JPS58134394A - Physical quality measuring apparatus with function of measuring temperature - Google Patents

Physical quality measuring apparatus with function of measuring temperature

Info

Publication number
JPS58134394A
JPS58134394A JP1560482A JP1560482A JPS58134394A JP S58134394 A JPS58134394 A JP S58134394A JP 1560482 A JP1560482 A JP 1560482A JP 1560482 A JP1560482 A JP 1560482A JP S58134394 A JPS58134394 A JP S58134394A
Authority
JP
Japan
Prior art keywords
temperature
bridge circuit
resistance
strain
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1560482A
Other languages
Japanese (ja)
Other versions
JPH0447359B2 (en
Inventor
真澄 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Electronic Instruments Co Ltd
Original Assignee
Kyowa Electronic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Electronic Instruments Co Ltd filed Critical Kyowa Electronic Instruments Co Ltd
Priority to JP1560482A priority Critical patent/JPS58134394A/en
Publication of JPS58134394A publication Critical patent/JPS58134394A/en
Publication of JPH0447359B2 publication Critical patent/JPH0447359B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、ひずみゲージ等を使用したブリッジ回路と感
温抵抗素子とによって、被測定物のひずみ等の物理量と
温度とを測定する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring physical quantities such as strain and temperature of an object to be measured using a bridge circuit using a strain gauge or the like and a temperature-sensitive resistance element.

従来、被測定物の温度とある物理量例えば、ひずみとを
、感温抵抗素子とブリッジ回路とによって、測定する装
置としては、第1図に示すもの力f知られている。この
装置は大別して、センサ部10と延長コード部間と測定
装置本体間とから成る。
2. Description of the Related Art Conventionally, a device shown in FIG. 1 has been known as a device for measuring the temperature of an object to be measured and a certain physical quantity, such as strain, using a temperature-sensitive resistance element and a bridge circuit. This device is roughly divided into a sensor section 10, an extension cord section, and a measuring device main body.

センサ部10は、被測定物のひずみ量及び温度を、電気
量すなわち抵抗値に変換する部分であり、4つのひずみ
ゲージSG、 、 SG、 、 SG、 、 SG、で
構成されるブリッジ回路Bと、感温抵抗素子Rとを有す
る。延長コード部間は、6本の芯線Is + lx 、
Is H4e Is * /e で構成され、それぞれ
ブリッジ回路13の入力端子1,2.同出力端子3,4
.感温抵抗素子Rの両端子5,6に接続されている。ま
た各芯線l、〜I!6は、同一規格、同一長さであり、
それぞれ抵抗rを有している。測定装置本体Iは、ブリ
ッジ回路Bの入力側へ定電流を供給する定電流源S1と
、ブリッジ回路Bの出力側の両端電圧を増幅する増幅器
A1と、増幅器A1の出力端子に接続された電圧計であ
って、被測定物のひずみを表示するメータSMとを有す
る。また測定装置本体)ffil C,t、感温抵抗素
子Rへ定電流を供給する定電流源S、と、感温抵抗素子
l(と芯線/、 、 26の合成抵抗2rとによる電圧
降下分を増幅する増幅器A2と、増幅器A8の出力端子
に接続された電圧計であって、被測定物の温度を測定す
るためのメータTMとを有している、。
The sensor unit 10 is a part that converts the amount of strain and temperature of the object to be measured into electrical quantities, that is, resistance values, and includes a bridge circuit B consisting of four strain gauges SG, SG, SG, SG, SG, and SG. , and a temperature-sensitive resistance element R. Between the extension cord parts, there are 6 core wires Is + lx,
Is H4e Is * /e, and input terminals 1, 2 . . . of the bridge circuit 13, respectively. Same output terminal 3, 4
.. It is connected to both terminals 5 and 6 of the temperature sensitive resistance element R. Also, each core wire l, ~I! 6 is the same standard and the same length,
Each has a resistance r. The measuring device main body I includes a constant current source S1 that supplies a constant current to the input side of the bridge circuit B, an amplifier A1 that amplifies the voltage across the output side of the bridge circuit B, and a voltage connected to the output terminal of the amplifier A1. and a meter SM that displays the strain of the object to be measured. In addition, the voltage drop due to the measuring device body) ffil C, t, the constant current source S that supplies a constant current to the temperature-sensitive resistance element R, and the composite resistance 2r of the temperature-sensitive resistance element l (and the core wire /, , , 26). It has an amplifier A2 for amplification, and a meter TM, which is a voltmeter connected to the output terminal of the amplifier A8, and for measuring the temperature of the object to be measured.

