JPH0447359B2 - - Google Patents

Info

Publication number
JPH0447359B2
JPH0447359B2 JP1560482A JP1560482A JPH0447359B2 JP H0447359 B2 JPH0447359 B2 JP H0447359B2 JP 1560482 A JP1560482 A JP 1560482A JP 1560482 A JP1560482 A JP 1560482A JP H0447359 B2 JPH0447359 B2 JP H0447359B2
Authority
JP
Japan
Prior art keywords
temperature
bridge circuit
measured
strain
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1560482A
Other languages
Japanese (ja)
Other versions
JPS58134394A (en
Inventor
Masumi Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Electronic Instruments Co Ltd
Original Assignee
Kyowa Electronic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Electronic Instruments Co Ltd filed Critical Kyowa Electronic Instruments Co Ltd
Priority to JP1560482A priority Critical patent/JPS58134394A/en
Publication of JPS58134394A publication Critical patent/JPS58134394A/en
Publication of JPH0447359B2 publication Critical patent/JPH0447359B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 本発明は、ひずみゲージ等を使用したブリツジ
回路と感温抵抗素子とによつて、被測定物のひず
み等の物理量と温度とを測定する装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring physical quantities such as strain and temperature of an object to be measured using a bridge circuit using a strain gauge or the like and a temperature-sensitive resistance element.

従来、被測定物の温度とある物理量例えば、ひ
ずみとを、感温抵抗素子とブリツジ回路とによつ
て、測定する装置としては、第1図に示すものが
知られている。この装置は大別して、センサ部1
0と延長コード部20と測定装置本体30とから
成る。センサ部10は、被測定物のひずみ量及び
温度を、電気量に変換する部分であり、4つのひ
ずみゲージSG1,SG2,SG3,SG4で構成される
ブリツジ回路Bと、感温抵抗素子Rとを有する。
延長コード部20は、6本の芯線l1,l2,l3,l4
l5,l6で構成され、それぞれブリツジ回路Bの入
力端子1,2、同出力端子3,4、感温抵抗素子
Rの両端子5,6に接続されている。また各芯線
l1〜l6は、同一規格、同一長さであり、それぞれ
抵抗rを有している。測定装置本体30は、ブリ
ツジ回路Bの入力側へ定電流を供給する定電流源
S1と、ブリツジ回路Bの出力側の両端電圧を増幅
する増幅器A1と、増幅器A1の出力端子に接続さ
れた電圧計であつて、被測定物のひずみを表示す
るメータSMとを有する。また測定装置本体30
は、感温抵抗素子Rへ定電流を供給する定電流源
S2と、感温抵抗素子Rと芯線l5,l6の合成抵抗2r
とによる電圧降下分を増幅する増幅器A2と、増
幅器A2の出力端子に接続された電圧計であつて、
被測定物の温度を測定するためのメータTMとを
有している。
2. Description of the Related Art Conventionally, an apparatus shown in FIG. 1 is known as a device for measuring the temperature of an object to be measured and a certain physical quantity, such as strain, using a temperature-sensitive resistance element and a bridge circuit. This device is roughly divided into sensor section 1
0, an extension cord section 20, and a measuring device main body 30. The sensor unit 10 is a part that converts the amount of strain and temperature of the object to be measured into an amount of electricity, and includes a bridge circuit B consisting of four strain gauges SG 1 , SG 2 , SG 3 , and SG 4 , and a temperature sensing It has a resistance element R.
The extension cord section 20 has six core wires l 1 , l 2 , l 3 , l 4 ,
It is composed of l 5 and l 6 and is connected to the input terminals 1 and 2 of the bridge circuit B, the output terminals 3 and 4 of the bridge circuit B, and both terminals 5 and 6 of the temperature-sensitive resistance element R, respectively. Also, each core wire
l 1 to l 6 have the same standard and the same length, and each has a resistance r. The measuring device main body 30 is a constant current source that supplies a constant current to the input side of the bridge circuit B.
S1 , an amplifier A1 that amplifies the voltage across the output side of the bridge circuit B, and a meter SM that is a voltmeter connected to the output terminal of the amplifier A1 and that displays the strain of the object to be measured. . Also, the measuring device main body 30
is a constant current source that supplies a constant current to the temperature-sensitive resistance element R.
Combined resistance 2r of S 2 , temperature-sensitive resistance element R, and core wires l 5 and l 6
an amplifier A 2 that amplifies the voltage drop caused by the
It has a meter TM for measuring the temperature of the object to be measured.

