JPS58133439A - Air-fuel ratio controller of internal-combustion engine - Google Patents

Air-fuel ratio controller of internal-combustion engine

Info

Publication number
JPS58133439A
JPS58133439A JP1335682A JP1335682A JPS58133439A JP S58133439 A JPS58133439 A JP S58133439A JP 1335682 A JP1335682 A JP 1335682A JP 1335682 A JP1335682 A JP 1335682A JP S58133439 A JPS58133439 A JP S58133439A
Authority
JP
Japan
Prior art keywords
circuit
fuel
output
catalyst
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1335682A
Other languages
Japanese (ja)
Inventor
Atsushi Yonezawa
篤 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1335682A priority Critical patent/JPS58133439A/en
Publication of JPS58133439A publication Critical patent/JPS58133439A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent worsening of an inversion rate of a catalyst, by normally setting an injection quantity of fuel only suitable for lean combustion and performing excess correction of a fuel supply quantity at a decrease of catalytic temperature below a prescribed value to prevent an abnormal decrease of the catalytic temperature. CONSTITUTION:An ignition pulse (a) fed to a waveform shaper circuit 141 from an ignition coil 8 is changed to a square pulse (b) and fed to a divider circuit 142 and F/V converter 143. The fed pulse (b) is converted to 1/N frequency in the circuit 142 and fed to one input terminal of an AND circuit 146. While the pulse (b) fed to the converter 143 is converted to a voltage signal in accordance with an engine speed and compared with an output of a constant voltage circuit 144 in a comparator 145. And only when output voltage of the converter 143 is lower than preset voltage, a high level signal is fed to the other input terminal of the circuit 146. Further the circuit 146 outputs a square pulse (c) to a control unit 6 only when a high level signal is output from the comparator 145.

Description

【発明の詳細な説明】 本発明は、燃料噴射装置を備えた内燃機関の空燃比制御
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device for an internal combustion engine equipped with a fuel injection device.

この種の内燃機関では、例えばIa1図に示すように、
機関本体1の吸気通路2に燃料噴射弁3を装着し、前記
吸気通路2に設けたエアフローメータ等の出力信号を介
して検出し九吸入空気量に応じてコントロールユニット
で燃料供給量を演算したうえで、この演算によって得ら
れた制御信号を燃料噴射弁3に供給して燃料の供給量を
最適制御するようにしている。又、機mlO排気中に含
まれる炭化水素(以下、HCという)、−酸化炭素(以
下、COという)、窒素酸化物(以下、N Oxという
)及び酸素(以下、03という)の各濃度は機関1の燃
焼室に供給される混合気の空燃比(以下、A/Fという
)K応じて第2図に示すように変化することが良く知ら
れている。(昭和51年日産自動車株式会社発行技術解
説書、「50型電子制御燃料噴射懺置」第83頁) 一方、機関1の排気を無害化処理するために、第1図に
示すように、排気通路4の途中に触媒5を介装すること
がある。とζろが、排気温度及びこの排気温度に左右さ
れる触媒入口温度又は触媒温度は第3図に示すようにA
/Fに応じて変シ、しかも、CO,HC等の転化率はI
N4図に示すように触媒温度に応じて変る。このために
、第2図のB領域でのA/Fで機関を運転している時は
、排気温度及び触媒入口温度が第3図のB’、B“領域
内にあシ、第4図に示すように触媒によるC02HCの
転化率を良好に保持できる。
In this type of internal combustion engine, for example, as shown in Figure Ia1,
A fuel injection valve 3 was installed in the intake passage 2 of the engine body 1, and the amount of fuel supplied was calculated by a control unit according to the intake air amount detected through the output signal of an air flow meter or the like provided in the intake passage 2. Then, the control signal obtained by this calculation is supplied to the fuel injection valve 3 to optimally control the fuel supply amount. In addition, the concentrations of hydrocarbons (hereinafter referred to as HC), -carbon oxides (hereinafter referred to as CO), nitrogen oxides (hereinafter referred to as NOx), and oxygen (hereinafter referred to as 03) contained in the machine mlO exhaust are It is well known that the air-fuel ratio (hereinafter referred to as A/F) K of the air-fuel mixture supplied to the combustion chamber of the engine 1 changes as shown in FIG. 2. (Technical manual published by Nissan Motor Co., Ltd. in 1975, "Type 50 electronically controlled fuel injection system", p. 83) On the other hand, in order to detoxify the exhaust from engine 1, as shown in Figure 1, A catalyst 5 may be interposed in the middle of the passage 4. The exhaust temperature and the catalyst inlet temperature or catalyst temperature, which depends on the exhaust temperature, are A as shown in Figure 3.
/F, and the conversion rate of CO, HC, etc. is I
As shown in the N4 diagram, it changes depending on the catalyst temperature. For this reason, when the engine is operated with A/F in the B area in Fig. 2, the exhaust temperature and catalyst inlet temperature are within the B' and B'' areas in Fig. 3, and the As shown in the figure, the conversion rate of CO2HC by the catalyst can be maintained well.

