JPS58133129A - Controller for combined cycle generation plant - Google Patents

Controller for combined cycle generation plant

Info

Publication number
JPS58133129A
JPS58133129A JP57012825A JP1282582A JPS58133129A JP S58133129 A JPS58133129 A JP S58133129A JP 57012825 A JP57012825 A JP 57012825A JP 1282582 A JP1282582 A JP 1282582A JP S58133129 A JPS58133129 A JP S58133129A
Authority
JP
Japan
Prior art keywords
voltage
output
generators
combined cycle
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57012825A
Other languages
Japanese (ja)
Other versions
JPS6358025B2 (en
Inventor
岡田 吉男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57012825A priority Critical patent/JPS58133129A/en
Publication of JPS58133129A publication Critical patent/JPS58133129A/en
Publication of JPS6358025B2 publication Critical patent/JPS6358025B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、コンパインドサイクル発電プラントにおいて
、特に複数で111成される発電機か、3壱−土涙圧器
の2つの低圧巻締に接続され蓋付連転される場合の、低
圧巻線間の循環電流を低減させ得るようにし九制御装置
に関するものに組合せることにより、各々を単独て用い
る場合よりも熱効率を向上させることを主目的として、
コンバインドサイクル発電グランドが計画されている。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a combined cycle power plant, in particular a power generator connected to two low voltage clamps of a plurality of 111 generators or a 3-unit pressure generator. The main purpose is to reduce the circulating current between the low voltage windings when the lid is connected, and to improve thermal efficiency compared to when each is used alone by combining them with nine control devices. ,
A combined cycle power generation ground is planned.

以下、かかる方式について簡単に説明する。This method will be briefly explained below.

第1図は、コンバインドサイクル発電プラントの系統構
成例を示すものである。図において、吸入された空気線
、空気圧1機1で加圧され、燃焼器2で燃料を燃焼させ
て燃焼がスとなり、その膨張力でガスタービン1を駆動
した後、排熱回収?イラ4で水を加熱して蒸気を発生し
排ガスとして放出される。一方排熱回収がイラ4で発生
じた蒸気は蒸気タービン5を駆動した後、復水器6で再
び水となl/ング1により排熱−収lイラ4に送られる
・ を九、これらのがスメービン3および志気タービン5の
出力は、発電411JtKよシ、電気エネルだ−に変換
されて図示しない電力系統に供給される。上記方式によ
り、ユニ、トとして小容亀機を構成し、複数ユニットを
組合せるシステムであるか、これら全体を1組の発電設
備として扱うのが一般的である。
FIG. 1 shows an example of a system configuration of a combined cycle power generation plant. In the figure, the air line taken in is pressurized by the air pressure unit 1, the fuel is combusted in the combustor 2, the combustion becomes hot, and after driving the gas turbine 1 with its expansion force, exhaust heat is recovered. Water is heated in the heater 4 to generate steam, which is released as exhaust gas. On the other hand, the steam generated in the exhaust heat recovery tank 4 drives the steam turbine 5, and then turns into water again in the condenser 6. The output of the Smebin 3 and the Shiki turbine 5 is converted into electric energy of 411 JtK, which is supplied to an electric power system (not shown). According to the above method, it is common to configure a small power generator as a unit and a system that combines multiple units, or to treat the entire system as one set of power generation equipment.

このような構成からなるコンバインドサイクル%llf
ラントでは、小容量の発電ユニy)により構成されるが
、あくまでも1組の発電設備として扱われるため、発電
機の主回路を従来のように各発電機か外圧変圧器(主変
圧器)を介して送電線にWc続され、各ユニットの所内
補機動力を各所内変圧器よシ給電するユニット方式を採
用した場合には、単機大容量プラントに比軟して経済性
、保守1点検および運転操作の向で不利であるため、上
記外圧賀圧器を3巻線構成とし、その2次および3次側
に複数台の発電機t−接続して、外圧汲圧器の台数を少
なくするような方法が採用される。
Combined cycle %llf consisting of such a configuration
Although the Rant is composed of small-capacity power generation units (y), it is treated as one set of power generation equipment, so the main circuit of the generator is connected to each generator or external voltage transformer (main transformer) as in the past. If a unit system is adopted in which each unit is connected to the power transmission line via Wc and the in-station auxiliary power of each unit is supplied to each in-station transformer, it will be more economical, maintenance, inspection and Since this is disadvantageous in terms of operation, it is recommended to reduce the number of external pressure pumps by configuring the external pressure pump with three windings and connecting multiple generators to the secondary and tertiary sides. method is adopted.