次に上記従来例の動作を説明する。まずひずみ
ゲージSG1〜SG4を被測定物に例えば接着等の手
段で添着する。例えば、ブリツジ回路Bの相隣る
ひずみゲージは、互いに被測定物の異なる伸縮方
向に、ブリツジ回路Bの対辺にあるひずみゲージ
は互いに被測定物の同一伸縮方向に添着する。こ
の場合、ある時点において、ひずみゲージSG1
伸びていたならば、ひずみゲージSG3も伸びるよ
うな位置に添着し、ひずみゲージSG2,SG4は縮
むような位置に添着する。そして定電流源S1から
ブリツジ回路Bに電流を供給すると、被測定物の
ひずみに応じて、端子3−4間の電圧が変化し、
この電圧を増幅器A1が増幅した後にメータSMが
駆動される。従つて被測定物のひずみ量がメータ
SMに表示される。
Next, the operation of the above conventional example will be explained. First, the strain gauges SG 1 to SG 4 are attached to the object to be measured by, for example, adhesive. For example, adjacent strain gauges of bridge circuit B are attached to the object to be measured in different expansion and contraction directions, and strain gauges on opposite sides of bridge circuit B are attached to each other in the same expansion and contraction direction of the object to be measured. In this case, if strain gauge SG 1 is stretched at a certain point, strain gauge SG 3 is also attached at a position where it will expand, and strain gauges SG 2 and SG 4 are attached at positions where it will be contracted. Then, when a current is supplied from the constant current source S1 to the bridge circuit B, the voltage between terminals 3 and 4 changes depending on the strain of the object to be measured.
After this voltage is amplified by the amplifier A1 , the meter SM is driven. Therefore, the amount of strain on the object to be measured is
Displayed on SM.

一方、感温抵抗素子Rも被測定物に添着されて
おり、この感温抵抗素子Rは被測定物の温度に応
じて、その抵抗値が大きく変化するものである。
従つて被測定物の温度が変化するのに応じて、増
幅器A2の入力電圧が変化し、これを増幅した後
にメータTMで表示され電圧値から、測定誤差と
なる芯線l5,l6の抵抗2rによる電圧降下分に対応
する電圧値を差し引けば、その時の被測定物の温
度を求めることができる。
On the other hand, a temperature-sensitive resistance element R is also attached to the object to be measured, and the resistance value of the temperature-sensitive resistance element R changes greatly depending on the temperature of the object to be measured.
Therefore, as the temperature of the object to be measured changes, the input voltage of the amplifier A 2 changes, and after amplifying this, the voltage value displayed on the meter TM determines the measurement error of the core wires l 5 and l 6 . By subtracting the voltage value corresponding to the voltage drop caused by the resistor 2r, the temperature of the object to be measured at that time can be determined.

しかし上記の従来例にあつては、被測定物のひ
ずみのみを測定する場合には芯線が4本で足りる
が、ひずみ及び温度を測定する場合には芯線が2
本多くなつている。勿論、回路構成を変えて、芯
線l4とl5とを共用することも可能であるが、それ
にしても芯線が1本多くなる。従つて延長コード
20は、芯線の本数が多くなることによつて、延
長コード20の形状が太くなり重量が増える。ま
た上記従来例は、芯線l5,l6の抵抗2rに流れる電
流によつて生じる電圧降下分を差し引くことによ
つて、被測定物の温度を測定するものであり、そ
の抵抗2rは延長コード20の長さが変化する毎に
変化する。従つて、延長コード20の長さが変化
すれば温度測定における補正値も変えなければな
らないという問題がある。
However, in the above conventional example, when measuring only the strain of the object to be measured, four core wires are sufficient, but when measuring strain and temperature, two core wires are required.
There are more and more books. Of course, it is also possible to change the circuit configuration and share the core wires l4 and l5 , but even then, the number of core wires increases by one. Therefore, as the number of core wires in the extension cord 20 increases, the shape of the extension cord 20 becomes thicker and its weight increases. Furthermore, in the above conventional example, the temperature of the object to be measured is measured by subtracting the voltage drop caused by the current flowing through the resistance 2r of the core wires l 5 and l 6 , and the resistance 2r is the extension cord. It changes every time the length of 20 changes. Therefore, there is a problem in that if the length of the extension cord 20 changes, the correction value for temperature measurement must also be changed.