しかしながら、機関の燃費を改善するためにA/Fを第
2図のA領域に移動させた希薄燃焼ンステムを採用する
と、第3図KA’領域として示すように排気温度が低下
する。又、この時は、排気中の0sll[が^くなるに
も拘らず、CO2Heの濃度が小さくなって触媒の酸化
作用による温度の上昇が望めないので、触媒温変電低下
し、第4図にA′領域として示すように触媒の転化率が
大幅に低下してしまう。このために、希薄燃焼方式の内
燃機関では、触媒による排気の無害化処理を充分に行な
うことが困難であるという問題点があつ九。
However, if a lean burn system is adopted in which the A/F is moved to region A in FIG. 2 in order to improve the fuel efficiency of the engine, the exhaust temperature decreases as shown in region KA' in FIG. 3. Also, at this time, even though the 0sll[ in the exhaust gas becomes ^^, the concentration of CO2He becomes small and the temperature cannot be expected to rise due to the oxidation action of the catalyst, so the temperature change of the catalyst decreases, as shown in Fig. 4. As shown in region A', the conversion rate of the catalyst decreases significantly. For this reason, lean-burn internal combustion engines have a problem in that it is difficult to sufficiently detoxify exhaust gas using a catalyst.

本発明は、このような従来の問題点に着目してなされ九
本ので、燃料の噴射量を通常は希薄燃焼に見合うだけに
設定して燃費を改善しつつ、触媒温度が所定値以下に低
下した時には燃料供給fik増量補正して触媒温度の異
常低下を防止することにより、触媒の転化率の悪化を予
防して排気処理機能を安定化させることを目的とする。
The present invention has been made by focusing on these conventional problems, and is designed to improve fuel efficiency by setting the amount of fuel injected to an amount commensurate with lean combustion, while reducing the catalyst temperature to below a predetermined value. When this occurs, the purpose of the present invention is to prevent deterioration of the conversion rate of the catalyst and stabilize the exhaust treatment function by correcting the increase in fuel supply fik to prevent an abnormal drop in catalyst temperature.

以下に本発明を図示された実施例に基づいて詳細に説明
する。
The present invention will be explained in detail below based on illustrated embodiments.

第5図は本発明の一実施例を示すブロック図であシ、燃
料の供給量を演算するコントロールユニット6には、機
関の吸気通路に設は九エアフローメータ7の出力端子を
接続することにより、機関吸入空気量に対応する電圧を
空気量信号としてコントロールユニット6に供給してい
る。又、コントロールユニット6には、点火コイルiか
ら出力され友電圧パルス、バッテリ9から出力された電
力、各種センサ及びスイッチ10から出力された機関運
転情報を供給することにより、機関運転状態に応じて燃
料噴射弁11に出力される制御信号(燃料噴射量)を最
適制御している。12は点火コイル8から後述する燃料
増量回路140入力端子Aへの配線、13は燃料増量回
路14の出力端子からコントロールユニット6への配線
である。
FIG. 5 is a block diagram showing an embodiment of the present invention.A control unit 6 that calculates the amount of fuel supplied is connected to the output terminal of an air flow meter 7 installed in the intake passage of the engine. , a voltage corresponding to the engine intake air amount is supplied to the control unit 6 as an air amount signal. In addition, the control unit 6 is supplied with voltage pulses outputted from the ignition coil i, electric power outputted from the battery 9, and engine operation information outputted from various sensors and switches 10, so as to control the control unit 6 according to the engine operation state. The control signal (fuel injection amount) output to the fuel injection valve 11 is optimally controlled. 12 is a wire from the ignition coil 8 to an input terminal A of a fuel increase circuit 140, which will be described later, and 13 is a wire from an output terminal of the fuel increase circuit 14 to the control unit 6.