次に上記従来例の動作を説明する。まずひずみゲージ5
()1〜SG、を被測定部に例えば接着等の手段で添着
する。例えば、ブリッジ回路Bの相隣るひずみゲージは
、互いに被測定物の異なる伸縮方向に、ブリッジ回路B
の対辺にあるひずみゲージは互いに被測定物の同−伸一
方向に添着する。この場合、ある時点において、ひずみ
ゲージS01が伸びていたならば、ひずみゲージSG、
も伸びるような位置に添着し、ひずみゲージSG2. 
SG、は縮むような位置に添着する。そして定電流源S
1からブリッジ回路Bに電流を供給□すると、被測定物
のひずみに応じて、端子3−4間の電圧が変化し、この
電圧を増幅器A、が増幅した後にメータSMが駆動され
る。従って被測定物のひずみ量がメータSMに表示され
る。
Next, the operation of the above conventional example will be explained. First, strain gauge 5
( ) 1 to SG are attached to the part to be measured by, for example, adhesive. For example, adjacent strain gauges in bridge circuit B may
The strain gauges on opposite sides of the strain gauge are attached to each other in the same direction of elongation of the object to be measured. In this case, if strain gauge S01 is stretched at a certain point, strain gauge SG,
Strain gauge SG2.
SG is attached at a position where it will shrink. and constant current source S
When a current is supplied from 1 to bridge circuit B, the voltage between terminals 3 and 4 changes depending on the strain of the object to be measured, and after this voltage is amplified by amplifier A, meter SM is driven. Therefore, the amount of strain on the object to be measured is displayed on the meter SM.

′ 一方、感温抵抗素子Rも被測定物に添着されており
、この感温抵抗素子Rは被測定物の温度が高くなる程、
その抵抗値が大きく変化するものである。従って被測定
物の温度が変化するのに応じて、増幅器A2の入力電圧
が変化し、これを増幅した後にメータTMで表示された
電圧値から、測定誤差となる芯線is 、 1mの抵抗
2rによる電圧降下分に一対応する電圧値を差し引けば
、その時の被測定物の温度を求めることができる。
' On the other hand, a temperature-sensitive resistance element R is also attached to the object to be measured, and as the temperature of the object to be measured increases,
Its resistance value changes greatly. Therefore, as the temperature of the object to be measured changes, the input voltage of the amplifier A2 changes, and after amplifying this, the voltage value displayed on the meter TM is determined by the measurement error of the core wire is, due to the 1 m resistor 2r. By subtracting the voltage value corresponding to the voltage drop, the temperature of the object to be measured at that time can be determined.

しかし上記の従来例にあっては、被測定物のひずみのみ
を測定する場合には芯線が4本で足りるが、ひずみ及び
温度を測定する場合には芯線が2本多くなっている。勿
論、回路構成を変えて、芯線l、とl、とを共用に□す
ることも可能であるが、そ1″・□ れにしても芯線がり↑多くなる。従って延長コード加は
、芯線の本数が多くなることによって、延長コード20
.7)形状が太くなり重量が多くなるという問題が生じ
る。また上記従来例は、芯線J@ 、 1mの抵抗2−
rに流れる電流によって生じる電圧降下分を差し引くこ
とによって、被測定物の温度をIll定するものであり
、その抵抗2rは延長コード20の長さが変化する毎に
変化する。従って、延長コード」の長さが変化すれば温
度測定における補正値も変えなければならないという問
題がある。
However, in the conventional example described above, four core wires are sufficient when measuring only the strain of the object to be measured, but two core wires are required when measuring strain and temperature. Of course, it is possible to change the circuit configuration and share the core wires 1 and 1, but even if that happens, the number of core wires will increase. By increasing the number of extension cords, 20
.. 7) A problem arises in that the shape becomes thicker and the weight increases. In addition, in the above conventional example, the core wire J@, 1 m resistance 2-
The temperature of the object to be measured is determined by subtracting the voltage drop caused by the current flowing through r, and the resistance 2r changes each time the length of the extension cord 20 changes. Therefore, there is a problem in that if the length of the extension cord changes, the correction value for temperature measurement must also be changed.

