JPS58132808A - Distributed plant diagnostic system - Google Patents

Distributed plant diagnostic system

Info

Publication number
JPS58132808A
JPS58132808A JP57014472A JP1447282A JPS58132808A JP S58132808 A JPS58132808 A JP S58132808A JP 57014472 A JP57014472 A JP 57014472A JP 1447282 A JP1447282 A JP 1447282A JP S58132808 A JPS58132808 A JP S58132808A
Authority
JP
Japan
Prior art keywords
diagnostic
distributed
processing
logical
operation processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57014472A
Other languages
Japanese (ja)
Inventor
Takamichi Ogino
荻野敬迪
Mitsuhiko Fujii
藤井光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57014472A priority Critical patent/JPS58132808A/en
Publication of JPS58132808A publication Critical patent/JPS58132808A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0213Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0237Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on parallel systems, e.g. comparing signals produced at the same time by same type systems and detect faulty ones by noticing differences among their responses

Abstract

PURPOSE:To improve the reliability of a diagnostic system wirh a simple device, by decomposing a logical equation, where the propagation sequence of various abnormal events is described, to many small-scale logical equations and processing these logical equations in many operation processing devices for parallel processing and an operation processing device having the integrating function. CONSTITUTION:Process data is gathered by a data gathering device 1, and gathered data is distributed and inputted to distributed storage devices 7. Outputs of distributed storage devices 7 are applied to distributed diagnostic processing devices 8, and respective operation processing parts P1-Pm and storage devices M1-Mm are used to process a cause consequence tree (CCT), where the transmission sequence of an abnormal event is described with a logical equation, in parallel. CCTs processed in parallel by devices 8 are integrated and processed by an integrating operation processing device 9 and the third storage device 10 and are displayed on a cathode-ray tube display 6. Thus, the reliability of the diagnostic processing system is improved without a high-class operation processing device.

Description

【発明の詳細な説明】 この発明は、大規模なプラントの高信頼運転を達成する
ために、プラントの異常事象をオンライン・リアルタイ
ムで固定するプラント診断方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plant diagnosis method that fixes abnormal events in a plant online and in real time in order to achieve highly reliable operation of a large-scale plant.

従来この種の方式として第1図に示すものがあった。図
において、(1)はプロセス・データを読み込むための
データ収集装置(例えば、アナログ・ディジタル変換器
)、(2)はプロセス・データを基準値と比較し許容範
囲内にあれば“0“、範囲外にあれば“1”に変換する
ための第1の演算処理装置(例えばマイクロプロセッサ
)、(3)は第1の演算処理装!1(2)が演算処理し
た結果を格納しておく第1の記憶装置(例えばICメモ
リ)、(4)はプラントで生じる各種異常事象の伝播シ
ーケンスを論理式で記述した原因結果ツリー(Caus
e Con5equenceTree ) (以下CC
Tと記す)を記憶しておく第2の記憶装置(例えばIC
メモリL(5)は第1の記憶装@ (3)と$2の記憶
装置(4)に格納しであるプロセス情報とCCTを用い
て異常の第1原因を固定する診断処理装置(例えば、ス
ーパー・ミニコンピユータ) % (6)は診断結果を
表示するためのブラウン彦表示装置である。
A conventional system of this type is shown in FIG. In the figure, (1) is a data acquisition device (for example, an analog-to-digital converter) for reading process data, (2) is a data acquisition device that compares process data with a reference value, and if it is within an acceptable range, “0”; A first arithmetic processing unit (for example, a microprocessor) converts it to “1” if it is outside the range; (3) is the first arithmetic processing unit! 1 (2) is a first storage device (for example, an IC memory) that stores the results of arithmetic processing, and (4) is a cause-and-effect tree (Caus) that describes the propagation sequence of various abnormal events occurring in the plant using logical expressions.
eCon5equenceTree) (hereinafter referred to as CC
A second storage device (for example, an IC
The memory L (5) is a diagnostic processing device (for example, Super mini computer) % (6) is a Braunhiko display device for displaying diagnostic results.