そこで本発明は、ひずみゲージ等を使用したブ
リツジ回路と感温抵抗素子とによつて、被測定物
のひずみ等の物理量と温度とを測定する装置にお
いて、延長コードの芯線数を減少させるととも
に、温度測定時に延長コードの抵抗の影響を受け
ないようにするため、ブリツジ回路の出力側に感
温抵抗素子を直列に設け、互いに同一電流を流す
定電流源を2つ設け、スイツチ切換をして測温時
に、ブリツジ回路の入力側をシヨートし、その入
力側とブリツジ回路の出力側の一端との間に感温
抵抗素子を介して定電流源の1つを接続し、また
前記入力側と前記出力側の他端との間に定電流源
の他方を接続するようにしたものである。
Therefore, the present invention reduces the number of core wires of an extension cord in a device that measures physical quantities such as strain and temperature of a measured object using a bridge circuit using a strain gauge or the like and a temperature-sensitive resistance element. In order to avoid being affected by the resistance of the extension cord when measuring temperature, a temperature-sensitive resistance element is installed in series on the output side of the bridge circuit, and two constant current sources that flow the same current are installed and switched. During temperature measurement, the input side of the bridge circuit is shorted, one of the constant current sources is connected between the input side and one end of the output side of the bridge circuit via a temperature-sensitive resistance element, and the The other end of the constant current source is connected between the other end of the output side.

以下、添付図面に示す実施例に基づいて本発明
を詳述する。尚、同一部材には同一符号を付して
ある。第2図は本発明の一実施例を示す回路図で
ある。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings. Note that the same members are given the same reference numerals. FIG. 2 is a circuit diagram showing one embodiment of the present invention.

センサ部11には、ひずみゲージSG1〜SG4
よるブリツジ回路Bと、ブリツジ回路Bの1つの
出力端子4に接続された感温抵抗素子Rとが設け
られている。ひずみゲージSG1〜SG4は、互いに
同一規格のものを用いる。尚、1,2はブリツジ
回路Bの入力端子、3,4はブリツジ回路の出力
端子である。
The sensor section 11 is provided with a bridge circuit B including strain gauges SG 1 to SG 4 and a temperature-sensitive resistance element R connected to one output terminal 4 of the bridge circuit B. Strain gauges SG 1 to SG 4 are of the same standard. Note that 1 and 2 are input terminals of the bridge circuit B, and 3 and 4 are output terminals of the bridge circuit.

延長コード部21には4本の芯線l1〜l4が設け
られ、その芯線抵抗は総てrである。また各芯線
l1,l2,l3,l4は、端子1,2,3、感温抵抗素子
Rと接続されている。
The extension cord section 21 is provided with four core wires l1 to l4 , all of which have core wire resistances r. Also, each core wire
l 1 , l 2 , l 3 , and l 4 are connected to terminals 1, 2, and 3 and temperature-sensitive resistance element R.