第2図は、外圧変圧器を3巻線構成とした場合の構成e
l+を示すものである。第2図において、複数台の発電
機8と所定変圧ti 1 ! B %昇圧貧圧器9の2
つの低圧巻線のA系およびB系に接続され、一括主母g
1ioを経由して、送電線し中断器11よ)電力が送出
される。また、各発電機8の同期併入の九め、負荷開閉
器(又はし中断器)13が外圧変圧器9の低圧側巻線と
、イクル発電プラントが複数台の発電機8から構成され
、かつ外圧変圧器9を341線構造としてその各低圧@
巻線に発電機1が接続される場合、ム系およびB系の各
発電機1間の並行運転による横流は、各発電機1の自動
電圧調整器に付加され九横流補償装置によって最小とな
るようにl1m整されるが、昇圧変圧器9の各低圧@巻
−の負荷電流が発電機8の運転台数の変動や、出力の変
動による上記低圧−巻線間の自起電圧の差によって、変
圧器9の内部を電流が循環することになる。これは、変
圧46gの並行運転に相蟲し、この循環電流はI起電圧
に対してほぼ90度の位相差を有しており、誘起1圧の
高い方には90度遅れ111′流が流れて電圧降下を生
じ、誘起11jL汁の低い方には90度進み電流が流れ
て電圧上昇を生じる。その結果誘起電圧差は零となるが
、各低圧側巻線の負荷分担が変動して出力を低減した巻
線の相手の一線か、過負荷となる編付かあり、プラント
全体の運転に支障をきたすことになる。
Figure 2 shows the configuration e when the external voltage transformer has a three-winding configuration.
This shows l+. In FIG. 2, a plurality of generators 8 and a predetermined transformation voltage ti 1 ! B % Boost Poor Pressure Device 9-2
It is connected to the A system and B system of two low voltage windings, and is connected to the main bus g
1io, power is sent to the power transmission line and interrupter 11). In addition, in the ninth stage of synchronous connection of each generator 8, the load switch (or interrupter) 13 is the low voltage side winding of the external voltage transformer 9, and the cycle power generation plant is composed of a plurality of generators 8, And the external voltage transformer 9 has a 341-wire structure, and each low voltage
When the generator 1 is connected to the winding, the cross current due to parallel operation between the generators 1 of the Mu system and the B system is minimized by the automatic voltage regulator of each generator 1 and the 9 cross current compensator. However, the load current of each low-voltage winding of the step-up transformer 9 changes due to fluctuations in the number of operating generators 8 and differences in self-electromotive voltage between the low-voltage windings due to fluctuations in output. Current will circulate inside the transformer 9. This is due to the parallel operation of the transformer 46g, and this circulating current has a phase difference of approximately 90 degrees with respect to the I electromotive force, and the 111' flow is delayed by 90 degrees on the side where the induced voltage is higher. The current flows to the lower side of the induced 11jL current by 90 degrees, causing a voltage rise. As a result, the induced voltage difference becomes zero, but the load sharing of each low-voltage winding fluctuates, and the winding with reduced output may have a partner wire, or the winding may be overloaded, disrupting the operation of the entire plant. It will happen.

以下、上述した循環電流の発生する原理について述べる
。第3図は、第2図の勢価回路を示すものであり、第3
図において次式か成立する。
The principle of generating the above-mentioned circulating current will be described below. Figure 3 shows the market price circuit of Figure 2, and the third
In the figure, the following equation holds true.

