JP2008220140A - Transformer and controller of flicker suppressing apparatus - Google Patents

Transformer and controller of flicker suppressing apparatus Download PDF

Info

Publication number
JP2008220140A
JP2008220140A JP2007097825A JP2007097825A JP2008220140A JP 2008220140 A JP2008220140 A JP 2008220140A JP 2007097825 A JP2007097825 A JP 2007097825A JP 2007097825 A JP2007097825 A JP 2007097825A JP 2008220140 A JP2008220140 A JP 2008220140A
Authority
JP
Japan
Prior art keywords
phase
degrees
scr
transformer
flicker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007097825A
Other languages
Japanese (ja)
Inventor
Taisuke Inoue
岱介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oacs KK
Original Assignee
Oacs KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oacs KK filed Critical Oacs KK
Priority to JP2007097825A priority Critical patent/JP2008220140A/en
Publication of JP2008220140A publication Critical patent/JP2008220140A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase response speed of a flicker suppressing apparatus for an electric furnace, and reduce the number of harmonics as well as the capacity of a reactor. <P>SOLUTION: A reactor connected with SCR in series is connected to two pairs of three-phase power supplies having a phase difference of 30 degrees or less, respectively, each of which is controlled independently. An ignition phase delayed by 30 degrees or more from an ignition phase which causes a 180-degree conduction state is defined as a maximum ignition phase of SCR. When no power is supplied to SCR when 30 degrees are exceeded, data is acquired again, ignition phase is recalculated and the next ignition phase is determined. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気炉による電圧変動(フリッカ)をリアクトルとサイリスタ(SCR)によって抑制する装置に関する。  The present invention relates to a device that suppresses voltage fluctuation (flicker) caused by an electric furnace using a reactor and a thyristor (SCR).

従来の装置は、三相電源にリアクトルとSCRを直列に接続したものを1組用いていた。(例えば特許文献1参照)  A conventional apparatus uses a set of a three-phase power source in which a reactor and an SCR are connected in series. (For example, see Patent Document 1)

特許公開2000−234875Patent Publication 2000-234875 特許公開2000−222053Patent Publication 2000-2222053

従来の装置はリアクトルとSCRの組を1組用いたので、応答速度は1/2サイクル以上遅れ、高調波は大きく、電気炉のような超大型装置では価格が高価になった。
本発明の課題は、高調波を各組の高調波の重なりを利用して少ないものとする。
SCRの最大通電時の点弧角を遅らせて高速応答を行わせ、リアクトルの容量を減少させる。
Since the conventional apparatus uses one set of the reactor and the SCR, the response speed is delayed by more than 1/2 cycle, the harmonics are large, and the price of an ultra-large apparatus such as an electric furnace becomes high.
An object of the present invention is to reduce the number of harmonics by utilizing the overlapping of each set of harmonics.
The ignition angle at the time of maximum energization of the SCR is delayed to perform a high-speed response, and the capacity of the reactor is reduced.

SCRの点弧位相を決定するタイミングは従来最大通電電流が得られる位相角で直流制御電圧を決定し、SCRにかかる電源電圧より90度遅れた電圧との比較により点弧していた。
これによると、点弧タイミングの決定は1/2サイクルあたり1回になるので高速応答にならない。
本発明ではこれを数回行うようにするのが課題である。
The timing for determining the ignition phase of the SCR is conventionally determined by determining the DC control voltage at the phase angle at which the maximum energization current is obtained, and comparing with the voltage delayed by 90 degrees from the power supply voltage applied to the SCR.
According to this, since the determination of the ignition timing is once per ½ cycle, a high-speed response is not obtained.
The problem with the present invention is to do this several times.