測定装置本体31内の、ブリツジ入力側端子
1′,2′、同出力側端子3′,4′はそれぞれ、芯
線l1,l2,l3,l4と接続されている。定電流源S1
S2は互いに同一電流を流すためのものであり、ス
イツチSW1は端子2′を端子1′または定電流源S1
に接続するためのものであり、スイツチSW2は定
電流源S1を端子3′または端子2′に接続するため
のものであり、スイツチSW3は定電流源S2を端子
4′に接続するかまたは無負荷に(もしくは端子
2′に接続)するためのものであり、スイツチ
SW1,SW2,SW3は互いに連動するものである。
すなわち、スイツチSW1,SW2,SW3は測温時に
は、ブリツジ回路Bの入力測1′,2′をシヨート
し、この入力測1′とブリツジ回路Bの出力側の
一端4′との間に感温抵抗素子Rを介して定電流
源S2を接続し、入力側1′と出力側3′との間に定
電流源S1を接続するものである。そしてスイツチ
SW1,SW2,SW3は、ひずみ測定時には、従来の
ひずみ測定回路と同様に、ブリツジ回路Bの入力
側1′,2′に定電流源S1(および/またはS2)を
接続し、ブリツジ回路Bの出力側3′,4′には定
電流源S1,S2を接続しないようにするものであ
る。
Bridge input side terminals 1', 2' and bridge output side terminals 3', 4' in the measuring device main body 31 are connected to core wires l1 , l2 , l3 , l4, respectively. Constant current source S 1 ,
S 2 are for passing the same current to each other, and switch SW 1 connects terminal 2' to terminal 1' or constant current source S 1
Switch SW 2 is for connecting constant current source S 1 to terminal 3' or terminal 2', and switch SW 3 is for connecting constant current source S 2 to terminal 4'. or no load (or connect to terminal 2'), and the switch
SW 1 , SW 2 , and SW 3 are interlocked with each other.
In other words, switches SW 1 , SW 2 , and SW 3 switch off input measurements 1' and 2' of bridge circuit B during temperature measurement, and switch between this input measurement 1' and one end 4' of the output side of bridge circuit B. A constant current source S2 is connected to the input side 1' and the output side 3' via a temperature sensitive resistance element R, and a constant current source S1 is connected between the input side 1' and the output side 3'. and switch
When measuring strain, SW 1 , SW 2 , and SW 3 connect a constant current source S 1 (and/or S 2 ) to the input sides 1' and 2' of bridge circuit B, similar to conventional strain measurement circuits. , the constant current sources S 1 and S 2 are not connected to the output sides 3' and 4' of the bridge circuit B.

増幅器A3は、端子3′,4′間の電圧を増幅す
るものであり、入力インピーダンスが充分に高い
ものである。メータMはひずみ量及び温度を読み
取るものである。
Amplifier A3 amplifies the voltage between terminals 3' and 4', and has a sufficiently high input impedance. The meter M is for reading the amount of strain and temperature.

次に上記実施例の動作について説明する。ま
ず、被測定物のひずみを測定する場合について説
明する。この場合は、従来の定電流方式によるひ
ずみ測定と同様である。すなわち、スイツチ
SW1,SW2,SW3を総て接点b側に切換える。こ
の場合の等価回路を第3図に示してある。図中、
芯線l1,l2の右端に定電流源S1(および/または
S2)が接続されているので、抵抗r、ブリツジ回
路B、抵抗rには定電流iが流れている。
Next, the operation of the above embodiment will be explained. First, a case will be described in which the strain of the object to be measured is measured. This case is similar to strain measurement using the conventional constant current method. In other words, the switch
Switch all SW 1 , SW 2 , and SW 3 to contact b side. An equivalent circuit in this case is shown in FIG. In the figure,
A constant current source S 1 ( and /or
S 2 ) is connected, so a constant current i flows through the resistor r, the bridge circuit B, and the resistor r.

そして被測定物の変形に応じて、ブリツジ回路
Bの出力端子3−4間の電圧が変化する。また増
幅器A3の入力インピーダンスが充分に高いので
芯線l3,l4の合成抵抗2rや感温抵抗素子Rの抵抗
Rxが介在しているにもかからず、端子3′−4′
間の電圧は端子3−4間のそれと実用上同一とな
る。従つてメータMの針は、被測定物のひずみに
応じて振れ、この針の指示からひずむ量を視認で
きる。
According to the deformation of the object to be measured, the voltage between the output terminals 3 and 4 of the bridge circuit B changes. In addition, since the input impedance of amplifier A 3 is sufficiently high, the combined resistance 2r of core wires l 3 and l 4 and the resistance of temperature-sensitive resistance element R
Despite the presence of Rx, terminals 3'-4'
The voltage between them is practically the same as that between terminals 3 and 4. Therefore, the needle of the meter M swings in accordance with the strain on the object to be measured, and the amount of strain can be visually confirmed from the indication of the needle.