プロセスデータをX、(1=1.2.・・・、N)とす
る。Xlはデータ収集装置(1)により量子化される。
Let the process data be X, (1=1.2...,N). Xl is quantized by a data acquisition device (1).

量子化されたデータX1を入力として、第1の演算処理
装置(2)は(1)式醗こ示す処理を施こし、結果5i
(1=1.2゜・・、N)を第1の記は装置(3)に格
納する。
With the quantized data X1 as input, the first arithmetic processing unit (2) performs the processing shown in equation (1), and the result 5i is
(1=1.2°..., N) is stored in the first record in the device (3).

ここで、SiをXlのステータスと呼ぶ。Here, Si is called the status of Xl.

第2の記憶装置(4)に格納されているCCTの一部分
の例を第2図に示す。第2図中、Nis、M7は診断メ
ツセージ、τは時間遅れ、Gll、G12  は論理積
ゲート、G21.G22は、1iil理和ゲートである
。第2図中のSl+・”+57は第lの記憶装置(30
こ格納されている。
FIG. 2 shows an example of a portion of the CCT stored in the second storage device (4). In FIG. 2, Nis and M7 are diagnostic messages, τ is a time delay, Gll and G12 are AND gates, and G21. G22 is a 1iil logical sum gate. Sl+・”+57 in FIG. 2 is the lth storage device (30
This is stored.

ステータス間の論理関係がCCTであるが、ステータス
間の事象伝播時間が重要な場合は、時間遅れを用いる。
When the logical relationship between statuses is CCT, but the event propagation time between statuses is important, a time delay is used.

診断処理装置1(5)は、第2図に示されるようなCC
rの論理演算を実行する。ステータスS1の中に診断メ
ツセージを付したものがあり(第2図中のM6.M?)
、論理演算の結果診断メツセージを付したステータスが
“1“となった時、該当するメツセージが、ブラウン管
表示装置1t(6)に表示される。
The diagnostic processing device 1 (5) is a CC as shown in FIG.
Performs logical operation on r. There is a status S1 with a diagnostic message attached (M6.M? in Figure 2).
, when the status attached with the diagnostic message becomes "1" as a result of the logical operation, the corresponding message is displayed on the cathode ray tube display device 1t (6).

プラント診断に用いられるCCTU数は、例えば原子力
発電プラントの如き大規模システムでは、第2図に示す
CCTO数千倍に及ぶ。従来のプラント診断装置は第1
図に示すように構成されているため、大規模プラントの
診断を実時間で実行するには、診断処理装置(5)とし
て高価な大型の計算機を使用する必要があること。従っ
て診断システムの高信頼化を図るための診断処理装置の
多重化が高価につくこと。大凰のCCTを一括して処理
するため該当するCCTを検索するためのむだ時間が大
きいこと等、廉価に高信頼性を有する診断システムを構
成することが難しいという欠点があつ1こ。
For example, in a large-scale system such as a nuclear power plant, the number of CCTUs used for plant diagnosis is several thousand times as many as the CCTO shown in FIG. Conventional plant diagnostic equipment is the first
Since the system is configured as shown in the figure, in order to diagnose a large-scale plant in real time, it is necessary to use an expensive, large-scale computer as the diagnostic processing device (5). Therefore, multiplexing of diagnostic processing devices in order to improve the reliability of the diagnostic system is expensive. One drawback is that it is difficult to construct a low-cost and highly reliable diagnostic system, such as the large amount of dead time required to search for the relevant CCT because the large-scale CCTs are processed all at once.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、大臘のccrを多数の廉価な処理
器に分割処理させることにより、トータル・システムと
して廉価でかつ高偵性を有する分散型プラント診断装置
を提供することを目的としている。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional system, and by dividing and processing a large CCR into a large number of inexpensive processors, it is possible to create a total system that is inexpensive and has high reconnaissance. The purpose of the present invention is to provide a distributed plant diagnostic device having the following features.