リアクトルとSCRの組を従来1組であったものを、2組以上用い(2組用いると費用対効果の割合が大きく、3組、4組、の場合は複雑になる割合に効果が少ない、従って本文では主に2組の場合を説明する。)2組の場合は三相電源の位相が30度異なる電源に各組を接続し、2組以上の場合はそれぞれの電源位相が、同じ角度だけ異なる電源に接続する。  Two or more reactor and SCR pairs were used in the past (using two pairs has a large cost-effective ratio, and in the case of three or four groups, the effect is less effective in a complicated ratio. Therefore, this text mainly explains the case of 2 sets.) In the case of 2 sets, each set is connected to a power supply whose phase of the three-phase power supply is different by 30 degrees, and in the case of 2 sets or more, each power supply phase has the same angle. Just connect to a different power source.

SCRの最大通電時の点弧角を全弧通電(180度通電)の時の点弧位置より2組の場合は30度以上遅らせる。
この遅れが小さくても装置を作ることは可能であるが、小さいほど応答速度は遅くなり、リアクトル容量の節減効果も少なくなる。
点弧位相の決定をこの遅らせた点で(たとえば30度遅れの点)行い、
この点で点弧しなかった場合には改めて点弧位相の決定を行う。
In the case of two sets, the firing angle at the time of maximum energization of the SCR is delayed by 30 degrees or more in the case of two sets from the firing position at the time of full-arc energization (180-degree energization).
Even if this delay is small, it is possible to make a device, but the smaller the delay, the slower the response speed and the less the reactor capacity saving effect.
The determination of the ignition phase is performed at this delayed point (for example, a point delayed by 30 degrees),
If ignition is not performed at this point, the ignition phase is determined again.

本発明のフリッカ抑制装置は、従来の装置が1個のSCRに対し1サイクルに1回最大点弧位相の直前で点弧位相を算出していたのに対し、点弧が始まらなければ何回でも点弧位相の計算を行う。
これにより点弧の直前まで点弧位相を決定せず最後の瞬間までのデータを取り込み点弧させるので制御速度が上がる。
The flicker suppression apparatus of the present invention calculates the ignition phase just before the maximum ignition phase once per cycle for one SCR, whereas the flicker suppression apparatus of the present invention does not start many times when the ignition does not start. But the ignition phase is calculated.
This increases the control speed because the data up to the last moment is taken in and fired without determining the firing phase until just before firing.

また、従来の装置が最大通電の場合、全点弧(180度通電)させるのに対し、本発明では最大通電時、120度通電以下として通電を遅く始めて早く終わらせるので、180度通電の場合に比較して高速度の応答が可能になる。  In addition, when the conventional device is fully energized, all ignition is performed (180-degree energization), while in the present invention, when maximum energization is performed, energization starts slowly and ends as early as 120 degrees energization. Compared to the above, a high-speed response becomes possible.

位相が異なる電源に2組以上のリアクトルとSCRを直列に接続したものをそれぞれ接続するので高調波がお互いに打ち消しあう。
最大通電の位相角をさらに小さく、たとえば120度以下とすると、価格の高いリアクトルの容量をさらに小さくすることができるとともに、応答速度は速くなる。
しかしSCRを通過する電流波形は通電時間の短いものとなるのでSCRやリアクトルに負担が掛かる。
Since two or more reactors and SCRs connected in series are connected to power supplies having different phases, harmonics cancel each other.
If the phase angle of maximum energization is further reduced, for example, 120 degrees or less, the capacity of the expensive reactor can be further reduced, and the response speed is increased.
However, since the current waveform passing through the SCR has a short energization time, the SCR and the reactor are burdened.

以下、本発明の実施例を図面に基づいて説明する。
図1は本発明の主回路を示す単線結線図である。
この図において三相電源は66KV、110KV、220KV、等の高電圧であり、主変圧器1はこの電圧を低下させ、例えば22KV等にする。
電気炉用変圧器2はさらに電圧を低下させ、電気炉4に電気を供給する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a single-line diagram showing a main circuit of the present invention.
In this figure, the three-phase power supply has a high voltage of 66 KV, 110 KV, 220 KV, etc., and the main transformer 1 reduces this voltage to, for example, 22 KV.
The electric furnace transformer 2 further reduces the voltage and supplies electricity to the electric furnace 4.

