JPS5813452A - Adding method of powder to molten metal - Google Patents

Adding method of powder to molten metal

Info

Publication number
JPS5813452A
JPS5813452A JP11101681A JP11101681A JPS5813452A JP S5813452 A JPS5813452 A JP S5813452A JP 11101681 A JP11101681 A JP 11101681A JP 11101681 A JP11101681 A JP 11101681A JP S5813452 A JPS5813452 A JP S5813452A
Authority
JP
Japan
Prior art keywords
jet
nozzle
sticking
distance
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11101681A
Other languages
Japanese (ja)
Other versions
JPS6353901B2 (en
Inventor
Yutaka Ogawa
裕 小川
Hiroaki Shiraishi
白石 博章
Hiroshi Matsumoto
宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11101681A priority Critical patent/JPS5813452A/en
Publication of JPS5813452A publication Critical patent/JPS5813452A/en
Publication of JPS6353901B2 publication Critical patent/JPS6353901B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal

Abstract

PURPOSE:To prevent the clogging of a powder adding nozzle and to prevent the quality degradation of an ingot by analyzing the sticking distance of the sticking jet generated in the metallic flow in the powder mixing part of a continuous casting device and providing the opening part of said nozzle in the position higher than the sticking position. CONSTITUTION:The molten steel flow 5 flowing down from a tundish nozzle 2 is bent by the vortexes of air generated in a tightly closed mixing part and sticks on the inside wall 8 of the mixing part. In order to prevent the generation of the internal defects of an ingot, it is necessary to prevent the clogging of a nozzle 6 for adding powder by locating the opening part 9 at the leading end of said nozzle 6 in the position higher than the sticking distance Xr of the stucking jet 5. Said Xr can be determined geometrically and empirically by the equation. Here, Xr; the distance of the sticking jet mm., Ws; the outflow diameter of the down flow metal mm., alpha; the angle of inclination of the wall 8 deg., R; the radius of curvature of the sticking jet mm., theta; the angle of collision of the sticking jet deg., Y; the distance between the point where the centerline of the sticking jet and the wall 8 intersect and the sticking jet line mm..

Description

【発明の詳細な説明】 この発明は連続鋳造において、タンプッシュから混合ノ
ズル内に流下する溶融金属に粉体を添加する方法に−す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a method of adding powder to molten metal flowing down from a tamp pusher into a mixing nozzle in continuous casting.

従来から連続鋳造により製造された鋳片には中心偏析、
あるいはセンターポロシテーなどの内部欠陥が発生する
。このような内部欠陥を防止するため、鋳型的溶鋼に電
磁攪拌処理を行うことが広く採用され成程度の効果をあ
げているが十分ではない。
Traditionally, slabs manufactured by continuous casting have center segregation,
Alternatively, internal defects such as center porosity occur. In order to prevent such internal defects, electromagnetic stirring treatment of mold-like molten steel has been widely adopted, and although it has been somewhat effective, it is not sufficient.