この(1)式より、各電流を求めると次の通シになる。Using equation (1), each current is determined as follows.

この(2)式において、A系およびB系が定格運転され
ている場合は、■、=vb−■となるので、各低圧側巻
線の負荷電流Iae Ibは次式で表わされる。
In this equation (2), when the A system and the B system are operated at their rated values, ■, = vb - ■, so the load current Iae Ib of each low voltage side winding is expressed by the following equation.

したがって、次式が成立する0 IaXb(4) bXa この(4)式より変圧器の並行運転では、A系又はB系
のいずれか一方の出力(I、又はIb )が電化すると
、相手の出力が(4ン式を満足するように誓化しないと
、これを補うために1循璋電流が流れることになる。例
えば、A系の出力は定格のま壕で、B系の出力か1割減
少した場合には、(4)式を満足するためにA系の出力
を一割減少させる会費がある。
Therefore, the following formula holds. (If the power is not set to satisfy the 4th equation, a single circuit current will flow to compensate for this. For example, the output of system A is at the rated level, and the output of system B is 10% If it decreases, there is a fee to reduce the output of system A by 10% in order to satisfy equation (4).

次に、儂環電aIsおよび酩起電圧ΔVを求める。Next, the internal voltage aIs and the electromotive voltage ΔV are determined.

第4図tliB糸の発11機8を何台か停止した場合、
または出力t−減少させた場合の等価(ロ)路図會示す
ものであり、第4図において次式が成立する。
Figure 4 If some tliB yarn generators 11 and 8 are stopped,
Or, it shows an equivalent (b) path diagram when the output t- is decreased, and the following equation holds true in FIG.

この(5)式よシ、誘起電圧差lvは次式となる。Based on this equation (5), the induced voltage difference lv is expressed as the following equation.

この(6)式において、昇圧変圧I!9の各リアクp 
y スXh、 X@ 、 XbO関係は一般K % X
h<Xa mXh<Xbであるので、(6)式は次式の
とおり簡略できる◇ Δv#xb・ΔIb           (7)よっ
て、B系の出力低下分(ΔVb)に相当した誘起電圧差
ΔVだけ、B糸の電圧Vbt−下げることになり1 A
系の出力を低下せずKtllilJl電流ΔI。
In this equation (6), the step-up transformation I! Each reaction p of 9
y SuXh, X@, XbO relationship is general K %X
Since h < Xa mXh < B thread voltage Vbt- will be lowered 1 A
KtllilJl current ΔI without reducing system output.

を小さくすることができるととKなる。If it is possible to make it smaller, then it becomes K.

従りて、コンバインドサイクル発電グランドにおいて紘
、複数台の発電機が、3巻線構成の外圧変圧器の2つの
低圧@巻IIK接続され、各低圧@1IIfllc)出
力が変動した場合、各低圧−巻線の負荷分担が変動し、
出力の低減し丸巻−の相手の巻締が過負荷とならないよ
うに、循環電流を小さくおさえることが11要である。
Therefore, in a combined cycle power generation ground, if multiple generators are connected to two low voltages of a three-winding external voltage transformer and the output of each low voltage changes, each low voltage - The load sharing of the windings fluctuates,
It is essential to keep the circulating current to a small level in order to reduce the output and prevent the tightening of the round-wound partner from becoming overloaded.

そしてこれらの間鯖は、コンバインドサイクル発tfう
K1ftされたもので、その目的は主変圧器の各低圧@
?締の出力?低減分に和尚した誘起電圧差(Δ■)だワ
該当発電機群の出力電圧を下げて各巻締間の備環電15
1!を抑制し各巻線夕、過負荷を防止することかできる
コンバインドサイクル発電プラントの?l1iI11装
置を提供することにある。
And these mackerel are combined cycle generators tf and K1ft, and their purpose is to provide each low voltage @ of the main transformer.
? Tightening output? The induced voltage difference (Δ■) is reduced by reducing the output voltage of the corresponding generator group and increasing the voltage between each winding.
1! Can each winding be suppressed and prevented from overloading in a combined cycle power plant? The object of the present invention is to provide an l1iI11 device.