フリッカ用変圧器3は単巻変圧器で最小の容量で主変圧器1の電源位相を基にして15度進みと15度遅れの三相電源を作る。
5はフリッカ用変圧器3を結線する過程を示すもので、1次巻き線は小容量のデルタ結線で、そのデルタ巻線の2次側にそれぞれ図示するような2次巻線がある。
2次巻線の中央部を1次巻線のデルタの先端にそれぞれ結線すればフリッカ用変圧器3の結線となる。
The flicker transformer 3 is a self-winding transformer and produces a three-phase power supply with a minimum capacity and a 15-degree advance and 15-degree delay based on the power supply phase of the main transformer 1.
Reference numeral 5 denotes a process of connecting the flicker transformer 3. The primary winding is a small capacity delta connection, and there are secondary windings as shown on the secondary side of the delta winding.
If the central part of the secondary winding is connected to the tip of the delta of the primary winding, the flicker transformer 3 is connected.

第2図、はフリッカ用変圧器3と主変圧器1の結線を3線図にしたもので、フリッカ用変圧器3は単巻変圧器であるため、主変圧器1の2次巻線と組み合わされて1台の変圧器として働き、中性点は主変圧器1の中性点を使用する。
第3図は電気炉用変圧器とフリッカ用変圧器を1台にまとめてフリッカ用、兼電気炉用変圧器6とした場合の結線図である。
このようにすると変圧器の台数と容量は少なくなるが、点検、試験、等に不便である。
FIG. 2 is a three-line diagram of the connection between the flicker transformer 3 and the main transformer 1, and since the flicker transformer 3 is a single-turn transformer, the secondary winding of the main transformer 1 Combined and works as one transformer, the neutral point uses the neutral point of the main transformer 1.
FIG. 3 is a connection diagram in the case where the electric furnace transformer and the flicker transformer are combined into one unit to form the flicker and electric furnace transformer 6.
This reduces the number and capacity of transformers, but is inconvenient for inspection, testing, etc.

第4図はフリッカ用変圧器3にリアクトル7,8とSCR9,10を接続したもので、実際のSCRは逆並列接続にするが、図面では片側だけ書いてある。
リアクトル7とSCR9は15度進みの2次巻線に接続し、リアクトル8とSCR10は15度遅れの2次巻線に接続する。
主変圧器1には中性点があるのでこれをアースすると共に、各SCR9,10の片端を接続する。
FIG. 4 shows the case where the reactors 7 and 8 and the SCRs 9 and 10 are connected to the flicker transformer 3, and the actual SCR is connected in reverse parallel, but only one side is written in the drawing.
Reactor 7 and SCR 9 are connected to a secondary winding that is advanced by 15 degrees, and reactor 8 and SCR 10 are connected to a secondary winding that is delayed by 15 degrees.
Since the main transformer 1 has a neutral point, it is grounded and one end of each of the SCRs 9 and 10 is connected.

第5図は主変圧器1の2次側のスター電圧に対し、進み15度と遅れ15度の巻線を加えたもので主変圧器1が電気炉用の電源とフリッカ用電源の2種類を供給する。
このほか、進み15度と遅れ15度の位相差を持つ変圧器の結線は種々考えられるが、進み15度と遅れ15度の電圧を取り出してリアクトルとSCRに加えることは同じである。
FIG. 5 shows the secondary side star voltage of the main transformer 1 with a 15 degree lead and 15 degree winding added. The main transformer 1 has two types of power supply for the electric furnace and flicker. Supply.
In addition, there are various possible connections for a transformer having a phase difference of 15 degrees advance and 15 degrees delay, but it is the same that the voltage of 15 degrees advance and 15 degrees delay is extracted and applied to the reactor and the SCR.