これに対し、鋳込み中の溶鋼流に鉄線、鉄片、鉄粉等の
冷材を添加すると内部欠陥が著しく改善されることは知
られており、特に鉄粉の添加は効果が大きい。このよう
な鉄粉の添加方法が種々提案されてお沙、連続鋳造にお
いて前記鉄粉等の添加は浸漬ノズルを兼ねた混合ノズル
内で大気と遮断した状態で行われている。第1図は混合
ノズル内で添加ノズルによる冷材の添加を示す図であし
く1)ハタンデツVユ、(2)はタンプッシュノズル、
(3)は混合ノズルであって(4)はモールド(6)は
添加ノズ′ルテする。タンプッシュ(1)に受注された
溶鋼は、タンデツシュノズA/ (2)から混合ノズル
(3)の中に注入されてモールド(4)に鋳込まれるが
、混合ノズル(3)に注入流下する溶鋼流(5)に添加
ノズiv (a)から鉄粉(7)を添加するものである
。このような添加方法において、添加ノズyv (6)
からキャリアガスな用いて鉄粉を溶鋼流に吹付は添加す
る方法が提案されている。(特開昭53−130230
号)しかしこの方法は鉄粉をArガヌ等のキャリアガス
と共に溶鋼流に吹付けるのでキャリアガスが溶鋼流に巻
き込まれて溶鋼中に気泡が生じ内部欠陥となる欠点があ
る。このため鉄粉の添加にはキャリアガスな使用せず鉄
粉の自然流下により添加するのが好ましく、そのために
は添加ノズルの傾斜角度を約40°以上に設ける必要が
ある。しかしこのような角度を設けると添加ノズ/1/
 (6)の先端開口部(9)は混合部の下方の位置とな
る。また密閉された混合部内で溶鋼が流下すると、空気
の渦流が生; じ、溶鋼流が曲って混合部内壁(8)に衝突するコアン
ダ現象がおこる。
On the other hand, it is known that internal defects can be significantly improved by adding cold materials such as iron wire, iron pieces, iron powder, etc. to the molten steel flow during pouring, and the addition of iron powder is particularly effective. Various methods for adding iron powder have been proposed, but in continuous casting, the addition of iron powder, etc. is carried out in a mixing nozzle that also serves as an immersion nozzle, isolated from the atmosphere. Figure 1 is a diagram showing the addition of cold material by the addition nozzle in the mixing nozzle.
(3) is a mixing nozzle, and (4) is a mold (6) which is an addition nozzle. The molten steel ordered to the tank push (1) is injected from the tank push nozzle A/ (2) into the mixing nozzle (3) and cast into the mold (4). Iron powder (7) is added to stream (5) from addition nozzle iv (a). In such an addition method, the addition nozzle yv (6)
A method has been proposed in which iron powder is added to the molten steel stream by spraying it using a carrier gas. (Unexamined Japanese Patent Publication No. 53-130230
However, since iron powder is sprayed onto the molten steel flow together with a carrier gas such as Ar gun, this method has the disadvantage that the carrier gas gets caught up in the molten steel flow, causing bubbles in the molten steel and causing internal defects. For this reason, it is preferable to add the iron powder by allowing the iron powder to naturally flow without using a carrier gas, and for this purpose, it is necessary to set the inclination angle of the addition nozzle to about 40° or more. However, if such an angle is provided, the addition nozzle /1/
The tip opening (9) of (6) is located below the mixing part. Furthermore, when the molten steel flows down within the sealed mixing section, a vortex of air is generated; the Coanda phenomenon occurs in which the molten steel flow bends and collides with the inner wall (8) of the mixing section.

ルの開口部(9)が付着距離Xrより下方にあると開口
部(9)は溶鋼により閉塞をおこし鉄粉の添加が不可能
となる欠点がある。
If the opening (9) of the steel is located below the adhesion distance Xr, the opening (9) will be blocked by molten steel, making it impossible to add iron powder.

この発明はこのような欠点に対処するだめになされたも
ので、付着噴流の付着距離を解析して、添加ノズルの先
端開口部(9)が付着位置より上方になるように添加ノ
ズルを設けて鉄粉を添加するもので、その特徴とすると
ころは、下記式により付着噴流の距Mlk(Xr)を求
め、前記Xr紳範囲内に添加ノズルの開口部を設け、前
記添加ノズルより粉体を溶鋼に添加することを特徴とす
るものであムXr     R5in(α十〇) 17=誼 ”  Oosα −IF肛J・・・(1)但
し、 xr:付−噴流の距離(u) Ws:流下金属の流出径(鵡) α:混合部内壁の傾斜角(つ R=付着噴流の曲率半径(M) θ:混合部内壁への付着噴流の衝突角度(0)(第3 
頁) 以下図面にもとづいて本発明を説明する。第2図は付着
噴流の解析モデルを示す図である。タンデツシュノズl
 (2)から流下する溶鋼流(5)は、図に示すように
曲って付着噴流となり、混合部内壁(8)に衝突する。
This invention was made to deal with such drawbacks, and the addition nozzle is installed so that the tip opening (9) of the addition nozzle is above the attachment position by analyzing the attachment distance of the attachment jet. This device adds iron powder, and its characteristics are that the distance Mlk (Xr) of the adhesion jet is determined by the following formula, the opening of the addition nozzle is provided within the Xr range, and the powder is removed from the addition nozzle. It is characterized by being added to molten steel. Outflow diameter of metal (Parrot) α: Inclination angle of the inner wall of the mixing section (R = radius of curvature of the adhering jet (M) θ: Collision angle of the adhering jet on the inner wall of the mixing section (0) (3rd
Page) The present invention will be explained below based on the drawings. FIG. 2 is a diagram showing an analytical model of the adhesion jet. Tandetshu Nozu l
The molten steel flow (5) flowing down from (2) bends as shown in the figure to become a sticking jet and collides with the inner wall (8) of the mixing section.

