are used alternately for introduction and extraction.

マニホルド(7;に送られた空気は、反応空気供給溝(
5)と冷却空気通路αηに矢印の如く分流する点で従来
のものと代りはないが、隣接ユニットではそれに対応す
るマニホルド(71(81を介して逆方向に流通する。
The air sent to the manifold (7;
5) and the cooling air passage αη as shown by the arrows, but in the adjacent unit the air flows in the opposite direction via the corresponding manifold (71 (81).

第4図の供給径路図においてブロワ四で送られた空気は
、供給管a9を経て第1、第2の導入管■(2)に分流
し、各ユニットU+毎にその導入マニホルド(7)を経
て互に逆方向にスタック(1)に供給される。
In the supply route diagram in Fig. 4, the air sent by blower 4 is divided into the first and second introduction pipes (2) via supply pipe a9, and the introduction manifold (7) is connected to each unit U+. and are supplied to the stack (1) in opposite directions.

各ユニット毎にその反応空気供給溝(5)及び空気通路
αhを通過した空気は、導出マニホルド(8)を経て第
1.第2の導出管器(至)に集められ、これら導出管の
ので合体した空気の大部分は環流管鋺にもどるが、その
一部はダンパー04及びコック叩を有する排気管GQよ
り外部へ排出される。同時にコックDを有する取入管0
より導入した新鮮空気と前記環流空気とは供給管09で
混合されて1述の如くスタック(1)に供給される 各ユニ・リドU+に送られた空気量は約75係が冷却用
空気通路αηに、又残り約251が反応空気供給溝(5
)に送られるが、各ユニ・ソトの入口側より出口−に向
って上昇する湿度勾配は、隣接ユニット間での互に逆方
向に流通する空気流により熱交換されて、スタック入口
側と出口側の湿度差を略均−化する。
The air that has passed through the reaction air supply groove (5) and the air passage αh for each unit passes through the first outlet manifold (8). Most of the combined air from these outlet pipes returns to the reflux pipe, but some of it is discharged to the outside from the exhaust pipe GQ, which has a damper 04 and a cock. be done. Intake pipe 0 with cock D at the same time
The fresh air introduced from the above and the recirculated air are mixed in the supply pipe 09 and are supplied to the stack (1) as described in 1. The amount of air sent to each Unilido U+ is approximately 75% through the cooling air passage. αη, and the remaining approximately 251 are reaction air supply grooves (5
), but the humidity gradient that rises from the inlet side to the outlet of each UniSoto is exchanged by the airflow flowing in opposite directions between adjacent units, and the humidity gradient increases between the stack inlet side and the outlet side. Approximately equalizes the humidity difference between the sides.

以上のように本発明による電池スタックは冷却板を含む
部分積重体(冷却板間の単位セルとガス分離板の積重体
)を1ユニツトと12、各隣接ユニット毎に空気流通方
向を互に逆にし、各ユニットの冷却空気通路と反応空気
溝を分流する空気流間で熱交換が行われるので、従来の
ように電池スタックの入口側と出口側の湿度差が解消さ
れて温度分布が均一となり、“電池性能が安定するの砂
でなく電池寿命の向上が期待できるものである。尚本方
式では各二二゛ソト毎に一対のマニホルドをI吟要とす
るが、厚みの大きい冷却板を用いてこれらマニホルドを
取付は得るので構成上余り間−はなく実現性が高いもの
である。
As described above, the battery stack according to the present invention has 1 unit and 12 partial stacks including cooling plates (a stack of unit cells and gas separation plates between the cooling plates), and the air flow direction is reversed for each adjacent unit. Since heat exchange is performed between the air flow that separates the cooling air passage of each unit and the reaction air groove, the difference in humidity between the inlet and outlet sides of the battery stack, which was conventional, is eliminated and the temperature distribution is uniform. ``It is expected that the battery life will be improved rather than the stability of the battery performance.In addition, in this method, a pair of manifolds are required for each 22-meter battery, but a thick cooling plate is required. Since these manifolds can be installed using the above-mentioned method, there is no need to take much time in terms of construction and it is highly practical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電池スタックの斜面図、第2図は従来電池の作
動径路図、第゛3図(イ)回は従来電池の極板面におけ
る温度分布図である。 第4図は本発明電池の作動径路図、第5図は同上のマニ
ホルド及びスタック内の空気流通状態を示す要部詳細図
、第6図は同上の要部拡大断面図である。 (1)・・・電池スタック、(2)・・・単位セル、 
f3)・・・ガス分離板、(4)・・・冷却板、(5)
・・・反応空気供給溝、(6)・・・反応水素ガス供給
溝、αり・・・冷却空気通路、Uト・・ユニツ) 、 
(7)(a+・・・導入及び導出マニホルド、0・・・
空気取入管、QIS・・・排出管、G!J・・・供給管
、■@・・・第1゜第2の導入管、■の・・・第1 、
第2の導出管、□□□・・・環流管。 11          13 アレート/l距flI
FIG. 1 is a perspective view of a battery stack, FIG. 2 is an operating path diagram of a conventional battery, and FIG. 3 (a) is a temperature distribution diagram on the electrode plate surface of a conventional battery. FIG. 4 is an operating path diagram of the battery of the present invention, FIG. 5 is a detailed view of the main parts showing the state of air circulation within the manifold and stack, and FIG. 6 is an enlarged sectional view of the main parts. (1)...Battery stack, (2)...Unit cell,
f3)...Gas separation plate, (4)...Cooling plate, (5)
...Reaction air supply groove, (6)...Reaction hydrogen gas supply groove, α-ri...Cooling air passage, Ut...Units),
(7) (a+...Introduction and extraction manifold, 0...
Air intake pipe, QIS...Exhaust pipe, G! J... Supply pipe, ■ @... 1st, 2nd introduction pipe, ■... 1st,
Second outlet pipe, □□□...Recirculation pipe. 11 13 Arate/l distance flI