ここで、なぜ進み15度と遅れ15度の変圧器を用いるかその理由をさらに別の観点から説明する。
このようなフリッカ抑制装置の場合、3相より6相、6相より12相、12相より24相のほうが高速応答が可能であり高調波が少なくなり、インバータ制御の性能に近くなる。
Here, the reason why a transformer with a lead of 15 degrees and a delay of 15 degrees is used will be described from another viewpoint.
In the case of such a flicker suppressing device, 6-phase than 3-phase, 12-phase than 6-phase, and 24-phase than 12-phase can respond at high speed, reduce harmonics, and become closer to inverter control performance.

しかし、相が多くなればそれだけ複雑になるのでここでは12相を使用すると、第6図のようなベクトルが得られる。
第6図を見ると実線のベクトルと点線のベクトルは180度異なるので、3相電源側から見ると実線のベクトルに負荷をかけても、点線のベクトルに負荷をかけても同じ結果になる。
そこで、第7図のように点線のベクトルを省略しても12相制御したのと同じ結果となる。
However, the more the number of phases, the more complicated it becomes. If 12 phases are used here, a vector as shown in FIG. 6 is obtained.
As seen from FIG. 6, the solid line vector and the dotted line vector are 180 degrees different from each other. Therefore, when viewed from the three-phase power source side, the same result is obtained regardless of whether the solid line vector is loaded or the dotted line vector is loaded.
Therefore, even if the dotted line vector is omitted as shown in FIG. 7, the result is the same as when 12-phase control is performed.

実線のベクトルは30度の位相差があるベクトルが3組になるので30度の中間点から15度進みと15度遅れに振り分けると第4図の結線が得られる。
この場合中性点は主変圧器1の中性点を使用する。
30度進みの結線はスター結線に巻線を追加する形式のほかにデルタ結線に巻き線を追加する形式も考えられるが、対地電圧が安定している点でスター結線が良い。
第8図は本発明の最大通電時(30度遅れの通電)におけるSCRの電流を示すものである。
このように1台のSCRに流れる電流波形は高調波が多い。
Since the solid line vectors have three sets having a phase difference of 30 degrees, the connection shown in FIG. 4 can be obtained by allocating 15 degrees forward and 15 degrees from the 30 degree intermediate point.
In this case, the neutral point is the neutral point of the main transformer 1.
For the connection advanced by 30 degrees, a form in which a winding is added to the delta connection in addition to a form in which a winding is added to the star connection is conceivable, but a star connection is good in that the ground voltage is stable.
FIG. 8 shows the current of the SCR at the time of maximum energization of the present invention (energization with a delay of 30 degrees).
In this way, the current waveform flowing through one SCR has many harmonics.

第9図は進みのSCR電流(9)と遅れのSCR電流(10)が合計されて高調波電流が少なくなることを図示したものである。
第10図は点弧位相により応答速度が変化することを説明するためのSCR電流波形図である。
この図においてP1・・・P7は図面で解説した各点であり、P1(0度)で点弧した場合は点弧後P7(180度)まではSCRに電流が流れ続けるので制御出来ない。
FIG. 9 shows that the harmonic current is reduced by adding the advanced SCR current (9) and the delayed SCR current (10).
FIG. 10 is an SCR current waveform diagram for explaining that the response speed changes depending on the ignition phase.
In this figure, P1... P7 are the points explained in the drawing. When firing at P1 (0 degree), the current continues to flow through the SCR until P7 (180 degrees) after firing, and cannot be controlled.