図中タンデツシュノズ/l/ (2)の下端からXrの
距離が付着噴流の上限値であり、このXrの値以内では
付着噴流による添付ノズルの閉塞は起らないので、この
Xrの範囲内に添加ノズルの先端開口部(9)を設けれ
ばよい。このXrO値を幾何学的に求めたものが上記(
1)式である。
In the figure, the distance of Xr from the lower end of the tundish nozzle /l/ (2) is the upper limit of the adhesion jet, and within this Xr value, the attached nozzle will not be clogged by the adhesion jet, so add within this Xr range. A nozzle tip opening (9) may be provided. The geometrically determined XrO value is shown above (
1) is the formula.

(1)式中、流下金属の流出径Wsと混合部内壁の傾斜
角αは任意に決定される。
In formula (1), the outflow diameter Ws of the falling metal and the inclination angle α of the inner wall of the mixing section are arbitrarily determined.

(1)式中の、混合部内壁への付着噴流の衝突角度θと
、付着噴流の中心線と混合部内壁と交わる点と付着噴流
線の距離Yrは、あらかじめ実験的に求められる。パラ
メータtr(0<tr<1)を用いて下記(2)式、(
3)式により求められる。
In equation (1), the collision angle θ of the adhering jet to the inner wall of the mixing section and the distance Yr between the point where the center line of the adhering jet intersects with the mixing section inner wall and the adhering jet line are determined experimentally in advance. Using the parameter tr (0<tr<1), the following equation (2), (
3) It is determined by the formula.

3上 Oosθ= −tr−tf・C2) 2 (第4 頁) さらに(1)式中の付着噴流の曲率半径Rは、下記(4
)式により求められるものである。
3 Oosθ=-tr-tf・C2) 2 (Page 4) Furthermore, the radius of curvature R of the adhesion jet in equation (1) is expressed as follows (4
) is obtained by the formula.

ここで、D:  混合部内壁のオフセット量以上のよう
に任意に決定されるWs  Dとαならびに、上記(2
)〜(4)式で求められるRlQ、Yrによ気上記(1
)式よりXrを求め、この値の範囲内に添加ノズルの開
口位置を定めるものである。
Here, D: Ws arbitrarily determined to be greater than or equal to the offset amount of the inner wall of the mixing section D and α, and the above (2
) to (4), the above (1)
) is used to find Xr, and the opening position of the addition nozzle is determined within the range of this value.

この発明の目的から、 Xrを大きくするためには混合
部内壁のオフセット量りを大きくするか、混合部の傾斜
角αを大きくとるとXrは大きくなる。
For the purposes of this invention, Xr can be increased by increasing the offset of the inner wall of the mixing section or by increasing the inclination angle α of the mixing section.

又タンプッシュノズルの下端を延長すればその分Xrに
加算される。このような変更は、タンプッシュの形状や
他の周辺の条件によって適当に決定するものである。
Also, if the lower end of the tongue push nozzle is extended, that amount will be added to Xr. Such changes are appropriately determined depending on the shape of the tongue pusher and other surrounding conditions.

実  施  例 第3図はこの発明の実施例を示す図である。第3図にお
いて、溶鋼の流出径Wsを2叫、混合部のオフセラ) 
Jtt D 2Fsrb、混合部内壁の傾斜角度を0と
し、そしてパラメーターtrを/3として上記(2)式
、(3)式、(4)式より、R=1981im、θ=3
2°、Yr= 5鴎を求め、これらの数値を上記(1)
式に代入して、Xr=95鶴を得た。
Embodiment FIG. 3 is a diagram showing an embodiment of this invention. In Fig. 3, the outflow diameter Ws of molten steel is 2, and the offset diameter of the mixing section)
Jtt D 2Fsrb, the inclination angle of the inner wall of the mixing section is 0, and the parameter tr is /3, and from the above equations (2), (3), and (4), R = 1981 im, θ = 3
2°, Yr = 5 seagulls, and these values are calculated from (1) above.
Substituting into the formula, we obtained Xr=95 cranes.