そこで本発明は、ひずみゲージ等を使用したブリッジ回
路と感温抵抗素子とによって、被測定物のひずみ等の物
理駿と温度とを測定する装置において、延長コードの芯
線数を減少させるとともに、温度測定時に延長コードの
抵抗を自動的に補正させるため、ブリッジ回路の出力側
に感温抵抗素子を直列に設け、互いに同一電流を流す定
電流源を2つ設け、スイッチ切換をして測温時に、ブリ
ッジ回路の入力側をショートし、その入力側とブリッジ
回路の出力側の一端との間に感温抵抗素子を介して定電
流源の1つを接続し、また前記入力側と前記出力側の他
端との間に定電流源の他方を接続するようにしたもので
ある。   −以下、添付図面に示す実施例に基づいて
本発明を詳述する。尚、同一部材には同一符号を付しで
ある。第2図は本発明の一実施例を示す回路図−ごある
Therefore, the present invention aims to reduce the number of core wires in an extension cord and to reduce the number of core wires in an extension cord in a device that measures physical properties such as strain and temperature of a measured object using a bridge circuit using a strain gauge and a temperature-sensitive resistance element. In order to automatically correct the resistance of the extension cord during measurement, a temperature-sensitive resistance element is installed in series on the output side of the bridge circuit, and two constant current sources that flow the same current are installed. , the input side of the bridge circuit is short-circuited, one of the constant current sources is connected between the input side and one end of the output side of the bridge circuit via a temperature-sensitive resistance element, and the input side and the output side are connected. The other end of the constant current source is connected between the other end and the other end of the constant current source. - Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings. Note that the same members are given the same reference numerals. FIG. 2 is a circuit diagram showing one embodiment of the present invention.

センサ部11には、ひずみゲージSG、〜SG、による
ブリッジ回路Bと、ブリッジ回路Bの1つの出力端子4
に接続された感温抵抗素子Rとが設けられている。ひず
みゲージSG、〜SG、は、互いに同一規格のものを用
いる。また感温抵抗素子l(は、その抵抗値が100Ω
、抵抗温度係数が4J100 ppm/”Cのときに1
、”C当りの抵抗変化が04Ωのものが用いられている
。尚、1,2はブリッジ回路Bの入力端子、3,4はブ
リッジ回路の出力端子である。
The sensor unit 11 includes a bridge circuit B including strain gauges SG, ~SG, and one output terminal 4 of the bridge circuit B.
A temperature-sensitive resistance element R connected to is provided. Strain gauges SG, to SG are of the same standard. In addition, the temperature-sensitive resistance element l (has a resistance value of 100Ω
, 1 when the temperature coefficient of resistance is 4J100 ppm/”C
, "The one with a resistance change per C of 04 Ω is used. Note that 1 and 2 are the input terminals of the bridge circuit B, and 3 and 4 are the output terminals of the bridge circuit.

延長コード部21には4本の芯線l、〜I!4が設けら
れ、その芯線抵抗は総てrである。また各芯線/1゜z
t、 ls* /4は、端子1.2,3.感温抵抗素子
l(と接続されている。この延長コード部21の長さは
05−の芯線で最大1000mとした。
The extension cord section 21 has four core wires l, ~I! 4 are provided, and their core wire resistances are all r. Also, each core wire/1゜z
t, ls*/4 are terminals 1.2, 3. The extension cord section 21 has a maximum length of 1000 m using the 05- core wire.

測定装置本体31内の、ブリッジ入力側端子11゜2′
、同出力側端子3’、4’はそれぞれ、芯線e、H1x
Bridge input side terminal 11゜2' in the measuring device main body 31
, the same output side terminals 3' and 4' are core wires e and H1x, respectively.
.

1H1aと接続されている。定電流源S、、S、は互い
に同・−電流を流すためのものであり、スイッ:fS嶌
は端子2′を端子1′または定電流源S、に接続するた
めのものであり、スイッチSW2は定電流源S1を端子
3′または端子2に接続するためのものであり、スイッ
チSW3は定電流源S2を端子4′に接続するかまたは
無負荷に(もしくは端子2に接続)するためのものであ
り、スイッチsw、 、 絨、 sw、は互いに連動す
るものである。すなわち、スイッチSW、 。
It is connected to 1H1a. The constant current sources S, , S, are for passing the same current to each other, and the switch fS is for connecting terminal 2' to terminal 1' or constant current source S, and is a switch. SW2 is for connecting constant current source S1 to terminal 3' or terminal 2, and switch SW3 is for connecting constant current source S2 to terminal 4' or no load (or connecting to terminal 2). The switches sw, , and sw are interlocked with each other. That is, switch SW.

