JPS58133619A - Manufacture for thin film magnetic head - Google Patents

Manufacture for thin film magnetic head

Info

Publication number
JPS58133619A
JPS58133619A JP1487082A JP1487082A JPS58133619A JP S58133619 A JPS58133619 A JP S58133619A JP 1487082 A JP1487082 A JP 1487082A JP 1487082 A JP1487082 A JP 1487082A JP S58133619 A JPS58133619 A JP S58133619A
Authority
JP
Japan
Prior art keywords
layer
temperature
thin film
stress
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1487082A
Other languages
Japanese (ja)
Inventor
Sadakuni Nagaike
長池 完訓
Toshihiro Yoshida
吉田 敏博
Masayuki Takagi
政幸 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Computer Basic Technology Research Association Corp
Original Assignee
Computer Basic Technology Research Association Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Computer Basic Technology Research Association Corp filed Critical Computer Basic Technology Research Association Corp
Priority to JP1487082A priority Critical patent/JPS58133619A/en
Publication of JPS58133619A publication Critical patent/JPS58133619A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To reduce the residual internal stress of a magnetic substance layer and to manufacture a head with high performance, by forming a magnetic substance layer at a temperature at which the residual stress is a true stress mainly and annealing the layer at a temperature lower than the recrystallizing temperature of the magnetic substance layer. CONSTITUTION:As a base 1, 0.2mm. thick silicon wafer is used and a permalloy film, 2mum thick is formed with the planer magnetron type sputtering device under 5X10Torr. Ar gas pressure as the magnetic substance layers 2, 6. The forming of the layers 2, 5 is done by keeping the temperature of the base 1 to 100 deg.C. Other conditions are the same as conventional methods. As to the samples obtained as above, annealing is done for two hours under 5X10Torr. vacuum at 250 deg.C, 300 deg.C, 350 deg.C and 500 deg.C.

Description

【発明の詳細な説明】 本発明は、導体層を磁性体層で挾んだ構成の薄膜磁気ヘ
ッドの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a thin film magnetic head having a structure in which a conductor layer is sandwiched between magnetic layers.

薄膜磁気ヘッドの一般的な構造、およびその従来の製造
過程について、図面によって説明する。
The general structure of a thin film magnetic head and its conventional manufacturing process will be explained with reference to the drawings.

まず、シリ°コンやセラミック等の基板1の上に、蒸着
、電着、スパッタリング等の方法によりパーマロイ等の
強磁性材料から成る磁性体層2を形成する。この磁性体
層Bを湿式または乾式のエツチングによって所定の形状
とし友後、その上に蒸着。
First, a magnetic layer 2 made of a ferromagnetic material such as permalloy is formed on a substrate 1 made of silicon or ceramic by a method such as vapor deposition, electrodeposition, or sputtering. This magnetic layer B is formed into a predetermined shape by wet or dry etching, and then vapor deposited thereon.

電着、スパッタリング、*布、印刷等の方法により有機
樹脂等の電気絶I#48を形成する。その上に電気導体
層4を形成し、これを所定の形状にエツチングし九のち
、その上に電気絶縁ノー6を形成する。この電気絶縁層
すの上に磁性体層2と同様の材料で同様の方法により磁
性体層6を形成し、これを目的の形状にエツチングする
。かくして、磁性体層8.6間に磁気回路が形成される
Electrical insulator I#48 of organic resin or the like is formed by electrodeposition, sputtering, *cloth, printing, or other methods. An electrically conductive layer 4 is formed thereon, which is etched into a predetermined shape, and then an electrically insulating layer 6 is formed thereon. On this electrically insulating layer, a magnetic layer 6 is formed using the same material as the magnetic layer 2 by the same method, and is etched into a desired shape. In this way, a magnetic circuit is formed between the magnetic layers 8.6.

ところで、薄膜磁気ヘッドの素材として、蒸着あるい社
スパッタリングにより得たパーマロイ膜を使用する場合
は、膜面に一軸異方性を誘起させるために1コイルある
いは磁石により磁界を印加するのが一般的である。これ
は薄膜磁気ヘッドの場合も同様であり、磁気回路の磁束
が流れる方向を磁化困難方向とするように磁性体層2.
6を磁場配置する。こうすることにより、薄膜磁気ヘッ
ドのスイッチング性能を向上できる。
By the way, when using a permalloy film obtained by vapor deposition or sputtering as a material for a thin film magnetic head, it is common to apply a magnetic field with a coil or magnet to induce uniaxial anisotropy on the film surface. It is. This is the same in the case of a thin film magnetic head, and the magnetic material layer 2.
6 is placed in a magnetic field. By doing so, the switching performance of the thin film magnetic head can be improved.

