JPS5813278A - Flow control circuit capable of joining fluid flows automatically - Google Patents

Flow control circuit capable of joining fluid flows automatically

Info

Publication number
JPS5813278A
JPS5813278A JP10990081A JP10990081A JPS5813278A JP S5813278 A JPS5813278 A JP S5813278A JP 10990081 A JP10990081 A JP 10990081A JP 10990081 A JP10990081 A JP 10990081A JP S5813278 A JPS5813278 A JP S5813278A
Authority
JP
Japan
Prior art keywords
valve
pressure
throttle valve
pump
fixed pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10990081A
Other languages
Japanese (ja)
Other versions
JPH0147645B2 (en
Inventor
Kenji Masuda
健二 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP10990081A priority Critical patent/JPS5813278A/en
Publication of JPS5813278A publication Critical patent/JPS5813278A/en
Publication of JPH0147645B2 publication Critical patent/JPH0147645B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To join the flows of fluid discharged from a plurality of pumps automatically, by by-passing a circuit of pressure control valves from a main fluid passage extended between a pump and a throttle valve, connecting a circuit of other pumps and check valves to said main fluid passage, and providing pressure compensating valves in respective fluid passages branched from the passage extended between said other pumps and the check valves. CONSTITUTION:While the opening of a throttle valve 3 is small, spring pressures DELTAP1, DELTAP2, DELTAP3 of by-pass pressure compensating valves 5, 12, 16 associated respectively with a first to a third fixed displacement pumps 1, 7, 17 hold the following relationship; DELTAP1>DELTAP2>DELTAP3. Therefore, the differential pressure on the opposite sides of the throttle valve 3 is determined only by DELTAP1 and only the pump 1 is coupled operatively with a main fluid passage 4. Subsequently, when the differential pressure on the opposite sides of the valve 3 becomes lower than P2 as its opening is increased, the pump 2 is also set into operation in addition to the pump 1, so that fluid discharged from these two pumps is passed through the main fluid passage 4. Similarly, when the opening of the valve 3 is further increased, the pump 3 is also set into operation together with the pumps 1, 2.

Description

【発明の詳細な説明】 この発明はたとえば車両等に用いれば特に好適なもので
、複数の固定ポンプからの吐出流体を絞り弁の開度に応
じて自動釣に合流できるようにした自動合流形流量制御
回路゛に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is particularly suitable for use in vehicles, etc., and is an automatic merging type in which fluid discharged from a plurality of fixed pumps can be merged into an automatic fishing line according to the opening degree of a throttle valve. Regarding a flow rate control circuit.

従来、合流形流量制御回路としては、たとえば第1′図
に示すように、第1固定lンプl゛の吐出流体に第2固
定ポンプ2゛の吐出流体をチェック弁8。
Conventionally, in a combined flow rate control circuit, as shown in FIG. 1', for example, a check valve 8 is used to transfer the fluid discharged from a first fixed pump 2' to the fluid discharged from a second fixed pump 2'.

を介して合流□させて、その合流流体を絞り弁4゜に供
給し得るようにし、かつ、上記絞り弁4゜の開度に応t
て切換弁5゜を操作してアンロード弁6゜を介して第2
固定ポン゛ブグをアンロードまたはオンロードさせて、
エネルギー損失を少なくすると共に、リリーフ弁7°で
余剰流体をタンクに排出しながら減圧膨圧力補償弁8°
で絞り弁4”の前後の差圧を一定に制御するようにした
ものが知られている。
□ so that the combined fluid can be supplied to the throttle valve 4°, and according to the opening degree of the throttle valve 4°.
and then operate the switching valve 5° and the second
Unload or onload the fixed pump,
In addition to reducing energy loss, the relief valve 7° discharges excess fluid into the tank while the pressure reduction and expansion pressure compensation valve 8°
It is known that the differential pressure across the throttle valve 4'' is controlled to be constant.

ところが、この合流形流量制御回路は、上記のシ 如く、第2固定ポンプ2全自動的にオンロードまたはア
ンロードさせること″ができないという欠点があり、つ
まり、!完信号で切換弁5#を操作してアンロード弁6
′をアンロードまたはオンロートサせるために、制御系
が複雑、高価になるという欠点がある。また、オンロー
ド状態での第1.第2固定ポンプ1’、2’の負荷圧力
は、絞り弁49の2次圧力とは無関係に、リリーフ弁7
′の設定圧力となるために、動力損失が大きいという欠
点がある。
However, this combined flow rate control circuit has the disadvantage that it is not possible to fully automatically turn on or unload the second fixed pump 2, as shown in the figure above. Operate the unload valve 6
The disadvantage is that the control system becomes complicated and expensive because it unloads or loads the signal. Also, the first condition in on-road condition. The load pressure of the second fixed pumps 1', 2' is determined by the relief valve 7 regardless of the secondary pressure of the throttle valve 49.
Since the set pressure is set to , the disadvantage is that the power loss is large.