燃料増量回路14は、第6図に示すように、点火コイル
8から出力された点火パルスaを矩形パルスbに成形す
る波形成形回路141と、波形成形回路141から出力
される矩形パルスbの周波数を1/Hに変換するように
したN進カウンタ等を有する分周回路142と、波形成
形回路141から出力され九矩形パルスbを入力して該
パルスbの周波数に応じ九電圧を出力する周波数−電圧
変換器(以下、F/v変換器という)143とを備え、
定電圧回路144の出力と、F/V変換器143の出力
とを比較器145に供給している。
As shown in FIG. 6, the fuel increase circuit 14 includes a waveform shaping circuit 141 that shapes the ignition pulse a output from the ignition coil 8 into a rectangular pulse b, and a waveform shaping circuit 141 that shapes the frequency of the rectangular pulse b output from the waveform shaping circuit 141. A frequency divider circuit 142 having an N-adic counter or the like that converts 1/H to 1/H, and a frequency that inputs nine rectangular pulses b output from the waveform shaping circuit 141 and outputs nine voltages according to the frequency of the pulses b. - a voltage converter (hereinafter referred to as an F/v converter) 143;
The output of the constant voltage circuit 144 and the output of the F/V converter 143 are supplied to a comparator 145.

尚、比較器145は、F/v変換器143の出力電圧が
定電圧回路144の出力電圧より低い時にハイレベル信
号を出力し、逆に、定電圧回路144の出力電圧より高
い時にローレベル信号を出力する。
Note that the comparator 145 outputs a high level signal when the output voltage of the F/v converter 143 is lower than the output voltage of the constant voltage circuit 144, and conversely outputs a low level signal when the output voltage is higher than the output voltage of the constant voltage circuit 144. Output.

そして、前記分周回路142の出力と比較器145の出
力とをAND回路146に供給することにより、比較器
145の出力がノ・イレベルである時に分周回路142
から出力され九矩形パルスト同一の矩形パルスをコント
ロールユニット6の演算回路61に供給し、この演算回
路61の出力を噴射弁駆動回路62に燃料増量信号とし
て供給するようにしている。尚、上記演算回路61には
、コントロールユニット6に供給された各機信号に応じ
て決定された噴射量に応答する噴射パルス信号eが付加
されていることは詳述するまでもない。
By supplying the output of the frequency dividing circuit 142 and the output of the comparator 145 to the AND circuit 146, when the output of the comparator 145 is at the NO level, the frequency dividing circuit 142
The nine rectangular pulses output from the nine rectangular pulses are supplied to an arithmetic circuit 61 of the control unit 6, and the output of this arithmetic circuit 61 is supplied to an injection valve drive circuit 62 as a fuel increase signal. It is needless to mention in detail that the arithmetic circuit 61 is provided with an injection pulse signal e that responds to the injection amount determined according to each machine signal supplied to the control unit 6.

上記の構成において、点火コイル8から波形成形回路1
41に供給された点火パルスaは、矩形パルスbとなっ
て分周回路142とF/V変換器143とに供給される
。分周回路142は、供給された矩形パルスbを1/N
の周波数に変換してAND回路146の一方の入力端子
に供給される。
In the above configuration, from the ignition coil 8 to the waveform shaping circuit 1
The ignition pulse a supplied to 41 becomes a rectangular pulse b and is supplied to a frequency dividing circuit 142 and an F/V converter 143. The frequency dividing circuit 142 divides the supplied rectangular pulse b into 1/N
is converted into a frequency of 1 and supplied to one input terminal of the AND circuit 146.

又、F/v変換器143に供給された矩形?(ルスbは
、該パルスの周波数、つまり、機関回転数に応じた電圧
信号に変換されて定電圧回路144の出力(設定電圧)
と比IIR器145で比較される。
Also, the rectangle supplied to the F/v converter 143? (The pulse b is converted into a voltage signal according to the frequency of the pulse, that is, the engine speed, and is output from the constant voltage circuit 144 (set voltage)
is compared with the ratio IIR unit 145.