以下、この発明の一実施例を図について説明する。第8
図において、(1)はデータ収集装置で従来のものと同
一型式のものであり、(7)はプロセスデータを記憶す
る分散化された記憶−!A@(例えばICメモリ)、(
8)は分散化された妙所処理装置で、演算処理部PI、
・・・、Pm(例えばマイクロプロセッサ)と分割され
たcc’rを格納している記憶装置Ml、・・・。
An embodiment of the present invention will be described below with reference to the drawings. 8th
In the figure, (1) is a data collection device of the same type as the conventional one, and (7) is a distributed memory for storing process data. A@ (e.g. IC memory), (
8) is a decentralized processing unit with arithmetic processing units PI,
. . . Pm (for example, a microprocessor) and a storage device Ml storing the divided cc'r, .

Mm(例えばICメモリ)とから構成される、(9)は
分割されたcc′r処理を統合するための統合演算処理
装置l(例えばマイクロプロセッサ)、αQは分割され
たCCTの分割面に位置しているステータスを格納する
第8の記憶装置(例えばICメモリ)、(6)は診断処
理装置(8)の妙所結果を表示するためのブラウン管表
示装置で従来のものと同一型式である。
(9) is an integrated arithmetic processing unit l (e.g. microprocessor) for integrating the divided cc'r processing, and αQ is located on the dividing plane of the divided CCT. An eighth storage device (for example, an IC memory) (6) for storing the current status is a cathode ray tube display device for displaying the results of the diagnostic processing device (8), and is of the same type as the conventional one.

本発明の分散処理方式を説明する。ステータスをfi(
N次元ベクトル)、ステータスの番号の集合をC(1〜
Nの自然数から成る。)とし、ステータスミの論理関係
を記述したCCTをIC5,、C)と表わす。従来のプ
ラント診断装置では、≠(fi、c)をひとまとめにし
て処理することにより診断を実行していた。
The distributed processing method of the present invention will be explained. Change the status to fi(
N-dimensional vector), and the set of status numbers as C(1 to
Consists of N natural numbers. ), and the CCT that describes the logical relationship of status mi is expressed as IC5,,C). In a conventional plant diagnosis device, diagnosis is executed by processing ≠(fi, c) together.

CCTの分割方式を以下に示す。The CCT division method is shown below.

M in (、LJ、DI31 C1nC5=D、、;
 ’ >”’ + 1 ” 1 + 2+・・・9m 
  凸:槓果合m ; CCTの分割数 但し (= L(、(2) U;和集合        (3) すなわち、ある分割されたCCTに含まれるステータス
は可能な限り他のCCTに含まれないように分割する。
M in (,LJ,DI31 C1nC5=D,,;
'>”' + 1 ” 1 + 2+...9m
Convex: convergence m; number of CCT divisions (= L(, (2) U; union (3) In other words, the statuses included in a certain divided CCT should not be included in other CCTs as much as possible. Divide into.

2つ以上の分割されたCCTに存在するステータスの集
合りは(4)式で与えられる。
A set of statuses existing in two or more divided CCTs is given by equation (4).

D=、/、J、Dll   1.j=l、2.=−、m
(4)1 / J 分割されたOCTをψ1(イ、C+、Ei)とすると、
ψ1(ξ’+Ct+Et)は以下のように処理される。
D=, /, J, Dll 1. j=l, 2. =-, m
(4) 1/J If the divided OCT is ψ1 (I, C+, Ei),
ψ1(ξ'+Ct+Et) is processed as follows.