この発明の目的は、第2固定ポンプ盆絞り弁の開度に応
じて自動的にアンロードまたはオンロードさせ得るよう
にして、制御系を安価、簡単にし、第2固定ポンプのオ
ンロード状態でのその負荷圧力を絞り弁の2次側の圧力
に応じた圧力となるようにして、動力損失を少なくする
ことにある。
An object of the present invention is to make the control system inexpensive and simple by automatically unloading or on-loading according to the opening degree of the second fixed pump tray throttle valve, and to make the control system inexpensive and simple. The purpose is to reduce power loss by adjusting the load pressure to a pressure corresponding to the pressure on the secondary side of the throttle valve.

この発明は、上記目的を達成するために、第1固定ポン
プと絞り弁との間のメインフィンから分。
In order to achieve the above object, the present invention provides a main fin between the first stationary pump and the throttle valve.

岐したバイパスラインに圧力制御弁を設けると共に、第
2固定ポンプを、第1チエツク弁を介設したラインを介
して上記第1固定ポンプと上記絞り弁との間に接続し、
上記第2固定ポンプと第1チエツク弁との間から分岐し
たバイパスラインに、パイロット室を第1チエツク弁の
下流側に接続しエラグ弁で逆流の防止を行ない、バイパ
ス形圧力補償弁を開放させて第2固定ポンプを自動的に
アンロードさせる一方、上記絞り弁の開度が一足以上の
ときには、自動的に、バイパス形圧力補償弁を動作させ
、そのバネ圧に応じた圧力に絞り弁の前後の差圧を制御
し得るようにして、第1チエツク弁を開放して第1.第
2固定ポンプ、の吐出流体を合流させると共に、第1.
第2固定ポンプの合流負荷圧力を絞り弁の2次圧力に応
じた圧力に制御して省エネルギを図ったことを特徴とし
ている。
A pressure control valve is provided in the branched bypass line, and a second fixed pump is connected between the first fixed pump and the throttle valve via a line provided with a first check valve,
A pilot chamber is connected to the bypass line branched from between the second fixed pump and the first check valve on the downstream side of the first check valve, and an error valve is used to prevent backflow, and the bypass type pressure compensation valve is opened. On the other hand, when the opening of the throttle valve is more than one foot, the bypass type pressure compensating valve is automatically operated to adjust the pressure of the throttle valve to the pressure corresponding to the spring pressure. The first check valve is opened so that the differential pressure before and after the check valve can be controlled. The discharge fluids of the second fixed pump are combined, and the fluids discharged from the first fixed pump are combined.
It is characterized in that the combined load pressure of the second fixed pump is controlled to a pressure that corresponds to the secondary pressure of the throttle valve, thereby saving energy.

以下、この発明を図示の冥施例について詳細に説明する
Hereinafter, the present invention will be explained in detail with reference to the illustrated embodiments.