そして、F/v変換器143の出力電圧が設定電圧より
低い時にのみ、っまシ、機関回転数に応じて変化する触
媒入口温度が所定値(転化率が急激に低下する温度より
少し高い温度)と等しくなるまで低下し走時にのみAN
D回路146の他方の入力端子にハイレベル信号が供給
されるようにしている。尚、比較器145から出力され
るローレベル信号は、アースに落されている。又、AN
D回路146は、比較器145からハイレベル信号が出
力された時にのみ分周回路142から出力された矩形パ
ルスにをB端子よりコントロールユニット6に出力する
Only when the output voltage of the F/V converter 143 is lower than the set voltage, the catalyst inlet temperature, which changes depending on the engine speed, is set to a predetermined value (a temperature slightly higher than the temperature at which the conversion rate suddenly decreases). ) and becomes AN only when running.
A high level signal is supplied to the other input terminal of the D circuit 146. Note that the low level signal output from the comparator 145 is grounded. Also, AN
The D circuit 146 outputs the rectangular pulse output from the frequency dividing circuit 142 to the control unit 6 from the B terminal only when a high level signal is output from the comparator 145.

従って、機関回転数が低下して触媒入口温度が低下し触
媒の転化率が下がってしまう直前に、燃料の噴射量が周
期的に増量補正されてA/Fが濃化される。このために
、触媒入口温度の低下が抑制され、転化率の悪化が予防
される。尚、燃料の増量補正を周期的に行なうことによ
り、噴射量の制御を容易化しているが、連続的に増量補
正するようにしても良い。
Therefore, just before the engine speed decreases, the catalyst inlet temperature decreases, and the conversion rate of the catalyst decreases, the fuel injection amount is periodically increased and corrected to enrich the A/F. For this reason, a decrease in the catalyst inlet temperature is suppressed, and a deterioration of the conversion rate is prevented. Although the control of the injection amount is facilitated by periodically increasing the amount of fuel, it is also possible to continuously increase the amount of fuel.

又、具体的には、第2図から1@4図に示すA。Moreover, specifically, A shown in FIGS. 2 to 1@4.

A′領領域運転し、これを増量補正によってB。Driving in the A' area and adjusting it to B by increasing the amount.

B′領領域運転することによって転化率の悪化を予防す
れば良い。
It is sufficient to prevent deterioration of the conversion rate by operating in the B' region.

1i7図は機関回転数の変化による触媒入口温度の変化
を示す図であシ、図中aは、触媒の転化率が悪化しない
最低レベルを示している。又、第7図の破線は、従来例
を示したものであシ、この図から明らかなように、本発
明によれば触媒入口温度の低下を予防できるので、触媒
による転化率を良好に維持できる。尚、図中、bは本発
明による対策時の平均触媒入口温度である。
Figure 1i7 is a diagram showing changes in catalyst inlet temperature due to changes in engine speed, and a in the diagram indicates the lowest level at which the conversion rate of the catalyst does not deteriorate. Furthermore, the broken line in Figure 7 shows the conventional example.As is clear from this figure, according to the present invention, it is possible to prevent a drop in the catalyst inlet temperature, so that the conversion rate by the catalyst can be maintained at a good level. can. In the figure, b is the average catalyst inlet temperature when the measure according to the present invention is taken.

第8図は、触媒温度を温度センサ15で検出するように
した実施例である。即ち、前記実施例では、点火パルス
を介して検出した機関回転数から触媒入口温度を間接的
に検出するようにしているが、機関が低回転している時
でも負荷が大きくなると、触媒入口温度が高く、A/F
が薄くとも触媒の転化率が悪化しないことがある。
FIG. 8 shows an embodiment in which the catalyst temperature is detected by a temperature sensor 15. That is, in the above embodiment, the catalyst inlet temperature is indirectly detected from the engine speed detected through the ignition pulse, but when the load increases even when the engine is rotating at low speeds, the catalyst inlet temperature changes. is high, A/F
Even if the catalyst is thin, the conversion rate of the catalyst may not deteriorate.

ところが、第8図に示す実施例のように温度センサ15
で触媒温度を直接に検出する場合は、無駄な増量補正を
回避できるので燃費をよシ向上できる。16は抵抗器で
あり、温度センサ15はサーミスタ等で構成されている
However, as in the embodiment shown in FIG.
If the catalyst temperature is directly detected, unnecessary fuel increase corrections can be avoided and fuel efficiency can be further improved. 16 is a resistor, and the temperature sensor 15 is composed of a thermistor or the like.