ここで、添加ノズルの傾斜角度は約40°以上必要とす
ること及びタンプッシュの干渉をさけるためにタンプッ
シュノズルを1708(図中)、)延長させ、さらにこ
のタンデッVユノズルの下端より、上記したXrの範囲
内である20鵡(図中!、)下方に添加ノズルの開口部
(9)を設けた。
Here, the inclination angle of the addition nozzle needs to be about 40 degrees or more, and in order to avoid interference with the tongue push, the tongue push nozzle is extended (1708 (in the figure)), and furthermore, from the lower end of this tandem V unit nozzle, the above The opening (9) of the addition nozzle was provided 20 mm below (in the figure!) within the range of Xr.

このような装置を用い820C鋼を連続鋳造を行い、上
記した添加ノズル開口部から平均粒径0.1mの鉄粉を
添加量が、溶鋼の1.5チになるように添加した結果、
添加ノズル開口部には溶鋼の付着は全くなかった。また
得られた鋳片はほぼ全面が微細なデンドライト組織とな
り、重心偏析、センター、− ポロシテーは著しく改善され;iらにメニヌヵスから最
終擬固位置までの距離は約401短縮され、高速鋳込み
が可能となり、生産性が向上した。
Continuous casting of 820C steel was carried out using such equipment, and iron powder with an average particle size of 0.1 m was added from the above-mentioned addition nozzle opening so that the amount added was 1.5 cm of molten steel.
There was no molten steel adhering to the addition nozzle opening. In addition, almost the entire surface of the obtained slab has a fine dendrite structure, and the center of gravity segregation, center, and -porosity are significantly improved; the distance from the meninuccus to the final pseudo-solidification position is shortened by about 401 points, making high-speed casting possible. As a result, productivity has improved.

以上のように、この発明は連続鋳造における混合ノズル
内の金属流におこる付着噴流の付着距離を解析し、この
付着位置より上方に添加ノズル開口部(9)を設けて粉
体を添加するもので、添加ノズルの閉塞は全くなくなり
高品質の鋳片を高能率に製造することを可能にしたもの
である。
As described above, this invention analyzes the adhesion distance of the adhesion jet that occurs in the metal flow in the mixing nozzle in continuous casting, and adds powder by providing an addition nozzle opening (9) above this adhesion position. This completely eliminates clogging of the addition nozzle, making it possible to produce high-quality slabs with high efficiency.

なをこの発明の説明には溶鋼の連続鋳造について説明し
たが、非鉄金属の連続鋳造においても同様の効果を有す
ることは勿論である。
Although the continuous casting of molten steel has been described in the description of this invention, it goes without saying that the same effect can be obtained in the continuous casting of non-ferrous metals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は混合ノズルによる粉体の添加を示す図、第2図
は付着噴流の解析モデルを示す図、第3図はこの発明の
実施例を示す図である。 図中、1・・・タンプッシュ、2・・・タンプッシュノ
ズル、3・・・混合ノズル、4・・・モールド、5・・
・溶鋼流、6・・・添加ノズル、7・・・粉体、8・・
・混合部内壁、1、: 9・・・添加ノズル先□端、開口部 出願人  住友金属工業株式会社 第2図 第3図
FIG. 1 is a diagram showing the addition of powder by a mixing nozzle, FIG. 2 is a diagram showing an analytical model of a deposition jet, and FIG. 3 is a diagram showing an embodiment of the present invention. In the figure, 1... tongue push, 2... tongue push nozzle, 3... mixing nozzle, 4... mold, 5...
・ Molten steel flow, 6... Addition nozzle, 7... Powder, 8...
・Inner wall of mixing section, 1,: 9... Addition nozzle tip □ end, opening Applicant: Sumitomo Metal Industries, Ltd. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 タンプッシュノズルから混合ノズル内に流下する溶融金
属に添加ノズルを用いて粉体を添加する方法において、
下記式により付着噴流の距離Xrを求め、前記Xrの範
囲内に添加ノズμの開口部を設け、前記添加ノズルより
粉体を溶融金属に向けて添加することを特徴とする溶融
金属への粉体添加方法。 Xr   R5in(α十〇)   Yr■−好”  
Oosα −WE訂コ 但し、 xr:付着噴流の距離−) Ws:流下金属の流出径(IB) α:混合部内壁の傾斜角(0) R=付着噴流の曲率半径(a) θ:混混合部内への付着噴流の衝突角度(つYr:付着
噴流の中心線と混合部内壁と交わる点と付着噴流線の距
離CHI−)
[Claims] A method of adding powder to molten metal flowing down from a tamp push nozzle into a mixing nozzle using an addition nozzle,
Powder to molten metal characterized in that the distance Xr of the adhering jet is determined by the following formula, an opening of an addition nozzle μ is provided within the range of Xr, and the powder is added toward the molten metal from the addition nozzle. Body addition method. Xr R5in (α10) Yr■-Good”
Oosα -WE revised, xr: Distance of adhesion jet -) Ws: Outflow diameter of falling metal (IB) α: Inclination angle of inner wall of mixing section (0) R = Radius of curvature of adhesion jet (a) θ: Mixed mixture Collision angle of the adhering jet into the part (Yr: distance CHI- between the point where the center line of the adhering jet intersects with the inner wall of the mixing part and the adhering jet line)
JP11101681A 1981-07-16 1981-07-16 Adding method of powder to molten metal Granted JPS5813452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11101681A JPS5813452A (en) 1981-07-16 1981-07-16 Adding method of powder to molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11101681A JPS5813452A (en) 1981-07-16 1981-07-16 Adding method of powder to molten metal