また、パーマロイ等には応力感受性、つまり磁歪と応力
の関連により磁気的性質が左右されるという現象がある
。この応力感受性により薄膜磁気ヘッドの特性が悪化し
ないようにするには、磁性体層S、6に残留する内部応
力を極力減少するのが望ましい。
Additionally, permalloy and the like have stress sensitivity, a phenomenon in which the magnetic properties are influenced by the relationship between magnetostriction and stress. In order to prevent the characteristics of the thin film magnetic head from deteriorating due to this stress sensitivity, it is desirable to reduce the internal stress remaining in the magnetic layers S and 6 as much as possible.

ここで、磁性体層2.6の組成選定には2つの方向があ
る。1つは応力感受性を小さくするために磁φの小さい
組成を選定するものである。もう1つは応力感受性を積
極的に利用するために負。
Here, there are two directions for selecting the composition of the magnetic layer 2.6. One is to select a composition with a small magnetic φ in order to reduce stress sensitivity. The other is negative to actively utilize stress sensitivity.

正の磁歪組成を選定するものである。磁性体層2゜6に
残留する応力の大きさはその形成方法によっても異るが
、この応力の大きさに特性を左右されないようにしよう
というのが前者であり、逆にそれを積極的に利用しよう
というのが後者である。
A positive magnetostrictive composition is selected. Although the magnitude of the stress remaining in the magnetic layer 2゜6 varies depending on the method used to form it, the former aims to prevent the characteristics from being influenced by the magnitude of this stress. The latter is what I'm trying to use.

しかし、いずれの組成選定を行なうにしても、磁性体層
S、6に残留する内部応力を極力減少させる必要がある
However, whichever composition is selected, it is necessary to reduce the internal stress remaining in the magnetic layers S and 6 as much as possible.

すなわち、磁歪が零である組成を選択し九場合でも、現
実に得られる磁性体層3.6は正、負の磁歪側にある程
度の分布をもっているのが常である。つぎに、内部応力
を積極的に利用する場合であるが、この時には磁性体層
3.6の形成条件が問題となる。すなわち、磁性体層S
、6の内部応力には層自身のもつ真性応力と、電着、ス
パッタあるいは蒸着時の基板との熱膨張係数の差に起因
する熱応力がある。一般に低い温度で形成すると真性応
力が、高い温度で形成すると熱応力がそれぞれ残留応力
として残る。このような内部応力は、磁性体層を形成し
た時点では等方向であっても、それを目的とする形状に
パターンニングすると、その形状が円形以外であると異
方的な応力となり、目的とした一軸異方性の方向ずれを
起こす恐れがある。このようなわけで、磁性体層8.6
の組成をどのように選定したとしても、残留する内部応
力を減少させることが重要である。
That is, even if a composition with zero magnetostriction is selected, the actually obtained magnetic layer 3.6 usually has a certain degree of distribution on the positive and negative magnetostrictive sides. Next, there is a case where internal stress is actively utilized, but in this case, the formation conditions of the magnetic layer 3.6 become an issue. That is, the magnetic layer S
, 6 includes the intrinsic stress of the layer itself and the thermal stress caused by the difference in coefficient of thermal expansion between the layer and the substrate during electrodeposition, sputtering, or vapor deposition. Generally, when formed at a low temperature, intrinsic stress remains as residual stress, and when formed at a high temperature, thermal stress remains as residual stress. Even if such internal stress is isotropic at the time of forming the magnetic layer, when it is patterned into the desired shape, if the shape is other than circular, it will become anisotropic stress and will not meet the desired shape. There is a risk that the direction of the uniaxial anisotropy may be shifted. For this reason, the magnetic layer 8.6
Regardless of the composition selected, it is important to reduce residual internal stress.

本発明は、上記した磁性体層に残留する内部応力を大幅
に減少し、性能の優れた薄膜磁気ヘッドを製造する方法
を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a thin film magnetic head with excellent performance by significantly reducing the internal stress remaining in the magnetic layer.

しかして本発明の主たる特徴は、薄膜磁気ヘッドの磁性
体層を形成後、それに残留する内部応力を減らすために
焼鈍を行なう点にある。この焼鈍は個々の磁性体層を形
成する度に行なってもよいし、最終段階で2つの磁性体
層に対して一括して行なってもよい。焼鈍による内部応
力、の軽減効果は、前述の真性応力に対して臀に顕著で
ある。し九がって、各磁性体層を主に真性応力のみが残
留するような比較的低い温度で形成した場合に1本発明
の効果が最も顕著である。
The main feature of the present invention, however, is that after forming the magnetic layer of the thin-film magnetic head, annealing is performed to reduce the internal stress remaining therein. This annealing may be performed each time an individual magnetic layer is formed, or may be performed on two magnetic layers at once in the final stage. The effect of reducing internal stress due to annealing is remarkable in the buttocks compared to the above-mentioned intrinsic stress. Therefore, the effects of the present invention are most significant when each magnetic layer is formed at a relatively low temperature where only intrinsic stress remains.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

!*施何例 1膜磁気ヘッドの構造は図面に示す通りである。! *Example of treatment The structure of the single-film magnetic head is as shown in the drawing.