又、m1例では、点火パルスに基づいて燃料噴射パルス
信号を得るようにしているため、必ずしも増量時期を最
適化できず、応答遅れが生じることがある。従って、こ
のような場合は、第9図に示すように、比較器145の
出力をワンショット回路148に供給し、このワンショ
ット回路148の出力とAND回路146の出力とをO
R回路147を介して出力させることにより、増量補正
の応答遅れをなくすことができ、設定温度の余裕代を小
さくできる。
Furthermore, in the m1 example, since the fuel injection pulse signal is obtained based on the ignition pulse, the fuel increase timing cannot necessarily be optimized and a response delay may occur. Therefore, in such a case, as shown in FIG. 9, the output of the comparator 145 is supplied to the one-shot circuit 148, and the output of the one-shot circuit 148 and the output of the AND circuit 146 are
By outputting through the R circuit 147, a response delay in the increase correction can be eliminated, and the margin for the set temperature can be reduced.

第10図に示す実施例では、比較器145の出力を分周
回路142にリセット信号として供給するようにしてい
る。従って、この場合は触媒温度の低下勾配に応じて求
めた時間を設定温度の余裕代とできるので、転化率の悪
化直前に燃料増量を実行させることができ、同様にして
、第11図に示す実施例のように、ワンショット回路1
48及びOR回路141を付加することにより、触媒温
度の低下直前に燃料増量を完全周期で開始させることが
できる。
In the embodiment shown in FIG. 10, the output of the comparator 145 is supplied to the frequency dividing circuit 142 as a reset signal. Therefore, in this case, the time determined according to the decreasing slope of the catalyst temperature can be used as a margin for the set temperature, so it is possible to increase the amount of fuel just before the conversion rate deteriorates, and similarly, as shown in FIG. As in the example, one-shot circuit 1
By adding 48 and the OR circuit 141, it is possible to start increasing the amount of fuel in a complete cycle immediately before the catalyst temperature decreases.

以上説明したように本発明によれば、燃料供給量を演算
するコントロールユニットの他に、該コントロールユニ
ットで算出され九噴射量信号を増量補正する燃料増量回
路を設け、触媒温度が所定値以下に降下した時に燃料増
量回路を作動させてA / Fを濃化補正するようにし
たものであるから、燃費を改善させるべく希薄燃焼を行
なわせる場合にも触媒の転化率の悪化が予防され、排気
特性の悪化が回避される。
As explained above, according to the present invention, in addition to the control unit that calculates the fuel supply amount, there is provided a fuel increase circuit that increases and corrects the nine injection amount signals calculated by the control unit, so that the catalyst temperature is lower than a predetermined value. When the vehicle descends, the fuel increase circuit is activated to correct the A/F enrichment, so even when performing lean burn to improve fuel efficiency, deterioration of the catalyst conversion rate is prevented and the exhaust gas is reduced. Deterioration of characteristics is avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の断面図、第2図はA/Fと排気製置と
の関係図、第3図はA/Fと触媒入口温度との関係図、
第4図は触媒入口l1tLと転化率との関係図、第5図
は本発明の第1実施例の構成のブロック図、第6図は同
じく燃料増量回路のブロツク図、第7図は機関回転数と
触媒温度との関係図、第8図ないし第11図は本発明に
使用される燃料増量回路の第2冥施例ないし第5実施例
のブロック図である。 1・・・機関  3・・・燃料噴射弁  5・・・触媒
6・・・コントロールユニット  1・・・エアフロー
メータ  8・・・点火コイル  14・・・燃料増量
回路15・・・温度センサ 特 許 出 願 人 日産自動車株式会社代 理 人 
弁理士 笹 島 富二雄 第1図 7/1 第2図  ′ 第3図 第4図 ε
Fig. 1 is a sectional view of a conventional example, Fig. 2 is a relation diagram between A/F and exhaust configuration, Fig. 3 is a relation diagram between A/F and catalyst inlet temperature,
Fig. 4 is a diagram of the relationship between the catalyst inlet l1tL and the conversion rate, Fig. 5 is a block diagram of the configuration of the first embodiment of the present invention, Fig. 6 is a block diagram of the fuel increase circuit, and Fig. 7 is the engine rotation. 8 to 11 are block diagrams of second to fifth embodiments of the fuel increase circuit used in the present invention. 1... Engine 3... Fuel injection valve 5... Catalyst 6... Control unit 1... Air flow meter 8... Ignition coil 14... Fuel increase circuit 15... Temperature sensor patent Applicant: Nissan Motor Co., Ltd. Agent
Patent Attorney Fujio Sasashima Figure 1 7/1 Figure 2 ' Figure 3 Figure 4 ε