ψ+(j’ 、 Ci +Et )=ψ、(−’ 、c
t 、E、 l E+−U 、 Dll)  (5)j
k! i=1.2.・°°1m 5lは、CiとE、の和集合からなる番号に対応したプ
ロセス量のステータスから構成される。第8図において
、C1に対応するステータスは分散化された記憶装置(
7)に分割して格納し、Elに対応するステータスは第
8の記憶装置04に格納する。ψi(Q!、’。
ψ+(j', Ci +Et)=ψ, (-', c
t, E, l E+-U, Dll) (5)j
k! i=1.2. -°°1m 5l is composed of the status of the process amount corresponding to the number consisting of the union of Ci and E. In FIG. 8, the status corresponding to C1 is the distributed storage device (
7), and the status corresponding to El is stored in the eighth storage device 04. ψi(Q!,'.

Ci 、 Ei )は診断処理装置(8)のP1番目の
診断処理部で処理される。実行すべきサブCCTは記憶
装置M。
Ci, Ei) are processed by the P1-th diagnostic processing unit of the diagnostic processing device (8). The sub-CCT to be executed is the storage device M.

に格納してあり、CCTの分割面に存在するステータス
については、P1番目の診断処理部と統合演算処理袋4
(9)間で清報交換し、分割面に存在するすべてのステ
ータスは記憶装置OQに格納する。なお。
The status stored in the P1 diagnostic processing unit and the integrated calculation processing bag 4 is stored in the CCT division plane.
(9) Clear information is exchanged between them, and all statuses existing on the divided plane are stored in the storage device OQ. In addition.

プロセスデータをその上下限値と比較し、ステータスを
計葬する(1)式に示す処理は、本発明によるシステム
では、演算処理部PL+ P2 + ・、Pnlにて分
割処理する。例えば、第1番目のCCTを処理する演算
処理部では、Slに関する上下限チェック処理のみを実
行する。
In the system according to the present invention, the process shown in equation (1), which compares the process data with its upper and lower limit values and calculates the status, is divided and processed by the arithmetic processing units PL+ P2 + . and Pnl. For example, the arithmetic processing unit that processes the first CCT executes only upper and lower limit checking processing regarding Sl.

本発明による分割処理が汀効なのは、OCTが一般にサ
ブ・システム・レベルに作成されたサブCCTを組み上
げて構成できることが多いためである。すなわち、(4
)式で示される集合りは、ステータスの全体果合Cの非
線に小さな部分集合となる。
The reason why the division process according to the present invention is effective is that OCT can often be configured by assembling sub-CCTs that are generally created at the sub-system level. That is, (4
) is a nonlinearly small subset of the overall result C of statuses.

統合演算処理袋[(9)は、分割向にあるすべてのステ
ータスを管理し、診断処理部(8)の演算が円滑に実行
できるようにコントロールするとともに、サブCCTの
解析結果を統合処理する。また、診断処理結果を診断処
理部(8)より受は収りブラウン管表示装置(6)に表
示する。
The integrated calculation processing bag [(9) manages all statuses in the division direction, controls the calculations of the diagnostic processing unit (8) to be executed smoothly, and performs integrated processing of the analysis results of the sub-CCTs. Further, the diagnostic processing result is received from the diagnostic processing section (8) and displayed on the cathode ray tube display device (6).

本発明による分散型プラント診断装置の特長を以下にま
とめて列記する。
The features of the distributed plant diagnosis device according to the present invention are summarized below.

(1)廉価な処理器を組み合わせて構成できる。(1) Can be configured by combining inexpensive processors.

小規模なCCTに分割できるので、個々の演算処理器(
Pl、・・・、pm)に要求される演算能力は小さく、
マイクロ・コンピュータ等の廉価な演算器で実行できる
。また統合演算処理装置も、CCTの局所性((4)式
で示される集合りが小さいこと)を考慮すると、マイク
ロ・コンピュータで十分処理口J能である。
Since it can be divided into small-scale CCTs, individual processing units (
The computing power required for Pl, ..., pm) is small,
It can be executed with an inexpensive arithmetic unit such as a microcomputer. Furthermore, considering the locality of the CCT (the set represented by equation (4) is small), a microcomputer is sufficient for the integrated arithmetic processing unit.