sw2.sw、は測温時には、ブリッジ回路Bの入力側
]’、2’をショートし、この入力側1′とブリッジ回
路Bの出力側の一端4′との間に感温抵抗素子Rを介し
て定電流源S2を接続し、入力側1′と出力側3′との
間に定電流源S、を接続するものである。そしてスイッ
チsw、 、 sw、 、 sw、は、ひずみ測定時に
は、従来のひずみ測定回路と同様に、ブリッジ回路Bの
入力側1′、zに定電瀝源S1(および/また′1.・
I・ はS2)を接続し、ブリ・スジ回路Bの出力側3′、4
′には定電流源S、 、 S力を接続しないようにする
ものである。
sw2. When measuring temperature, sw shorts the input side 1' and 2' of the bridge circuit B, and connects the input side 1' and one end 4' of the output side of the bridge circuit B via the temperature-sensitive resistance element R. A constant current source S2 is connected, and a constant current source S is connected between the input side 1' and the output side 3'. During strain measurement, the switches sw, , sw, , sw connect constant current source S1 (and/or '1..
I. connects S2) and outputs 3' and 4 of the bridge circuit B.
The constant current sources S, , and S are not connected to '.

増幅器A3は、端子3”、4’間の電圧を増幅するもの
であり、入力インピーダンスが充分に高いものである。
The amplifier A3 amplifies the voltage between the terminals 3'' and 4', and has a sufficiently high input impedance.

メータMはひずみ量及び温度が目盛られたものである。The meter M is calibrated for strain amount and temperature.

次に上記実施例の動作について説明する。まず、被測定
物のひずみを測定する場合について説明する。この場合
は、従来の定電流方式によるひずみ測定と同様である。
Next, the operation of the above embodiment will be explained. First, a case will be described in which the strain of the object to be measured is measured. This case is similar to strain measurement using the conventional constant current method.

すなわち、スイッチS〜狐。That is, switch S~fox.

sw、 、 渦を総て接点す側に切換える。この場合の
等価回路を第3図に示しである。図中、芯線11゜l、
の右端に定電流源S1(および/またはS2)が接続さ
れているので、抵抗r、ブリッジ回路13.抵抗rには
定電流iが流れている。そしてひずみケージSG、とS
G、、 SG、とSG、は常に同じように抵抗変化をす
ると考えられ、またひずみゲージS(’i。
sw, , Switch all the vortices to the contact side. An equivalent circuit in this case is shown in FIG. In the figure, core wire 11゜l,
Since the constant current source S1 (and/or S2) is connected to the right end of the resistor r and the bridge circuit 13. A constant current i is flowing through the resistor r. and strain cages SG, and S
G,, SG, and SG are considered to always change resistance in the same way, and the strain gauge S('i.

とSG、どの合成抵抗と、ひずみゲージS G 、とS
C+ 。
and SG, which combined resistance and strain gauge S G , and S
C+.

とのそれとはほぼ同一と考えられるので、結局):甲、
、 リッジ回路Bの合成抵抗はほぼ一定であると考えられる
。従ってブリッジ回路Bの入力端子1−2間には常に一
定の電圧が印加されていると考えてもよい。そして被測
定物の変形に応じて、ブリッジ回路I(の出力端子3−
4間の電圧が変化する。
As it is considered to be almost the same as that of (after all): Party A,
, The combined resistance of ridge circuit B is considered to be approximately constant. Therefore, it may be considered that a constant voltage is always applied between the input terminals 1 and 2 of the bridge circuit B. Then, depending on the deformation of the object to be measured, the bridge circuit I (output terminal 3-
The voltage between 4 changes.

また増幅器A、の入力インピーダンスが充分に高いので
芯線e、、i、の合成抵抗2rや感温抵抗素子Rの抵抗
Rxが介在しているにもかかわらず、端子3’ −4’
間の電圧は端子3−4間のそれと実用上同一となる。従
ってメータMの針は、被測定物のひずみに応じて振れ、
この針の指示からひずみ量を視認できる。
Furthermore, since the input impedance of amplifier A is sufficiently high, despite the presence of the composite resistance 2r of core wires e, , i, and the resistance Rx of temperature-sensitive resistance element R, terminals 3'-4'
The voltage between them is practically the same as that between terminals 3 and 4. Therefore, the needle of meter M swings according to the strain of the object to be measured.
The amount of strain can be visually confirmed from the indication of this needle.