次に被測定物の温度を測定する場合について説
明する。この場合は、スイツチSW1,SW2,SW3
を総て接点a側に切換える。この場合の等価回路
を第4図に示してある。図中Z1は端子4−1′間
の合成抵抗、Z2は端子3−1′間の合成抵抗、E1
は端子4′−1′間の電圧、E2は端子3′−1′間
の電圧、E0は端子4′−3′間の電圧である。従
つて、 E0=E1−E2=(r・i+Rx・i+Z1・i) −(r・i+Z2・i) =Rx・i+Z1・i−Z2・i=Rx・i+(Z1
Z2)i ≒Rx・i となる。
Next, the case of measuring the temperature of the object to be measured will be explained. In this case, switches SW 1 , SW 2 , SW 3
Switch all contacts to the a side. An equivalent circuit in this case is shown in FIG. In the figure, Z 1 is the combined resistance between terminals 4 and 1', Z 2 is the combined resistance between terminals 3 and 1', and E 1
is the voltage between terminals 4' and 1', E 2 is the voltage between terminals 3' and 1', and E 0 is the voltage between terminals 4' and 3'. Therefore, E 0 = E 1 −E 2 = (r・i+Rx・i+Z 1・i) −(r・i+Z 2・i) = Rx・i+Z 1・i−Z 2・i=Rx・i+(Z 1
Z 2 ) i ≒ Rx・i.

ここで(Z1−Z2)は、感温抵抗素子Rの温度に
対する抵抗変化量に対して充分無視できるもので
ある。例えばブリツジ回路Bに350Ωのひずみゲ
ージ4枚を用い、相対する2辺のゲージにそれぞ
れ+1400×10-6、−1400×10-6ひずみが負荷され
る場合でも、感温抵抗素子Rに100Ω、抵抗温度
計数が4000ppm/℃で、芯線抵抗rが40Ωのとき
には、(Z1−Z2)は±0.002Ωの範囲内であり、測
温誤差として±0.005℃となり無視できる。
Here, (Z 1 −Z 2 ) is sufficiently negligible with respect to the amount of resistance change with respect to temperature of the temperature-sensitive resistance element R. For example, if four 350Ω strain gauges are used in bridge circuit B, and +1400×10 -6 and −1400×10 -6 strains are applied to the two opposing gauges, respectively, 100Ω and When the resistance temperature coefficient is 4000 ppm/°C and the core wire resistance r is 40Ω, (Z 1 −Z 2 ) is within the range of ±0.002Ω, and the temperature measurement error is ±0.005°C, which can be ignored.

また0℃のときの端子4′−3′間の電圧をE0
(0℃)とし、t℃のときの同電圧をE0(t℃)
とし、0℃のときの感温抵抗素子Rの抵抗値を
R0とし、感温抵抗素子Rの抵抗温度係数をαと
し、被測定物が0℃からt℃に変化した場合にお
ける端子4′−3′間の電圧変化分を△E0とすれ
ば、 △E0=E0(t℃)−E0(0℃) R0(1+αt)i−R0・i R0・α・i・t となる。
Also, the voltage between terminals 4' and 3' at 0°C is E 0
(0℃), and the same voltage at t℃ is E 0 (t℃)
And the resistance value of the temperature sensitive resistance element R at 0℃ is
If R 0 is the temperature coefficient of resistance of the temperature-sensitive resistance element R, and ΔE 0 is the voltage change between terminals 4' and 3' when the measured object changes from 0°C to t°C, then ΔE 0 =E 0 (t°C)−E 0 (0°C) R 0 (1+αt)i−R 0・i R 0・α・i・t.

この式から、前記電圧変化分△E0は、温度t
と比例関係になる。この電圧を増幅器A3で増幅
し、メータMで表示すれば、被測定物の温度を視
認できる。この場合、芯線l3,l4の抵抗rに全く
影響されずに測定できる。しかも被測定物のひず
み及び温度を測定できるものでありながら、芯線
が4本で充分であるために、従来装置と比較して
コードの形状が細くなり、重量が軽減される。
From this formula, the voltage change △E 0 is the temperature t
There is a proportional relationship. By amplifying this voltage with amplifier A3 and displaying it on meter M, the temperature of the object to be measured can be visually checked. In this case, measurement can be performed without being affected by the resistance r of the core wires l 3 and l 4 at all. Furthermore, although the strain and temperature of the object to be measured can be measured, since four core wires are sufficient, the cord has a thinner shape and is lighter in weight than conventional devices.