Claims (1)

【特許請求の範囲】[Claims] (1)単位セルとガス分離板とを交互に梼重して数セル
毎に冷却板を介在させた電池スタックが、前記数セルと
1つの冷却板を含む複数ユニットに分割され、前記各ユ
ニ・ソト毎に、前記ガス分離板の反応空気供給溝及び冷
却板の空気通路と連通ずるマニホルドを設け、隣接各ユ
ニットの供給空気を前記マニホルドにより互に逆方向に
流通せしめたことを特許とする空冷式燃料電池。
(1) A battery stack in which unit cells and gas separation plates are stacked alternately and a cooling plate is interposed between every few cells is divided into a plurality of units each including the several cells and one cooling plate, and each unit・Providing a manifold for each unit that communicates with the reaction air supply groove of the gas separation plate and the air passage of the cooling plate, and making the supply air of each adjacent unit flow in opposite directions through the manifold, which is patented. Air-cooled fuel cell.
JP57017270A 1982-02-04 1982-02-04 Air-cooled fuel cell Pending JPS58135578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57017270A JPS58135578A (en) 1982-02-04 1982-02-04 Air-cooled fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57017270A JPS58135578A (en) 1982-02-04 1982-02-04 Air-cooled fuel cell

Publications (1)

Publication Number Publication Date
JPS58135578A true JPS58135578A (en) 1983-08-12

Family

ID=11939272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57017270A Pending JPS58135578A (en) 1982-02-04 1982-02-04 Air-cooled fuel cell

Country Status (1)

Country Link
JP (1) JPS58135578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60862U (en) * 1983-06-16 1985-01-07 株式会社 富士電機総合研究所 Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60862U (en) * 1983-06-16 1985-01-07 株式会社 富士電機総合研究所 Fuel cell
JPH0249640Y2 (en) * 1983-06-16 1990-12-27

Similar Documents

Publication Publication Date Title
CN103907233B (en) Fuel cell
US6180273B1 (en) Fuel cell with cooling medium circulation arrangement and method
CN112768723B (en) Bionic phase change cooling system and method for high-power hydrogen fuel cell stack
JPS58201266A (en) Air cooling type fuel cell
JPS58135578A (en) Air-cooled fuel cell
JP4969040B2 (en) Internal gas controlled fuel cell
KR20230056723A (en) fuel cell stack
US7067209B2 (en) High temperature reactant recycling for PEM fuel cell humidification
JPS6316576A (en) Air cooling type fuel cell
US20210384532A1 (en) Humidifier and motor vehicle
JPS6322423B2 (en)
JPS61243662A (en) Cooling device for fuel cell
JPS63105474A (en) Fuel cell
JPH0438105B2 (en)
JPS62211869A (en) Cooling gas supply deice for fuel cell
JPS599869A (en) Air cooling type fuel cell
JPS6129077A (en) Cooling device for fuel cell
JPH0782874B2 (en) Fuel cell
JPS58216365A (en) Cooling device of fuel cell
JPH0656769B2 (en) Fuel cell power generation system
JPS62168350A (en) Fuel cell
KR101300160B1 (en) Fuel cell
WO2023044756A1 (en) Fuel cell stack module
JPS62232867A (en) Cooler for fuel cell
JPS5946769A (en) Air-cooled fuel cell