次に被測定物の温度を測定する場合について説明する1
、この場合は、スイッチsw、 、 sw、 、 sw
8を総て接点a側に切換える。この場合の等価回路を第
4図に示しである。図中Z1は端子4−1′間の合成抵
抗、乙は端子3−1′間の合成抵抗、E、は端子4’ 
−1’間の電圧、城は端子3′−]′間の電圧、氏は端
子4′−3′間の電圧である。従って、 Eo二I’=+   E+ =(r−r −)−RXq
 −4−Z、・+ )−(r・1+12・1) =l(x−i1乙・i −Z、・i = Rx−1+(
Z、 −Z、 )i# Rx 、i     となる。
Next, we will explain the case of measuring the temperature of the object to be measured.1
, in this case, the switches sw, , sw, , sw
8 to the contact a side. An equivalent circuit in this case is shown in FIG. In the figure, Z1 is the combined resistance between terminals 4 and 1', B is the combined resistance between terminals 3 and 1', and E is the combined resistance between terminals 4'.
-1' is the voltage between terminals 3' and 3', and 3' is the voltage between terminals 4' and 3'. Therefore, Eo2I' = + E+ = (rr -) - RXq
-4-Z, ・+ )-(r・1+12・1) =l(x-i1 Otsu・i −Z, ・i = Rx-1+(
Z, -Z, )i#Rx,i.

ここで(2,−2,)は、感温抵抗素子Rの温度に対す
る抵抗変化駄に対して充分無視できるものであり、例え
ばブリッジ回路Bに350Ωのゲージを用い1辺あ・た
り約1400 Xl0−’  ひずみを与え4倍出力と
したときその値は±0002Ωの範囲内であり、温度に
換算すると±o、o o s ’cの範囲内の値となる
Here, (2, -2,) can be ignored with respect to the resistance change due to temperature of the temperature-sensitive resistance element R. For example, if a 350Ω gauge is used in the bridge circuit B, approximately 1400Xl0 per side is used. -' When strain is applied and the output is quadrupled, the value is within the range of ±0002Ω, and when converted to temperature, the value is within the range of ±o, o o s 'c.

またo ’oのときの端子4′−3′間の電圧をトz(
0゛C)とし、t ’cのときの同電圧を醜(1°C)
とし、がO’Oからt ’cに変化した場合における端
子4′−3′間の電圧変化分を△E0とすれば、ΔEo
= Eo(t′c)−E、 (o゛c)=[(0(1−
t−ctt)i−Ro−1−Ro−a −i −t  
    となる。
Also, the voltage between terminals 4' and 3' when o'o is tz(
0゛C), and the same voltage at t'c is ug (1°C)
If ΔE0 is the voltage change between terminals 4' and 3' when changes from O'O to t 'c, then ΔEo
= Eo(t′c)−E, (o゛c)=[(0(1−
t-ctt)i-Ro-1-Ro-a-i-t
becomes.

この式から、前記電圧変化分ΔE、は、温度tと比例関
係になる。この電圧を増幅器A、で増幅し、メータMで
表示すれば、被測定物の温度を視認できる。この場合、
芯線IBl+の抵抗rに全く影響されずに測定できる。
From this equation, the voltage change ΔE has a proportional relationship with the temperature t. By amplifying this voltage with an amplifier A and displaying it on a meter M, the temperature of the object to be measured can be visually checked. in this case,
Measurements can be made without being affected by the resistance r of the core wire IBL+.

但し、これらの計算過程で合成抵抗(Z、−z2)を零
と考えているので、その分が誤差として現われる。しか
し、その誤差も高々±0.0(15’Oである。しかも
被測定物のひずみ及び温度を測定できるものでありなが
ら、芯線が4本で充分であるために、従来装置と比較し
てコードの形状が細くなり、電歇が軽減される。
However, in these calculation processes, the combined resistance (Z, -z2) is considered to be zero, so this amount appears as an error. However, the error is at most ±0.0 (15'O).Furthermore, although it can measure the strain and temperature of the object to be measured, four core wires are sufficient, so compared to the conventional device. The cord becomes thinner, reducing the need for electric switches.

上記実施例は、例えばコンクリートの硬化過程及び硬化
後の挙動を測定するのに適している。すなわらコンクリ
ートの応力をひずみゲージで測定し、またその時の温度
を感温抵抗素子によって測定すれば上い。
The above embodiment is suitable for measuring, for example, the curing process of concrete and its behavior after curing. In other words, the stress in the concrete can be measured using a strain gauge, and the temperature at that time can be measured using a temperature-sensitive resistance element.

尚本発明は、上記実施例に限定されず、その要旨に含ま
れる範囲での種々の変形実施が可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made within the scope of the invention.