上記実施例は、例えばコンクリートの挙動を測
定するのに適している。すなわちコンクリートの
応力をひずみゲージで測定し、またその時の温度
を感温抵抗素子によつて測定できる。
The embodiment described above is suitable for measuring the behavior of concrete, for example. That is, the stress in the concrete can be measured with a strain gauge, and the temperature at that time can be measured with a temperature-sensitive resistance element.

尚本発明は、上記実施例に限定されず、その要
旨に含まれる範囲での種々の変形実施が可能であ
る。
Note that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made within the scope of the invention.

例えば、上記実施例においては、ブリツジ回路
Bに4つのひずみゲージSG1〜SG4を用いていた
が、これ以外にも、ひずみゲージSG1のみまたは
ひずみSG1,SG2のみとして、ブリツジ回路Bの
他の辺には固定抵抗を用いてもよい。
For example, in the above embodiment, four strain gauges SG 1 to SG 4 are used in the bridge circuit B, but in addition to this, the bridge circuit B may be used as only the strain gauge SG 1 or only the strain gauges SG 1 and SG 2 . Fixed resistors may be used on the other sides.

また感温抵抗素子Rは、端子4,3とそれぞれ
直列に2つ設けてもよく、また端子3のみに直列
に設けてもよい。
Further, two temperature-sensitive resistance elements R may be provided in series with each of the terminals 4 and 3, or may be provided in series with only the terminal 3.

この感温抵抗素子としては、例えば、従来から
多用されているサーミスタ、金属線(白金線、ニ
ツケル線、インジウム線等)測温低抗体を用いる
こともできるが、近年開発された磁器表面に特殊
金属皮膜を形成させ特殊樹脂にて絶縁被覆した感
温抵抗器を用いることが望ましい。すなわち、サ
ーミスタは温度特性が非直線的であり、精度、再
現性があまり高くなく、該温度特性を直線的にす
るために補正抵抗を付加したりアナログ演算回路
等の複雑な補正回路が必要となる。
As this temperature-sensitive resistance element, for example, a thermistor, metal wire (platinum wire, nickel wire, indium wire, etc.) or temperature-measuring low antibody, which has been widely used in the past, can be used, but recently developed special It is desirable to use a temperature-sensitive resistor formed with a metal film and insulated with a special resin. In other words, thermistors have non-linear temperature characteristics, and their accuracy and reproducibility are not very high. In order to make the temperature characteristics linear, it is necessary to add a correction resistor or use a complicated correction circuit such as an analog calculation circuit. Become.

一方、白金線、ニツケル線等の金属線測温低抗
体は抵抗値が低い(例えばJISC1604に制定され
ている如く白金測温低抗体は50Ωおよび100Ω)
ため、接点抵抗や信号系回路の線抵抗が大きな影
響を与える、外部の影響を受け易い、出力信号が
小さい、形状が大きくなり計装性が悪い、等の難
点がある。
On the other hand, metal wire thermometers such as platinum wire and nickel wire have low resistance (for example, platinum thermometers are 50Ω and 100Ω as established in JISC1604).
Therefore, there are drawbacks such as the contact resistance and the wire resistance of the signal system circuit having a large influence, the possibility of being easily affected by external influences, the output signal being small, and the size being large, resulting in poor instrumentation.

これらのものに対して上記絶縁被覆型の感温抵
抗器は、高温にも電気化学的にも安定で、また熱
電導性に優れた特殊磁気碍子上に温度感応機能を
もつ金属薄膜(膜材質としてニツケル、鉄、クロ
ル等を主成分にその他数種の金属を添加物として
加え、所望の抵抗値、抵抗温度係数を得られるよ
うにする)を真空蒸着、スパツタリング等により
被着し、更にこの上をエポキシ系樹脂により保護
塗装してなるものであり、温度/電気抵抗特性が
直線的であり、低抵抗(数Ω)から高抵抗
(10KΩ程度)のものが得られ、例えば比較的高
抵抗のものを使用する場合接点抵抗や信号系回路
の線抵抗は問題にならず、ノイズに対しては抵抗
変化率が比較的大きいため有利であり微少な温度
変化にも対応できる。
In contrast to these, the above-mentioned insulation-coated type temperature-sensitive resistors are electrochemically stable at high temperatures, and are coated with a metal thin film (film material: The main components are nickel, iron, chlorine, etc. and several other metals are added as additives to obtain the desired resistance value and temperature coefficient of resistance) by vacuum evaporation, sputtering, etc. The top is coated with epoxy resin for protection, and the temperature/electrical resistance characteristics are linear, and resistances ranging from low resistance (several Ω) to high resistance (about 10KΩ) can be obtained, such as relatively high resistance. Contact resistance and line resistance of the signal circuit are not a problem when using the same, and the resistance change rate is relatively large against noise, which is advantageous and can also cope with minute temperature changes.