〔発明の値賛〕[Praise for invention]

上hC目的を達成するために本発明では、複数の発電機
が3巻−構成の昇圧変圧器(王変圧tF)の2つの低圧
@巻線に接続され並行運転されるコンバインドサイクル
発電グランドにおいて、上記各発電機の出力を検出し、
この検出し九出力を基に上に2各低圧餉巻巌間あ誘起電
圧差を演算し、該誘起電圧差を零とする如く上記該当発
電機の出力電圧を側修するようにしたことを特徴とする
In order to achieve the above hC objective, the present invention provides a combined cycle power generation ground in which a plurality of generators are connected to two low voltage windings of a three-turn configuration step-up transformer (King transformer tF) and operated in parallel. Detect the output of each generator above,
Based on this detected nine outputs, the induced voltage difference between the two low-voltage coils is calculated, and the output voltage of the generator is adjusted to make the induced voltage difference zero. Features.

参照して説明する0第5図は、本発明による制御装置を
備え九コンバインドサイクル発電グランドの系統構成例
を示すもので、同図において第1図と同一部分には同一
符号を付して示す。
FIG. 5, which will be explained with reference to FIG. 5, shows an example of the system configuration of a nine combined cycle power generation ground equipped with a control device according to the present invention, and in the same figure, the same parts as in FIG. .

図において、動台の発電機1およびm台の発電機8は、
3巻線構成の昇圧変圧器9の低圧翻巻締ムおよびBK負
荷開閉器(又は、し中断器)13を介して接続され、上
記外圧変圧器90高圧側巻線から一括¥母線10および
送電線し中断器11JICよシミ力を送出する◎tた、
各発電機8の出力電圧を自動的に制御する自動電圧調整
器14と、各発電機1間の検流をおさえるための検流補
償装置15とを設ける・さらに、外圧変圧IISの各低
圧側巻線ムおよびBKは、各発電機8の出力電流および
電圧を検出するための検出器16と、両者の比較および
各発電機8の自動電圧調整DI−の電圧設定器#ORを
駆動させ、電圧制御するための出力信号を演算する演算
@11と奢設けて構成する。
In the figure, the generator 1 on the moving platform and m generators 8 are:
The step-up transformer 9 has a three-winding configuration and is connected via the low-voltage winding clamp and the BK load switch (or interrupter) 13, and is connected from the high-voltage side winding of the external voltage transformer 90 to the bulk bus 10 and the transmission line. Connect the wire and send out the power from the interrupter 11JIC◎t.
An automatic voltage regulator 14 that automatically controls the output voltage of each generator 8 and a galvanometric compensator 15 that suppresses galvanic current between each generator 1 are provided.Furthermore, each low voltage side of the external voltage transformer IIS is provided. The winding M and BK drive a detector 16 for detecting the output current and voltage of each generator 8, and a voltage setter #OR for comparing the two and automatic voltage adjustment DI- of each generator 8, It is constructed by providing a calculation @11 for calculating an output signal for voltage control.

次に、上記のように構成した本発明の制御装置の作用に
ついて説明する。いま、昇圧変圧器9の低圧餉巻@Aお
よびBに接続された発電機8の各合計出力電流Iaおよ
びIbか、上紀低圧側巷繍ムおよびB藺のりアクタンス
Xaおよびxbとの間で■νI b= Xb/X@の関
係となるように選ばれた場合は、低圧肯巷線AおよびB
の各負荷電流か電流およびIbと等しいときには、前述
のとおり低圧鎖巻111!AおよびBの電圧v1および
vbが等しくなり、伽場電流は流れない。
Next, the operation of the control device of the present invention configured as described above will be explained. Now, between the respective total output currents Ia and Ib of the generator 8 connected to the low voltage coils @A and B of the step-up transformer 9, and the actances Xa and xb of the lower voltage side coils and B, ■If the relationship is chosen so that νI b= Xb/X@, the low voltage positive lines A and B
When each load current is equal to the current and Ib, as described above, the low voltage chain winding 111! The voltages v1 and vb of A and B become equal, and no current flows.