例えば、上記実施例においては、ブリッジ回路13に4
つのひずみゲージs G、、〜SG、を用いていたヵ8
、。れ以外(26、呵ミ、′歩:、−9S G、 (7
) ミ* r;= &iひずみSG、 、 SG、のみ
として、ブリッジ回路Bの他の辺には固定抵抗を用いて
もよい。
For example, in the above embodiment, the bridge circuit 13 has four
Two strain gauges G, ~SG, were used.
,. Other than that (26, 呵mi, 'step:, -9SG, (7
) Mi*r;= &i Strain SG, , SG, only, and fixed resistors may be used on the other sides of the bridge circuit B.

また感温抵抗素子Rは、端子4,3とそれぞれ直列に2
つ設けてもよく、また端子3のみに直列に設けてもよい
。ひずみ測定において、増幅器A。
In addition, two temperature-sensitive resistance elements R are connected in series with terminals 4 and 3, respectively.
Alternatively, only the terminal 3 may be provided in series. In strain measurements, amplifier A.

の入力インピーダンスとの関係で、端子3’ −4’か
ら左側を見た合成インピーダンスを小さくすれば測定精
度が良くなる。
In relation to the input impedance, measurement accuracy will be improved if the combined impedance viewed from terminals 3'-4' to the left is made smaller.

しかして、この感温抵抗素子としては、例えば、従来か
ら多用されているサーミスタ、金属線(白金線、ニッケ
ル線、インジウム線等)測温抵抗体を用いることもでき
るが、近年開発された磁気表面に特殊金属皮膜を形成さ
せ特殊樹脂にて絶縁被覆した感温抵抗器を用いることが
望ましい。すなわち、サーミスタは温度特性が非直線的
であり、精度、再現性があまり高くなく、該温度特性を
直線的にするために補正抵抗を付加したりアナロク演算
回路等の複雑な補正回路が必要となる。
As this temperature-sensitive resistance element, for example, a thermistor or a metal wire (platinum wire, nickel wire, indium wire, etc.) resistance temperature sensor, which has been widely used in the past, can be used, but recently developed magnetic It is desirable to use a temperature-sensitive resistor whose surface is coated with a special metal film and insulated with a special resin. In other words, thermistors have non-linear temperature characteristics, and their accuracy and repeatability are not very high. In order to make the temperature characteristics linear, it is necessary to add a correction resistor or use a complex correction circuit such as an analog calculation circuit. Become.

一方、白金線、モッケル線等の金属線測温抵抗体は抵抗
値が低い(1豐えばJISC1604に制定されている
如く白金測温抵抗体は50Ωおよび100Ω)ため、接
点抵抗や信号系回路の線抵抗が大きな影響を与える、外
部の影響を受は易い、出力信号が小さい、形状が大きく
なり計装性が悪い、等の難点がある。
On the other hand, metal wire resistance thermometers such as platinum wire and Mockel wire have low resistance values (for example, platinum resistance thermometers are 50Ω and 100Ω as specified in JISC1604), so contact resistance and signal circuits are There are disadvantages such as the wire resistance has a large effect, it is easily affected by external influences, the output signal is small, and the size is large, making it difficult to instrument.

これらのものに対して上記絶縁被覆型の感温抵抗器は、
高温にも電気化学的にも安定で、また熱電導性に優れた
特殊磁器碍子上に温度感応機能をもつ金属薄膜(膜材質
としてはニッケル、鉄、クロム等を主成分にその他数種
の金属を添加物として加え、所望の抵抗値、抵抗温度係
数を得られるようにする)を真空蒸着、スパッタリング
等により被着し、更にこの七をエポキシ系樹脂により保
護塗装してなるものであり、温度/電気抵抗特性が直線
的であり、低抵抗(数Ω)から高抵抗(10にΩ程度)
のものが得られ、例えば比較的高抵抗のちのを使用する
場合接点抵抗や信号系回路の線抵抗は問題にならず、ノ
イズに対しては抵抗変化率が比較的大きいため有利であ
り微少な温度変化にも対応できる。
In contrast to these, the above insulation coating type temperature sensitive resistor is
A thin metal film with a temperature-sensitive function on a special porcelain insulator that is electrochemically stable at high temperatures and has excellent thermal conductivity (the film material consists mainly of nickel, iron, chromium, etc., and several other metals). is added as an additive to obtain the desired resistance value and temperature coefficient of resistance) by vacuum evaporation, sputtering, etc., and these 7 are further coated with epoxy resin for protection. / Electrical resistance characteristics are linear, ranging from low resistance (several ohms) to high resistance (about 10 ohms)
For example, when using a wire with relatively high resistance, the contact resistance and the wire resistance of the signal circuit will not be a problem, and the resistance change rate is relatively large, which is advantageous against noise. It can also respond to temperature changes.