更にひずみゲージSG1〜SG4の代わりに、例え
ば、差動変圧器、差動インダクタンス等の他の変
換素子を用いて、温度以外の物理量たとえば荷
重、力、圧力、加速度等とともに温度をも測定で
きるようにしてもよい。因に差動変圧器とは、一
次コイルと一対の二次コイルとから構成され、測
定すべき物理量により可動部が移動して、一次と
一対の二次コイル相互の磁気結合度が変化して、
可動部移動量に比例して二次コイルに誘起する各
電圧の差を検出するものである。またひずみゲー
ジSG1〜SG4の代わりに例えばcds(硫化カドミウ
ム)素子等の光電変換素子を用いれば、光量とと
もに温度をも測定できる。
Furthermore, instead of strain gauges SG 1 to SG 4 , other conversion elements such as differential transformers and differential inductances can be used to measure temperature as well as physical quantities other than temperature, such as load, force, pressure, acceleration, etc. It may be possible to do so. Incidentally, a differential transformer consists of a primary coil and a pair of secondary coils, and when the moving parts move depending on the physical quantity to be measured, the degree of magnetic coupling between the primary and the pair of secondary coils changes. ,
This detects the difference between voltages induced in the secondary coil in proportion to the amount of movement of the movable part. Furthermore, if a photoelectric conversion element such as a CDS (cadmium sulfide) element is used instead of the strain gauges SG1 to SG4 , the temperature as well as the amount of light can be measured.

尚、スイツチSW2の接点bと、スイツチSW3
接点bとを予め接続しておいてもよい。
Note that the contact b of the switch SW 2 and the contact b of the switch SW 3 may be connected in advance.

上記の通り本発明は、温度以外の物理量を電気
量に変換する素子によつて構成されたブリツジ回
路と感温抵抗素子とによつて、被測定物の前記物
理量と温度とを測定する装置においてブリツジ回
路の出力測に感温抵抗素子を直列に設け、互いに
同一電流を流す定電流源を2つ設け、スイツチ切
換して測温時に、ブリツジ回路の入力測をシヨー
トし、その入力測とブリツジ回路の出力測の一端
との間に感温抵抗素子を介して定電流源の1つを
接続し、また前記入力測と前記出力測の他端との
間に定電流源の他方を接続するようにしたため
に、延長コードの芯線数を減少でき、芯線抵抗の
影響を受けることなくしかも温度測定精度を向上
できる。
As described above, the present invention provides an apparatus for measuring the physical quantity and temperature of a measured object using a bridge circuit constituted by an element that converts a physical quantity other than temperature into an electrical quantity and a temperature-sensitive resistance element. A temperature-sensitive resistance element is connected in series to measure the output of the bridge circuit, and two constant current sources are provided that send the same current to each other. One of the constant current sources is connected between one end of the output measurement of the circuit via a temperature sensitive resistance element, and the other of the constant current sources is connected between the input measurement and the other end of the output measurement. As a result, the number of core wires of the extension cord can be reduced, and temperature measurement accuracy can be improved without being affected by core wire resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置を示す回路図、第2図は本発
明の一実施例を示す回路図、第3図は上記実施例
のひずみ測定時における等価回路図、第4図は上
記実施例の測温時における等価回路図である。 10,11……センサ部、20,21……延長
コード部、30,31……測定装置本体、SG1
SG4……ひずみゲージ、R……感温抵抗素子、l1
〜l6……延長コードの芯線、S1,S2……定電流
源、A1〜A3……増幅器、M,SM,TM……メー
タ、B……ブリツジ回路、SW1,SW2,SW3……
スイツチ。
Fig. 1 is a circuit diagram showing a conventional device, Fig. 2 is a circuit diagram showing an embodiment of the present invention, Fig. 3 is an equivalent circuit diagram of the above embodiment during strain measurement, and Fig. 4 is a circuit diagram of the above embodiment. It is an equivalent circuit diagram at the time of temperature measurement. 10, 11...Sensor section, 20,21...Extension cord section, 30,31...Measuring device main body, SG 1 ~
SG 4 ...Strain gauge, R...Temperature-sensitive resistance element, l 1
~l 6 ... core wire of extension cord, S 1 , S 2 ... constant current source, A 1 ~ A 3 ... amplifier, M, SM, TM ... meter, B ... bridge circuit, SW 1 , SW 2 ,SW 3 ...
Switch.