一方、発電機8の運転台数の変動やその出力の変動によ
って、低圧@巻−ムおよびBの各負#箋訛がI、/Ib
=XbAC,の関係が保てなくなった場合は、低圧@Q
k1ml!ムおよびBの電圧■、およびVbか等しいと
きには、巻−^および8間に酵起亀圧の差が生じて循環
電流が流れる0すると1との電圧差を零にしようとして
低圧個巻巌ムおよびBの負菊分担が”a/■b=Xv′
x@となシ、昇圧変圧器9の各低圧餉巻−ムおよびBに
接がる発電+@gの運転台数の変更やその出力の変更等
この点本構成によれば、各低圧側巻線ムおよびBの出力
、つまシ、負荷電流1.およびIbを検出器1σで検出
し、これを基に演算器11で各低圧側巻線ムおよびBの
定格電流I□およびIbnとO差電流ノ■、およびΔI
bを算出して、これから上記(7)式の鍔起電圧差ノV
(=X、・Δ■、壕良はXb・)Ib)を演算し、この
誘起電圧差ΔVを零とする如く、すなわち検出器ICK
て検出し丸見電機8の出力電圧と、上記誘起電圧差との
差に対応した値KS#S見当機8の自動電圧調整器14
の電圧設定器110Bを設定駆動させる仁とにより、昇
圧変圧!19の各低圧鎖巻aIAおよびBKiiがる発
電機8の運転台数の変更やその出力の変更を自由に行な
うことができる。
On the other hand, due to fluctuations in the number of operating generators 8 and fluctuations in their output, the negative #note accents of low voltage @ winding and B are I, /Ib
If the relationship =XbAC, can no longer be maintained, low pressure @Q
k1ml! When the voltages (■ and Vb) of B and B are equal, a difference in fermentation pressure occurs between windings -^ and 8, and a circulating current flows. And B's burden share is "a/■b=Xv'
According to this configuration, each low voltage side winding of the step-up transformer 9 and the number of operating units of the power generator +@g connected to B and the output thereof can be changed. Output of wire and B, clamp, load current 1. and Ib are detected by the detector 1σ, and based on this, the arithmetic unit 11 calculates the rated current I□ of each low voltage side winding M and B, the difference current between Ibn and O, and ΔI
Calculate b, and from this calculate the difference in the collar electromotive force V in equation (7) above.
(=X, ・Δ■, Xb・)Ib), and set this induced voltage difference ΔV to zero, that is, the detector ICK
The automatic voltage regulator 14 of the register 8 detects a value KS#S corresponding to the difference between the output voltage of the Marumi electric machine 8 and the above-mentioned induced voltage difference.
By setting and driving the voltage setting device 110B, step-up transformation! It is possible to freely change the number of operating generators 8 of each of the 19 low-pressure chain windings aIA and BKii and change their outputs.

このように、複数の発電機8か3巻線構成の昇圧変圧l
1F(生変圧器)9の2つの低圧側巷−AおよびBK嶽
続され並行運転されるコンバインドサイクル発電プラン
トにおいて、上記各発電機−の出力を検出91 gKて
検出し、このS出した出力を基に上記各低圧側巻締ム、
B間の騎起電圧差Δ■演算器11にて演算し、咳誘起電
圧差Δ■を零とする如く上記該当発電機8の出力電圧を
自動電圧−gk装置14によシ制御するように制f41
装fliを構成し九ものである◎従って、コンバインド
サイクル発電グランドにおける複数の発電機8が、3巻
線構成の昇圧変圧器9の2つの低圧餉巻@におよびBK
接続さnx朽運転される場合、発電機8の運転台数の変
更やその変更による誘起電圧差を零とすることか可能と
なシ、各巻4!1!A、8間の循環電流を抑制して、各
巻−A、Bの過負衝を確実に防止し、発電機8の運転台
数や出力の変更を容易に何なうことができる。
In this way, multiple generators with step-up transformers with 8 or 3 windings can be used.
In a combined cycle power generation plant where two low-voltage sides of 1F (raw transformer) 9 - A and BK are connected and operated in parallel, the output of each of the above generators is detected by 91 gK, and the output output from S is Based on each of the above low voltage side winding rams,
The electromotive force difference Δ■ between B is calculated by the calculator 11, and the output voltage of the generator 8 is controlled by the automatic voltage-gk device 14 so as to make the cough induced voltage difference Δ■ zero. control f41
◎Therefore, a plurality of generators 8 in the combined cycle power generation ground are connected to the two low-voltage windings of the step-up transformer 9 with the three-winding configuration and the BK
When connected and operated, it is possible to change the number of operating generators 8 and to reduce the induced voltage difference to zero due to the change.4!1 for each volume. By suppressing the circulating current between A and 8, overloading of each winding A and B can be reliably prevented, and the number of operating generators 8 and the output can be easily changed.