(2)並列演算を行うため高いパーフォーマンスが達成
できる。
(2) High performance can be achieved by performing parallel operations.

診断処理器を構成する複数の演算処理装置は、互奢こ他
の演算器から強い制約を受けずに処理を実行゛こ・きる
。(CCTの局所性による。)従って、並列tA鼻によ
る高パーフォーマンスを達成できる。
The plurality of arithmetic processing units constituting the diagnostic processor can execute processing without being strongly constrained by compatible or other arithmetic units. (Depending on the locality of CCT) Therefore, high performance with parallel tA nose can be achieved.

(3) @ha頼システムを構成し易い。(3) It is easy to configure the @hali system.

いずれの演算処理装置も廉価なこと、機能分散システム
となっておりバック・アップする機能単位が小さいこと
から、多重化による費用の圧迫も小さい。
Both arithmetic processing units are inexpensive, and since they are functionally distributed systems and the functional units to be backed up are small, there is little pressure on costs due to multiplexing.

第8図に示す一実施例と同一の機能は、各処理器をデー
タ・ウェイで結合しても実施できる。第4図にデータ・
ウェイを用いた場合のシステム構成例を示す。
The same function as the embodiment shown in FIG. 8 can be implemented by connecting each processor through a data way. Figure 4 shows the data.
An example of a system configuration using a way is shown below.

以上のよう會こ、この発明によれば、プラント診断装d
を複数の処理器に負荷分担させ並列演算をiU tj’
tAとし、全体を統合するように構成したので、l#E
価な演算処理装置を僕数組み合わせることにより、尚価
な演算処理装置以上の性能を発揮し、診断システムの高
信頼化を容易に実施できる等の効果をあげることかでさ
る。
As described above, according to the present invention, the plant diagnostic device d
The load is shared among multiple processors to perform parallel operations iU tj'
tA and configured to integrate the whole, so l#E
By combining a number of expensive arithmetic processing units, it is possible to achieve performance superior to that of inexpensive arithmetic processing units, and to achieve effects such as easily increasing the reliability of the diagnostic system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のプラント診断装置を示すブロック図、第
2図はプラント診断ロジックの1例を示すCCTの説明
図、第8図はこの発明による一実施例を示す分散型プラ
ント診断装置のブロック図、第4図はこの発明の他の実
施例を示すブロック図で、第8図に示す一実施例を示す
システムと同一機能を有する。 図において、(1)はデータ収集装置t、(2)は第1
の演算処理装置、(3)は第1の記憶装置1(41は第
2の記憶装置、(5)は診断処理装置、(6)はブラウ
ン酋表示装置、(7)は分散化された記憶装置、(8)
は分散化された診断処理装置、(9)は統合演算処理装
置、onは第8の記・1装置である。なお、図中、同一
符号は同−又は相当部分を示す。 代理人  葛 野 信 − 第1図 第2図 5’t 52 第3図
FIG. 1 is a block diagram showing a conventional plant diagnosis device, FIG. 2 is an explanatory diagram of CCT showing an example of plant diagnosis logic, and FIG. 8 is a block diagram of a distributed plant diagnosis device showing an embodiment according to the present invention. 4 are block diagrams showing another embodiment of the present invention, which has the same functions as the system showing one embodiment shown in FIG. In the figure, (1) is the data collection device t, (2) is the first
(3) is the first storage device 1 (41 is the second storage device, (5) is the diagnostic processing device, (6) is the Brown display device, (7) is the distributed storage device, (8)
is a decentralized diagnostic processing device, (9) is an integrated arithmetic processing device, and on is the eighth item 1 device. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Shin Kuzuno - Figure 1 Figure 2 5't 52 Figure 3

Claims (1)