Claims (1)

【特許請求の範囲】[Claims] 1 ブリツジ回路と、前記ブリツジ回路の少なく
とも一辺に設けられ且つ物理量を電気量に変換す
る素子と、前記ブリツジ回路の出力側に直列に設
けられた感温抵抗素子と、互いに同一電流を流す
2つの定電流源と、測温時に、前記ブリツジ回路
の入力側をシヨートし、前記入力側と前記ブリツ
ジ回路の出力側の一端との間に前記感温抵抗素子
を介して前記定電流源の1つを接続し、前記入力
側と前記出力側の他端との間に前記定電流源の他
方を接続するスイツチとを設けたことを特徴とす
る測温機能付物理量測定装置。
1. A bridge circuit, an element that is provided on at least one side of the bridge circuit and converts a physical quantity into an electrical quantity, a temperature-sensitive resistance element that is provided in series on the output side of the bridge circuit, and two elements that mutually conduct the same current. one of the constant current sources, which shoots the input side of the bridge circuit during temperature measurement, and connects the input side and one end of the output side of the bridge circuit via the temperature-sensitive resistance element; and a switch for connecting the other constant current source between the input side and the other end of the output side.
JP1560482A 1982-02-04 1982-02-04 Physical quality measuring apparatus with function of measuring temperature Granted JPS58134394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1560482A JPS58134394A (en) 1982-02-04 1982-02-04 Physical quality measuring apparatus with function of measuring temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1560482A JPS58134394A (en) 1982-02-04 1982-02-04 Physical quality measuring apparatus with function of measuring temperature

Publications (2)

Publication Number Publication Date
JPS58134394A JPS58134394A (en) 1983-08-10
JPH0447359B2 true JPH0447359B2 (en) 1992-08-03

Family

ID=11893323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1560482A Granted JPS58134394A (en) 1982-02-04 1982-02-04 Physical quality measuring apparatus with function of measuring temperature

Country Status (1)

Country Link
JP (1) JPS58134394A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858169B2 (en) * 2012-10-10 2016-02-10 日本精工株式会社 Physical quantity detection device and electric power steering device using the same

Also Published As

Publication number Publication date
JPS58134394A (en) 1983-08-10

Similar Documents

Publication Publication Date Title
US3665756A (en) Strain gauge temperature compensation system
US2769340A (en) Room temperature compensating circuits for pyrometers
JPH03210443A (en) Load detector and method for compensating temperature of load detector
US3052124A (en) Linearizing circuit for resistance thermometer
US4448078A (en) Three-wire static strain gage apparatus
US4363243A (en) Strain gage measurement circuit for high temperature applications using dual constant current supplies
US3319155A (en) Electrical calibration device for strain gage bridges
Dorsey Homegrown strain-gage transducers: Simple compensation procedures can be used to correct errors in strain-gage transducer bridges
JPS60249071A (en) Device and method for sensing and position-detecting information related to occurrence
US3818761A (en) System for measuring temperatures
JPH0447359B2 (en)
US4417477A (en) Train gage measurement circuit for high temperature applications using high value completion resistors
US3224257A (en) Rotating body strain meter
US2526329A (en) Expanded scale electronic voltmeter
US2399903A (en) Electrical measuring apparatus
JPS58132898A (en) Converter with function of measuring temperature
JPS6248280B2 (en)
JPS626171B2 (en)
US2688727A (en) Measuring circuit for condition responsive impedance
US540008A (en) Electrical thermometer
US1417671A (en) Electrical measuring instrument
US3199354A (en) Compensated measuring circuit
US3599493A (en) Pressure transducer apparatus
JPH0781813B2 (en) Strain gauge device
SU1138750A1 (en) Semiconductor strain-gauge converter