Claims (2)

【特許請求の範囲】[Claims] (1)  内燃機関の吸入空気量に基づいて燃料の供給
量を演算するコントロールユニツ)1!:、1mユニッ
トの出力に基づいて燃料を吸気系に噴射供給する手段と
、機関の排気を無害化処理する触媒を装置した排気後処
理装置と、を備えた内燃機関において、前記触媒の温度
を検出する手段と、該手段を介して検出し九触媒温度が
所定値以下の領域での機関運転時に前記コントロールユ
ニットから出力される燃料供給量信号を増量補正する燃
料増量手段と、を備えてなる内燃機関の空燃比制御装置
(1) Control unit that calculates the amount of fuel supplied based on the intake air amount of the internal combustion engine) 1! : An internal combustion engine equipped with a means for injecting and supplying fuel to an intake system based on the output of a 1 m unit, and an exhaust after-treatment device equipped with a catalyst that detoxifies engine exhaust gas, wherein the temperature of the catalyst is controlled. and a fuel increase means for detecting through the means and increasing the fuel supply amount signal output from the control unit when the engine is operated in a region where the catalyst temperature is below a predetermined value. Air-fuel ratio control device for internal combustion engines.
(2)燃料増量手段による燃料の増量補正が、周期的に
行われることを特徴とする特許請求の範囲第1項記載の
内燃機関の空燃比制御装置。
(2) The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the fuel increase correction by the fuel increase means is performed periodically.
JP1335682A 1982-02-01 1982-02-01 Air-fuel ratio controller of internal-combustion engine Pending JPS58133439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1335682A JPS58133439A (en) 1982-02-01 1982-02-01 Air-fuel ratio controller of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1335682A JPS58133439A (en) 1982-02-01 1982-02-01 Air-fuel ratio controller of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS58133439A true JPS58133439A (en) 1983-08-09

Family

ID=11830815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1335682A Pending JPS58133439A (en) 1982-02-01 1982-02-01 Air-fuel ratio controller of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58133439A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256743U (en) * 1985-09-26 1987-04-08
JPH01273854A (en) * 1988-04-25 1989-11-01 Mazda Motor Corp Controller for engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256743U (en) * 1985-09-26 1987-04-08
JPH0437237Y2 (en) * 1985-09-26 1992-09-02
JPH01273854A (en) * 1988-04-25 1989-11-01 Mazda Motor Corp Controller for engine

Similar Documents

Publication Publication Date Title
JPS5853661A (en) Apparatus for controlling air-fuel ratio in engine
JP3855877B2 (en) Deterioration detection device for air-fuel ratio detection device
JP2503387B2 (en) Electronic internal combustion engine controller
JPH07113336B2 (en) Air-fuel ratio controller for internal combustion engine
JPS58133439A (en) Air-fuel ratio controller of internal-combustion engine
JP2569460B2 (en) Air-fuel ratio control device for internal combustion engine
JP2737482B2 (en) Degradation diagnosis device for catalytic converter device in internal combustion engine
JP3627417B2 (en) Fuel property detection device for internal combustion engine
JPH07208153A (en) Exhaust emission control device of internal combustion engine
JP2807554B2 (en) Air-fuel ratio control method for internal combustion engine
JPH08144816A (en) Air-fuel ratio controller for internal combustion engine
JP3608443B2 (en) Air-fuel ratio control device for internal combustion engine
JPS61237858A (en) Control device for air-fuel ratio in internal-combustion engine
JPH048284Y2 (en)
JPH0354343A (en) Air-fuel ratio control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP2692307B2 (en) Air-fuel ratio control device for internal combustion engine
JPS623159A (en) Intake secondary air supply device for internal-combustion engine
JPS63111252A (en) Air-fuel ratio control device for internal combustion engine
JPH02264139A (en) Air-fuel ratio control device for internal combustion engine
JPS63215810A (en) Air-fuel ratio controlling device for internal combustion engine
JPS61201840A (en) Engine control device
JPH0323331A (en) Air-fuel ratio control device
JPH09105325A (en) Exhaust emission control device of internal combustion engine
JPH045451A (en) Method for controlling air-fuel ratio of internal combustion engine