更にひずみゲージSG、 −SG=の代わりに、例えば
、差動変圧器、差動インダクタンス等の他の変換素子を
用いて、V度以外の物理量たとえば荷重、力、圧力、加
速度等とともに温度をも測定できるようにしてもよい。
Furthermore, instead of the strain gauges SG, -SG=, other conversion elements such as differential transformers and differential inductances can be used to measure temperature as well as physical quantities other than V degrees, such as load, force, pressure, acceleration, etc. It may also be possible to make measurements.

因に差動変圧器とは、−次コイルと一対の二次コイルと
から構成され、測定すべき物理量により可動部が移動し
て、−次と一対の二次コイル相互の磁気結合度が変化し
て、可動部移動量に比例して二次コイルに誘起する各電
圧の差を検出するものである。またひずみゲージSG、
−8G、の代わりに例えばcd s(硫化カドミウム)
素子等の光電変換素子を用いれば、光縫とともに温度を
も測定できる。
Incidentally, a differential transformer is composed of a negative coil and a pair of secondary coils, and when the moving part moves depending on the physical quantity to be measured, the degree of magnetic coupling between the negative secondary coil and the pair of secondary coils changes. Then, the difference between the voltages induced in the secondary coil in proportion to the amount of movement of the movable part is detected. Also strain gauge SG,
-8G, for example cd s (cadmium sulfide)
If a photoelectric conversion element such as a photoelectric transducer is used, temperature can also be measured in addition to light stitching.

尚、スイッチS毘の接点すと、スイッチSXS、の接点
すとを予め接続しておいてもよい。
Note that the contacts of the switch S and the contacts of the switch SXS may be connected in advance.

上記の通り本発明は、温度以外の物理量を電気量に変換
する素子によって構成されたブリッジ回路と感温抵抗素
子とによって、被測定物の前記物理量と温度とを測定す
る装置においてブリッジ回路の出力側に感温抵抗素子を
直列に設け、互いに同一電流を流す定電流源を2つ設け
、スイッチ切換して測温時に、ブリッジ回路の入力端を
ショートし、その入力側とブリッジ回路の出力側の一端
との間に感温抵抗素子を介して定電流源の1つを接続し
、また前記入力側と前記出力側の他端との間に定電流源
の他方を接続するようにしたために、延長コードの芯線
抵抗による温度測定誤差を自動的に補正でき、しかも温
度測定精度を向上できる。
As described above, the present invention provides an output of the bridge circuit in a device for measuring the physical quantity and temperature of a measured object using a bridge circuit constituted by an element that converts a physical quantity other than temperature into an electrical quantity and a temperature-sensitive resistance element. A temperature-sensitive resistance element is installed in series on the side, and two constant current sources are installed that send the same current to each other, and when the temperature is measured by switching the switch, the input end of the bridge circuit is shorted, and the input side and the output side of the bridge circuit are connected. One of the constant current sources is connected between one end of the input side and the other end of the output side via a temperature sensitive resistance element, and the other constant current source is connected between the input side and the other end of the output side. , it is possible to automatically correct the temperature measurement error caused by the core wire resistance of the extension cord, and it is also possible to improve the temperature measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従東装置を示す回路図、第2図は本発明の一実
施例を示す回路図、第3図は上記実施例のひずみ測定時
における等価回路図、第4図は上記実施例の測温時にお
ける等価回路図である。 10.11・・・・・・センサ部、 20 、21・・
・・・・延長コード部、 :so 、 31・・・・・
・測定装置本体、S(i、〜S(i、・・・・・ひずみ
ゲージ、 k・・・・・感温抵抗素子、  l、〜16
 ・・・・・・延長コードの芯線、S、 、 S、・・
・・・・定電流源、 A1−A3・・・・・・増幅器、
M SM ’I″M・・・・・・メータ、  B・・・
・・・ブリッジ回路、sw、 、 sw2. sw3 
・・・・スイッチ。 箱許出願人 株式会社共和′IL業 代ゆ人 IPiuUi−i’:i’   TJJ   
Al!A   ’l= 貼Q’f、11.1第  1 
  図 第2図 [ (・ 第  3  図
Fig. 1 is a circuit diagram showing the Juto device, Fig. 2 is a circuit diagram showing an embodiment of the present invention, Fig. 3 is an equivalent circuit diagram of the above embodiment during strain measurement, and Fig. 4 is the above embodiment. FIG. 3 is an equivalent circuit diagram when measuring temperature. 10.11...Sensor part, 20, 21...
...Extension cord part, :so, 31...
・Measuring device body, S(i, ~S(i,...strain gauge, k...temperature-sensitive resistance element, l, ~16
・・・・・・Core wire of extension cord, S, , S,...
... Constant current source, A1-A3 ... Amplifier,
M SM 'I''M...Meter, B...
...Bridge circuit, sw, , sw2. sw3
····switch. Box permit applicant: Kyowa Co., Ltd. IL Industry Yuhito IPiuUi-i':i' TJJ
Al! A'l= Paste Q'f, 11.1 1st
Figure 2 [ (Figure 3