Publications (2)

Publication Number Publication Date
JPS5813452A true JPS5813452A (en) 1983-01-25
JPS6353901B2 JPS6353901B2 (en) 1988-10-26

Family

ID=14550253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11101681A Granted JPS5813452A (en) 1981-07-16 1981-07-16 Adding method of powder to molten metal

Country Status (1)

Country Link
JP (1) JPS5813452A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834830U (en) * 1981-08-29 1983-03-07 コニカ株式会社 Paper feeding device
JPH01110434A (en) * 1987-10-23 1989-04-27 Isamu Miura Feeder for automatic printing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103168225B (en) 2010-10-25 2015-11-25 阿库里赛托梅特斯公司 For collecting system and the user interface of the data set in flow cytometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834830U (en) * 1981-08-29 1983-03-07 コニカ株式会社 Paper feeding device
JPH019792Y2 (en) * 1981-08-29 1989-03-17
JPH01110434A (en) * 1987-10-23 1989-04-27 Isamu Miura Feeder for automatic printing machine

Also Published As

Publication number Publication date
JPS6353901B2 (en) 1988-10-26

Similar Documents

Publication Publication Date Title
US4819840A (en) Refractory submerged pouring nozzle
US4715586A (en) Continuous caster tundish having wall dams
EP0950453A1 (en) Submerged entry nozzle
JPS6036460B2 (en) Vortex reactor and method for adding solid materials to molten metal
US9597729B2 (en) Metal pouring method for the die casting process
JPS5813452A (en) Adding method of powder to molten metal
JPH0852547A (en) Immersion casting pipe
CA1243188A (en) Submerged nozzle for use in the continuous casting of slabs
JPH0114386Y2 (en)
JP2004344900A (en) Dipping nozzle and continuous casting method using the same
US7025115B2 (en) Ladle for molten metal
JP2001001115A (en) Continuous casting method of steel
JP2000015404A (en) Production of continuously cast slab having little inclusion defect
CA2257139C (en) Process and device for casting steel from an immersion nozzle
US5232046A (en) Strand casting apparatus and method
JPH11104794A (en) Continuous casting of beam blank
JPS62130752A (en) Continuous casting method for bloom or billet
JP3262936B2 (en) Operating method for high clean steel casting.
JPH07284891A (en) Tundish for continuous casting having remaining molten steel and slag discharging hole
JP2002336957A (en) Sliding nozzle of metallurgic vessel, and deposit removing method
JP2567452B2 (en) Continuous casting method for steel
KR20030053057A (en) Method and apparatus for controlling standing surface wave and turbulence in continuous casting vessel
KR100485404B1 (en) Partial Immersion Nozzle for Continuous Casting of Thin Slabs
JP3039821B2 (en) Immersion nozzle for continuous casting and method of pouring molten steel
JPH0243551Y2 (en)