【特許請求の範囲】[Claims] プラントで生ずる各種異常事象の伝播シーケンスを記述
した。ll1a理式で記述した原因結果ツリーを演算処
理することにより、異常の第−原因をオンライン・リア
ルタイムで固定し、プラントの高信頼運転をIjJ能と
するプラント診断方式において、該論理式を多数の小規
模な論理式に分解し、これらを並列処理する多数の演算
処理装置と統合機能を有する演算処理装置で上記論理式
を分散処理させることを特徴とする分散型プラント診断
方式。
The propagation sequences of various abnormal events that occur in plants are described. In a plant diagnosis method that fixes the first cause of an abnormality online and in real time by processing a cause-and-effect tree described using ll1a logical formulas, and enables highly reliable operation of the plant, the logical formulas are combined into a large number of A distributed plant diagnosis method characterized in that the logical expressions are decomposed into small-scale logical expressions and processed in a distributed manner by a large number of arithmetic processing units that process these in parallel and an arithmetic processing unit that has an integration function.
JP57014472A 1982-01-29 1982-01-29 Distributed plant diagnostic system Pending JPS58132808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57014472A JPS58132808A (en) 1982-01-29 1982-01-29 Distributed plant diagnostic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57014472A JPS58132808A (en) 1982-01-29 1982-01-29 Distributed plant diagnostic system

Publications (1)

Publication Number Publication Date
JPS58132808A true JPS58132808A (en) 1983-08-08

Family

ID=11861995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57014472A Pending JPS58132808A (en) 1982-01-29 1982-01-29 Distributed plant diagnostic system

Country Status (1)

Country Link
JP (1) JPS58132808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852718B1 (en) 2007-09-03 2008-08-20 비앤에프테크놀로지 주식회사 Method for tracing trip-cause in industrial plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852718B1 (en) 2007-09-03 2008-08-20 비앤에프테크놀로지 주식회사 Method for tracing trip-cause in industrial plant

Similar Documents

Publication Publication Date Title
Hecht Fault-tolerant software
Phillips Understanding spurious regressions in econometrics
Knoke et al. Hospitalizations for unexplained illnesses among US veterans of the Persian Gulf War.
Kelber et al. Women in combat: The effects of combat exposure and gender on the incidence and persistence of posttraumatic stress disorder diagnosis
McGough et al. Measurement of fault latency in a digital avionic miniprocessor
JPS58132808A (en) Distributed plant diagnostic system
US3758760A (en) Error detection for arithmetic and logical unit modules
Spetz Microsystems Microprocessor Networks
Phillips et al. Inpatient Mortality in Parkinson’s Disease
Ramamoorthy Fault-tolerant computing: an introduction and an overview
JPS5810258A (en) Configuration controller for computer system
Ismaiba et al. Expert system for risk prediction of cesarean section delivery with Dempster Shafer method
Silva et al. Hospitalizations and adverse drug events in the Brazilian unified health system: a ten-year retrospective analysis of routine data
JPS6091413A (en) Abnormality diagnosing system of plant
Hashim et al. RULE-BASED EXPERT SYSTEM WITH UNCERTAINTY FOR DENGUE FEVER DIAGNOSIS
JPS6277612A (en) Abnormality diagnosing method for plant
Carmony et al. Knowledge generation via a simple grammar supporting an intelligent user interface
Yannacopoulos Performance Analysis of the MU5 Computer
RU2020127008A (en) A method for improving the reliability of functioning of complexes of automation tools for information processing and control systems and a device that implements it
Hemphill The development of procedures for the analysis and synthesis of a highly defined class of fault tolerant computer systems
Laffey et al. A multiprocessing architecture for real-time monitoring
SU894870A1 (en) Multichannel majority redundancy logic element
Hannigan et al. Redundant System Test Point Allocation and Mission Reliability Estimation Procedures
Spicer Use of computers in medical statistics
Murphy et al. Procedures for Applying Ada Quality Prediction Models