P2(30度)の点で点弧する場合は制御決定の位相が遅くなるので、それだけ制御可能の範囲が増えて高速応答となる。
SCRをP2(30度)で点弧したものはP6(150度)で通電が終わるのでP1(0度)で点弧してP7(180度)で終わるのに比較して30度早く終わる。
通電が30度早く終わることは30度高速応答したことになる。
さらに進みのSCR9が通電してから30度後に遅れSCR10を制御することが出来るので応答速度が速くなる。
When firing at the point of P2 (30 degrees), the control decision phase is delayed, so that the controllable range is increased accordingly, resulting in a high-speed response.
When the SCR is ignited at P2 (30 degrees), the energization is completed at P6 (150 degrees), so that it is ignited at P1 (0 degrees) and ends at P7 (180 degrees) and ends 30 degrees earlier.
The end of energization 30 degrees earlier means a quick response of 30 degrees.
Further, since the delayed SCR 10 can be controlled 30 degrees after the leading SCR 9 is energized, the response speed is increased.

本発明の主回路の実施例を示す単線結線図Single line connection diagram showing an embodiment of the main circuit of the present invention 本発明の実施例の15度進み、15度遅れのフリッカ用変圧器の3線結線図3 wire connection diagram of a 15 degree forward and 15 degree flicker transformer of an embodiment of the present invention 本発明の実施例の15度進み、15度遅れのフリッカ用変圧器と電気炉用変圧器を1台の変圧器で兼用する場合の結線図Wiring diagram in the case where the transformer for flicker and the transformer for electric furnace with 15 degree advance and 15 degree delay of the embodiment of the present invention are combined with one transformer フリッカ用変圧器にリアクトルとSCRを結線した場合の3線結線図3-wire connection diagram when reactor and SCR are connected to a transformer for flicker 主変圧器とフリッカ用変圧器を1台で兼用した場合の単線結線図Single-line connection diagram when main transformer and flicker transformer are combined 本発明の実施例の15度進みと15度遅れのベクトルを持つ変圧器の結線の原理を解説するための12相電源のベクトル図12 is a vector diagram of a 12-phase power supply for explaining the principle of connection of a transformer having 15 degree advance and 15 degree delay vectors according to an embodiment of the present invention. 第6図と同じSame as Fig. 6 本発明の実施例の装置における最大通電時のSCR電流波形の図The figure of the SCR current waveform at the time of maximum energization in the device of the embodiment of the present invention 進みのSCRと遅れのSCRの電流が合計されて高調波電流が少なくなることを示す波形図Waveform diagram showing that the current of the advanced SCR and delayed SCR is summed to reduce the harmonic current 1台のSCRの半サイクルの通電波形を示す図The figure which shows the energization waveform of the half cycle of one SCR

符号の説明Explanation of symbols

1 主変圧器
2 電気炉用変圧器
3 フリッカ用変圧器
4 電気炉
5 フリッカ用変圧器を結線する前の変圧器巻線
6 フリッカ兼電気炉用変圧器
7,8 リアクトル
9,10 SCR
11 フリッカ用電源
12 最大通電時のSCR電流
13 少ない通電時のSCR電流
1 Main Transformer 2 Electric Furnace Transformer 3 Flicker Transformer 4 Electric Furnace 5 Transformer Winding Before Connecting Flicker Transformer 6 Flicker / Electric Furnace Transformer 7, 8 Reactor 9, 10 SCR
11 Flicker power supply 12 SCR current at maximum energization 13 SCR current at low energization

Claims (3)