基板lとして0.2■屡のシリコン・ウエノ1を用い、
磁性体層2.6として2μ簿厚のパーマロイ膜をプレー
ナマグネトロン型スパッタ装置により、5xlOTor
roA1ガス圧下で形成した。ただし、磁性体層3.6
の形成は、基板lの温度を100℃に保って行なり九。
Using 0.2 μm of silicon urethane as the substrate,
As the magnetic layer 2.6, a permalloy film with a thickness of 2 μm was sputtered using a planar magnetron type sputtering device using a 5xlOTor.
Formed under roA1 gas pressure. However, magnetic layer 3.6
The formation of is carried out by keeping the temperature of the substrate l at 100°C.

これ以外は従来と同様である。Other than this, it is the same as before.

上のようにして得た試料について、5X10TOrr 
の真空中にて250℃、800℃、850℃、500℃
のそれぞれの温度で2時間の焼鈍をし九。これらの焼鈍
後の試料、および焼鈍を行なわなかった試料について、
円板法により磁性体層6の内部応力を測定した。測定結
果を第1表に示す。
For the sample obtained as above, 5X10 TOrr
250℃, 800℃, 850℃, 500℃ in vacuum
Annealed at each temperature for 2 hours. Regarding these samples after annealing and samples that were not annealed,
The internal stress of the magnetic layer 6 was measured by the disk method. The measurement results are shown in Table 1.

実施例2 磁柱体層2.6の形成時の基板温度を150℃とし九以
外は実施例1と同様の条件で作り九試料に、250℃、
800℃、850℃、500℃の酸素を含まない雰囲気
中で焼鈍を施した。これら焼鈍処理後の試料、および焼
鈍を施さなかった試料について、磁性体層6の内部応力
を円板法で測定した。測定結果を第1表に示す。
Example 2 The substrate temperature at the time of forming the magnetic column layer 2.6 was 150° C., and nine samples were made under the same conditions as in Example 1 except for the following conditions: 250° C.,
Annealing was performed at 800°C, 850°C, and 500°C in an oxygen-free atmosphere. The internal stress of the magnetic layer 6 was measured using the disk method for the samples after the annealing treatment and the samples that were not annealed. The measurement results are shown in Table 1.

実施例8 基板温度を200℃として磁性体層2.6を形成した以
外は実施例1と一様の方法および条件で得九試料に、酸
素を含まない雰囲気中で250℃、800U 、 85
0℃、500′c4Cて焼鈍を施した。焼鈍後の試料お
よび焼鈍を施さない試料について、磁性体層6の内部応
力を円板法で測定した。測定結果を第1表に示す。
Example 8 Nine samples were obtained using the same method and conditions as in Example 1, except that the substrate temperature was 200°C and the magnetic layer 2.6 was formed at 250°C, 800U, 85 in an oxygen-free atmosphere.
Annealing was performed at 0°C and 500'C4C. The internal stress of the magnetic layer 6 was measured using the disk method for the annealed sample and the non-annealed sample. The measurement results are shown in Table 1.

実施例4 磁性体NI2.6の形成時の基板温巌を850℃とした
以外は、実施例と開方法、同条件で得た試料に、前記実
施例と同様の焼鈍処理を施した。これら試料と、焼鈍を
施さない試料について、円板法により磁性体層6の内部
応力を測定した。測定結果を第1表に示す。
Example 4 A sample obtained using the same opening method and conditions as in the example was subjected to the same annealing treatment as in the example, except that the substrate temperature during formation of the magnetic material NI2.6 was 850°C. The internal stress of the magnetic layer 6 was measured using the disk method for these samples and a sample that was not annealed. The measurement results are shown in Table 1.

第1表 第1表から明らかなように1磁性体層の形成時の基板温
度が低いほど、それに残留する内部応力が大きくなるが
、焼鈍による軽減効果も同時に大きくなり、焼鈍温度8
50℃で焼鈍処理後は殆んど同じ程度の極めて小さな値
まで内部応力が減少する。内部応力の軽減効果は焼鈍温
度を上げるにしたがって大きくなる傾向にあるが、焼鈍
温度500℃では内部応力が逆に増加する。これは、焼
鈍温度が高過ぎると、磁性体層の再結晶が起こるためで
ある。
Table 1 As is clear from Table 1, the lower the substrate temperature at the time of forming one magnetic layer, the greater the internal stress remaining in it, but the reduction effect by annealing also increases, and the annealing temperature 8
After annealing at 50°C, the internal stress decreases to an extremely small value of almost the same level. The effect of reducing internal stress tends to increase as the annealing temperature increases, but at an annealing temperature of 500°C, the internal stress increases on the contrary. This is because if the annealing temperature is too high, recrystallization of the magnetic layer will occur.