〔晃明の効果〕[Effect of Akimei]

以上説明したように本発明によれは、主変圧6の各低圧
−巷縁関の出力の低減分に相幽し次v1起電圧差(ΔV
)だけ該当発電機群の出力電圧を一トけて各巻巌蘭の儂
環電流を抑制し各巻線の過負6hを確実に防止すること
ができる極めて信幀性の高いコンバインドサイクル発電
プラントの制御装置が提供できる。
As explained above, according to the present invention, the reduction in the output of each low-voltage side connection of the main transformer 6 is offset by the voltage difference (ΔV
) Control of an extremely reliable combined cycle power generation plant that can suppress the ring current of each winding by increasing the output voltage of the corresponding generator group by one step, thereby reliably preventing overloading of each winding for 6 hours. Equipment can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はコンバインドサイクル発電プラントの系統構成
例を示す図、第2図は発電機の主回路を示す単線結線図
、第3gおよび第4図線第2図のインピーダンスによる
勢価回路を示す図、第5図は本発明による制御装置の一
実施例を示す構成図である。 1・・・空気圧縮機、2・・・燃焼器、3・・・ブスタ
ービン、4・・・ゲイン、5・・・蒸気メーピン、6・
・・復水器、1・・・ポンプ、8・・・発電機、9・・
・昇圧変圧器、10・・・一括主母線、11・・・送電
−用し中断器、12・・・所内変圧器、13・・・負荷
開閉器(tたはし中断り、J4・・・自動電圧調整器、
15・・・横流補償装置、16・・・検出器、17・・
・演Xa。
Fig. 1 is a diagram showing an example of the system configuration of a combined cycle power generation plant, Fig. 2 is a single line diagram showing the main circuit of the generator, and Fig. 3g and Fig. 4 are diagrams showing the power circuit according to the impedance of Fig. 2. , FIG. 5 is a configuration diagram showing an embodiment of a control device according to the present invention. DESCRIPTION OF SYMBOLS 1... Air compressor, 2... Combustor, 3... Bus turbine, 4... Gain, 5... Steam mapin, 6...
... Condenser, 1... Pump, 8... Generator, 9...
・Step-up transformer, 10... Collective main bus, 11... Power transmission-use interrupter, 12... Station transformer, 13... Load switch (t-hashi interrupt, J4...・Automatic voltage regulator,
15...Cross current compensator, 16...Detector, 17...
・Performance Xa.

Claims (1)