Claims (1)

【特許請求の範囲】[Claims] 前記ブリッジ回路の出力側に直列に設けられた感温抵抗
素子と、互いに同一電流を流す2つの定電流源と、測温
時に、前記ブリッジ回路の入力側をショートし、前記入
力側と前記ブリッジ回路の出力側の一端との間に前記感
温抵抗素子を介して前記定電流源の1つを接続し、前記
入力側と前記出力側の他端との間に前記定電流源の他方
を接続するスイッチとを設けたことを特徴とする測温機
能付物理量測定装置。
A temperature-sensitive resistance element provided in series on the output side of the bridge circuit, two constant current sources that flow the same current to each other, and a short-circuit between the input side of the bridge circuit and the bridge circuit when measuring temperature. One of the constant current sources is connected between one end of the output side of the circuit via the temperature sensitive resistance element, and the other of the constant current sources is connected between the input side and the other end of the output side. A physical quantity measuring device with a temperature measuring function, characterized in that it is provided with a connecting switch.
JP1560482A 1982-02-04 1982-02-04 Physical quality measuring apparatus with function of measuring temperature Granted JPS58134394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1560482A JPS58134394A (en) 1982-02-04 1982-02-04 Physical quality measuring apparatus with function of measuring temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1560482A JPS58134394A (en) 1982-02-04 1982-02-04 Physical quality measuring apparatus with function of measuring temperature

Publications (2)

Publication Number Publication Date
JPS58134394A true JPS58134394A (en) 1983-08-10
JPH0447359B2 JPH0447359B2 (en) 1992-08-03

Family

ID=11893323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1560482A Granted JPS58134394A (en) 1982-02-04 1982-02-04 Physical quality measuring apparatus with function of measuring temperature

Country Status (1)

Country Link
JP (1) JPS58134394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104271430A (en) * 2012-10-10 2015-01-07 日本精工株式会社 Device for detecting physical quantities and electromotive power steering device using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104271430A (en) * 2012-10-10 2015-01-07 日本精工株式会社 Device for detecting physical quantities and electromotive power steering device using same

Also Published As

Publication number Publication date
JPH0447359B2 (en) 1992-08-03

Similar Documents

Publication Publication Date Title
US3665756A (en) Strain gauge temperature compensation system
US3847017A (en) Strain measuring system
KR100424025B1 (en) Mechanical-electrical transducer
US5184520A (en) Load sensor
JPH02136754A (en) Method and apparatus for measuring fine electrical signal
US3052124A (en) Linearizing circuit for resistance thermometer
US4448078A (en) Three-wire static strain gage apparatus
US3319155A (en) Electrical calibration device for strain gage bridges
US3818761A (en) System for measuring temperatures
JPS58134394A (en) Physical quality measuring apparatus with function of measuring temperature
US4417477A (en) Train gage measurement circuit for high temperature applications using high value completion resistors
US3224257A (en) Rotating body strain meter
JPS58132898A (en) Converter with function of measuring temperature
US3106086A (en) Strain gage dilatometer
US2476384A (en) Unbalanced bridge compensation
US4890084A (en) Inductance strain gauge
US1164032A (en) Electrical measuring instrument.
JPH0126028B2 (en)
JPS6248280B2 (en)
JP2536822B2 (en) Temperature compensation circuit for weighing device
US3199354A (en) Compensated measuring circuit
US3303702A (en) Pressure transducers
US598905A (en) Hugh longbourne callendar
JPS60144632A (en) Temperature compensating circuit
JPS6134431A (en) Temperature measuring method by strain gage type converter