したがって、本発明の目的からは、焼鈍温度を磁性体層
の再結晶温度より低く決める必要がある。
Therefore, for the purpose of the present invention, it is necessary to set the annealing temperature lower than the recrystallization temperature of the magnetic layer.

以上に述べたように、本発明によれば磁性体層に残留す
る内部応力を大幅に減少し、高性能の薄膜磁気ヘッドを
得ることができ、その効果は極めて大きい。
As described above, according to the present invention, the internal stress remaining in the magnetic layer can be significantly reduced, and a high-performance thin-film magnetic head can be obtained, which is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

図は薄膜磁気ヘッドの一例を示す断面図である。 l・・・基板、2.6・・・磁性体層、8.5・・・電
気絶縁ノー、4・・・電気導体層。 4 5  c。 1  2  5
The figure is a sectional view showing an example of a thin film magnetic head. 1...Substrate, 2.6...Magnetic material layer, 8.5...Electric insulation layer, 4...Electric conductor layer. 4 5 c. 1 2 5

Claims (1)

【特許請求の範囲】 L 導体層を磁性体層で挾んだ構成の薄膜磁気ヘッドの
製造方法において、該磁性体層の形成後、該磁性体層の
残留応力を減少させるための焼鈍工程を含むことを%黴
とする□薄膜磁気ヘッドの製造方法。 2 前記の焼鈍工程は前記の磁性体層の再結晶温度より
低い焼鈍温度にて行なう仁とを特徴とする特許請求の範
囲第1項記載の薄膜磁気ヘッドの製造方法。 3 前記の磁性体層はその形成後に残留する応力が主に
真性応力となる温度で形成することを特徴とする特ff
#求の範囲第1項記載の薄膜磁気ヘッドの製造方法。
[Claims] L A method for manufacturing a thin film magnetic head having a configuration in which a conductor layer is sandwiched between magnetic layers, which includes an annealing step for reducing residual stress in the magnetic layer after forming the magnetic layer. □Method for manufacturing thin film magnetic heads, including mold. 2. The method of manufacturing a thin film magnetic head according to claim 1, wherein the annealing step is performed at an annealing temperature lower than the recrystallization temperature of the magnetic layer. 3. The above-mentioned magnetic layer is formed at a temperature at which the stress remaining after its formation becomes mainly intrinsic stress.
#Required Range: A method for manufacturing a thin film magnetic head according to item 1.
JP1487082A 1982-02-03 1982-02-03 Manufacture for thin film magnetic head Pending JPS58133619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1487082A JPS58133619A (en) 1982-02-03 1982-02-03 Manufacture for thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1487082A JPS58133619A (en) 1982-02-03 1982-02-03 Manufacture for thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS58133619A true JPS58133619A (en) 1983-08-09

Family

ID=11873048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1487082A Pending JPS58133619A (en) 1982-02-03 1982-02-03 Manufacture for thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS58133619A (en)

Similar Documents

Publication Publication Date Title
JPS58133619A (en) Manufacture for thin film magnetic head
JPH10223438A (en) Planar inductance element
EP0766272A1 (en) Magnetic thin films and their use in thin film magnetic elements
JP3526237B2 (en) Semiconductor device and manufacturing method thereof
JP2556335B2 (en) InSb single crystal wafer of composite substrate for electromagnetic transducer-Method of measuring thickness
US4267510A (en) Integrated thin layer magnetic field sensor
JPH07110912A (en) Magnetic head and manufacture thereof
JPS59114853A (en) Laminated integrated circuit element
JP2740698B2 (en) Thin film magnetic head
US4334951A (en) Fabrication technique for the production of devices which depend on magnetic bubbles
JP2709387B2 (en) Method for manufacturing thin-film magnetic head
JPS60119731A (en) Insulative thin film
JPS58111119A (en) Thin film magnetic head
JPH0634411B2 (en) Superconducting device
JPH06224042A (en) Flat inductor and manufacture thereof
JPH05225523A (en) Thin film magnetic head and its production
JPS5857809B2 (en) Manufacturing method of thin film magnetic head
JPS58111118A (en) Thin film magnetic head
JPS63246806A (en) Thin film device
JPS58153308A (en) Manufacture of amorphous soft magnetic thin film pattern
JP2806284B2 (en) Thin film magnetic head
JP3551134B2 (en) Method for manufacturing magnetic tunnel effect element
JPH033926B2 (en)
JPH0571164B2 (en)
JPH0320809B2 (en)