【特許請求の範囲】[Claims] 被数の発電機が2群に分けられ、各群の発電機か3%縁
構地の外圧変圧器(主変圧器)の2つの低圧−巻線に七
れぞれ接続され並行運転されるコンバインドサイクル発
電グランドにおいて、削配各発11機の出力を検出し、
この検出した出力を基に前記各低圧稠巻線間の誘起電圧
差f:演算し、該誘起電圧差を零とする如く削配鋏当発
電像の出力電圧を制御するようKし九こと1%像とする
コンバインドサイクル発電グランドの制御装置。
The number of generators is divided into two groups, and the generators in each group are connected to the two low voltage windings of the external voltage transformer (main transformer) of the 3% edge structure and operated in parallel. At the combined cycle power generation ground, the output of 11 generators was detected,
Based on the detected output, the induced voltage difference f between each of the low-voltage dense windings is calculated, and the output voltage of the power generation image on the cutter is controlled so as to make the induced voltage difference zero. A control device for a combined cycle power generation gland that uses % images.
JP57012825A 1982-01-29 1982-01-29 Controller for combined cycle generation plant Granted JPS58133129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012825A JPS58133129A (en) 1982-01-29 1982-01-29 Controller for combined cycle generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012825A JPS58133129A (en) 1982-01-29 1982-01-29 Controller for combined cycle generation plant

Publications (2)

Publication Number Publication Date
JPS58133129A true JPS58133129A (en) 1983-08-08
JPS6358025B2 JPS6358025B2 (en) 1988-11-14

Family

ID=11816155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012825A Granted JPS58133129A (en) 1982-01-29 1982-01-29 Controller for combined cycle generation plant

Country Status (1)

Country Link
JP (1) JPS58133129A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769145A (en) * 1984-03-21 1988-09-06 Toyo Soda Manufacturing Co., Ltd. Centrifugal ultrafilter unit for ultrafiltration of biochemical solutions
JPS63314134A (en) * 1987-06-12 1988-12-22 Mitsubishi Electric Corp Generator voltage regulator
JP2022553386A (en) * 2019-10-22 2022-12-22 シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Generating units and methods of operating generating units in power plants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315509A (en) * 1976-07-28 1978-02-13 Hitachi Ltd Cross current compensator for generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315509A (en) * 1976-07-28 1978-02-13 Hitachi Ltd Cross current compensator for generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769145A (en) * 1984-03-21 1988-09-06 Toyo Soda Manufacturing Co., Ltd. Centrifugal ultrafilter unit for ultrafiltration of biochemical solutions
JPS63314134A (en) * 1987-06-12 1988-12-22 Mitsubishi Electric Corp Generator voltage regulator
JP2022553386A (en) * 2019-10-22 2022-12-22 シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Generating units and methods of operating generating units in power plants

Also Published As

Publication number Publication date
JPS6358025B2 (en) 1988-11-14

Similar Documents

Publication Publication Date Title
CN103003145B (en) Distribution system and the method controlling distribution system
US9941772B2 (en) Marine propulsion systems
US9065377B2 (en) Load commutated inverter drive systems for high power drive applications
CA2820130A1 (en) Power distribution systems
RU185666U1 (en) MULTI-PHASE VESSEL ELECTRIC MOVEMENT SYSTEM
KR101206699B1 (en) Low loss propulsion system
JP2006223023A (en) Active filter for power
RU2451353C1 (en) Three-phase magnetisation-controlled reactor
US20120119583A1 (en) Combined dc power source and battery power converter
JPS58133129A (en) Controller for combined cycle generation plant
EP2463978A1 (en) Power factor correction for multiple generators
Pronin et al. A double-fed induction machine with a multistage-multilevel frequency converter for pumped storage power plant applications
JPH03212125A (en) Circuit apparatus for converting two single-phase alternating currents to one symmetric three-phase alternating current
JPH11187576A (en) Distributed power supply
EP1638199A1 (en) Motor drive system
EP2438668A2 (en) Improved internal electrification scheme for power generation plants
JP4660524B2 (en) On-site power supply equipment for power plants
JP6377276B2 (en) Power system
Zhou et al. Dual voltage DC generator for compact light-weight ship electrical systems
Prasad et al. Normal power supply system of a nuclear power plant—Modelling and simulation studies for fast bus transfer
JP2001359239A (en) Voltage fluctuation compensating device
KR101545476B1 (en) Power saving system and method in power plant using static var compensator
WO2009134770A1 (en) Apparatus and method for increasing efficiency in power generation plants
EP1637447A1 (en) Electric motor drive system
JP2008220140A (en) Transformer and controller of flicker suppressing apparatus