アーク炉等の高速応答を必要とする大容量フリッカ抑制装置において、逆並列に接続したSCRに直列にリアクトルを接続した三相の制御部を2組用い、これに接続する2組の三相電源の位相差を30度にすることを特徴とする、フリッカ抑制装置の変圧器。In a large-capacity flicker suppression device that requires a high-speed response, such as an arc furnace, two sets of three-phase power supplies are used that use two sets of three-phase control units connected in series with an SCR connected in antiparallel. The transformer of the flicker suppressing device is characterized in that a phase difference of 30 degrees is set. 上記のフリッカ抑制装置においてSCRが180度通電状態になる点弧位相より30度以上遅れた点弧位相を最大点弧位相とすることを特徴とする、フリッカ抑制装置。In the above flicker suppressing apparatus, the flicker suppressing apparatus is characterized in that an ignition phase that is delayed by 30 degrees or more from an ignition phase in which the SCR is energized 180 degrees is set as a maximum ignition phase. 上記のフリッカ抑制装置においてSCRが30度を超えても通電状態にならなかった場合、その後もデータを再度取り直して点弧位相の計算を始めからやりなおして次の点弧位相を決定し、それでも点弧に至らなかった場合は、さらにデータを再度取り直して点弧位相の計算を始めからやりなおして次の点弧位相を決定することを特徴とする、フリッカ抑制装置の制御部。In the above flicker suppression device, when the SCR exceeds 30 degrees and does not become energized, the data is collected again and the ignition phase is calculated again from the beginning to determine the next ignition phase. The control unit of the flicker suppressing apparatus, wherein if the arc is not reached, the data is obtained again and the calculation of the ignition phase is performed again to determine the next ignition phase.
JP2007097825A 2007-03-05 2007-03-05 Transformer and controller of flicker suppressing apparatus Pending JP2008220140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007097825A JP2008220140A (en) 2007-03-05 2007-03-05 Transformer and controller of flicker suppressing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007097825A JP2008220140A (en) 2007-03-05 2007-03-05 Transformer and controller of flicker suppressing apparatus

Publications (1)

Publication Number Publication Date
JP2008220140A true JP2008220140A (en) 2008-09-18

Family

ID=39839487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097825A Pending JP2008220140A (en) 2007-03-05 2007-03-05 Transformer and controller of flicker suppressing apparatus

Country Status (1)

Country Link
JP (1) JP2008220140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061441A (en) * 2013-09-19 2015-03-30 北芝電機株式会社 Voltage flicker suppression method
CN104953603A (en) * 2015-06-11 2015-09-30 银川杰力能科技有限公司 Method of ensuring power balance for three-phase bath of submerged arc furnace and submerged arc furnace system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061441A (en) * 2013-09-19 2015-03-30 北芝電機株式会社 Voltage flicker suppression method
CN104953603A (en) * 2015-06-11 2015-09-30 银川杰力能科技有限公司 Method of ensuring power balance for three-phase bath of submerged arc furnace and submerged arc furnace system

Similar Documents

Publication Publication Date Title
JP4532547B2 (en) Operation method of three-phase power regulator
JP5029315B2 (en) Motor drive system
EP2690775A2 (en) Drive system for alternating current motors and electric motorized vehicles
JP2008220140A (en) Transformer and controller of flicker suppressing apparatus
JP4999154B2 (en) Reduced voltage starting device
JPS5914023A (en) Method for controlling suppressing device of flicker
SE529993C2 (en) Method and apparatus for reducing the influence of a direct current component in a load current on an asynchronous three-phase motor
JP2001218470A (en) Power supply unit
CN109755005B (en) Power transformer system capable of automatically restraining negative sequence voltage
CN112292811B (en) Thyristor starting device
JP4232504B2 (en) AC voltage regulator
Gan et al. Soft starting high-voltage induction motors with the optimum performance
JPH1132485A (en) Control device of thyristor commutator
CN110771031B (en) Thyristor starter
JP2001218469A (en) Power supply unit
JP2008283857A (en) Electric propulsion system of electric propulsion ship
JP2005151788A (en) Voltage fluctuation absorber using reactance of small capacity with firing angle of thyristor used in small area
KR102259303B1 (en) System and Method for Controlling Phase Controlled Rectifier for Reactive Power Reduction
JP2009268167A (en) Phase control device
JP2006109568A (en) Generator, method of interconnecting generator to system, and program for controlling system interconnection of generator
JPH09117170A (en) Starter for motor
JPWO2018235190A1 (en) Thyristor starter
JP2008226002A (en) Power control device
JPS58133129A (en) Controller for combined cycle generation plant
JP2009273297A (en) Cyclone converter generator