第2図において、lは第1固定ポンプ、2と8は第1固
定ポンプlに接続したメインライン4に上流側より順次
設けた減圧膨圧力補償弁と絞り弁、5は第1固定ポンプ
lと減圧膨圧力補償弁2との間のメインライン4から分
岐したバイパスライン6に設けた圧力制御弁の一例とし
ての第1バイバヌ形圧力補償弁、7は第2固定ポンプ、
8は第2固定ポンプ7と減圧膨圧力補償弁2よりも上流
側のメインライン4とを接続するラインllに設けた第
1チエツク弁、12は第2固定ポンプ7と第1チエツク
弁8との間から分岐したバイパスライン9に設は次第2
バイパス形圧力補償弁、18は第8固足ポンプ、14は
第8固定ポンプ18と減圧膨圧力補償弁2よりも上流側
のメインライン4とを接続するライン15に設けた第2
チエツク弁、16は第8固楚ポンプ18と第2チエツク
弁14との間から分岐し九パイパスライン17に設けた
第3バイパス形圧力補償弁であって、上記第1゜第2.
第8パイバヌ形圧力補償弁5,12.16の各バネ室2
5,26.27は夫々上記絞り弁8の下流側に接続して
、第1パイバヌ形圧力補償弁5は減圧形圧力補償の上流
側と絞り弁8の下流側との差圧をバネ室25のバネ81
.のバネ圧△P1に、tた第2バイパスバス形圧力補償
弁12は上記差圧をバネ室26のバネ82のバネ圧△P
2に、また第8バイパス形圧力補償弁16は上記差圧を
バネ室27のバネ88のバネ圧、△P8に制御し得るよ
うにしている。
In Fig. 2, 1 is the first fixed pump, 2 and 8 are the decompression expansion pressure compensation valves and throttle valves that are sequentially provided from the upstream side on the main line 4 connected to the first fixed pump 1, and 5 is the first fixed pump 1. A first bivanu pressure compensation valve as an example of a pressure control valve provided in a bypass line 6 branched from the main line 4 between the decompression expansion pressure compensation valve 2, 7 a second fixed pump,
Reference numeral 8 designates a first check valve provided in the line 11 connecting the second fixed pump 7 and the main line 4 upstream of the decompression and expansion pressure compensation valve 2, and reference numeral 12 designates the second fixed pump 7 and the first check valve 8. As soon as the bypass line 9 branched from between
A bypass type pressure compensation valve, 18 is an eighth fixed pump, and 14 is a second valve provided in a line 15 connecting the eighth fixed pump 18 and the main line 4 upstream of the decompression expansion pressure compensation valve 2.
The check valve 16 is a third bypass type pressure compensating valve branched from between the eighth solid pump 18 and the second check valve 14 and provided in the ninth pipeline 17, which is connected to the first and second check valves.
Each spring chamber 2 of the 8th pie-vanu type pressure compensation valve 5, 12.16
5, 26, and 27 are connected to the downstream side of the throttle valve 8, respectively, and the first pie valve type pressure compensation valve 5 converts the differential pressure between the upstream side of the pressure reduction type pressure compensation and the downstream side of the throttle valve 8 into the spring chamber 25. spring 81
.. The second bypass bus type pressure compensating valve 12 converts the above differential pressure into the spring pressure ΔP of the spring 82 of the spring chamber 26.
2, the eighth bypass type pressure compensating valve 16 can control the differential pressure to the spring pressure of the spring 88 of the spring chamber 27, ΔP8.

上記各バネ圧△Pt、△P2.△P8の関係は(△P 
〉△P2>△P8)に設定する。たとえば、△P1=1
04I/d、△P2==8即/d、△P8=64’/d
に設定する。上記減圧膨圧力補償弁2のバネ室85のバ
ネ86のバネ圧△Poは、上記第8バイパス形圧力補償
弁16のバネ圧△P8よりも小さく設定する。たとえば
、△Po=8Poへ イロットライン22を介して第1チエツク弁8よりも下
流側のライン11に接続すると共に、第8バイパス形圧
力補償弁16のパイロット室28はパイロットライン2
4を介して第2チエツク弁14よジも下流側のライン1
5に接続する。
Each of the above spring pressures △Pt, △P2. The relationship of △P8 is (△P
〉△P2>△P8). For example, △P1=1
04I/d, △P2==8 immediately/d, △P8=64'/d
Set to . The spring pressure ΔPo of the spring 86 of the spring chamber 85 of the decompression expansion pressure compensation valve 2 is set smaller than the spring pressure ΔP8 of the eighth bypass type pressure compensation valve 16. For example, ΔPo=8Po is connected to the line 11 downstream of the first check valve 8 via the pilot line 22, and the pilot chamber 28 of the eighth bypass type pressure compensation valve 16 is connected to the pilot line 22.
4, the second check valve 14 is also connected to the downstream line 1.
Connect to 5.

上記構成の自動合流形流量制御回路は次のように動作す
る。
The automatic merging type flow control circuit configured as described above operates as follows.

いま、絞り弁8の開度を第3図中の開度x2以下の一定
値に設定するとする。
It is now assumed that the opening degree of the throttle valve 8 is set to a constant value less than or equal to the opening degree x2 in FIG.

この瞬間、第1パイパヌ形圧力補償5は余剰流□体をバ
イパスライン6から排串して減圧膨圧力補償弁2の上流
側と絞り弁8の下流側との差圧をバネ圧△P1に制御し
ようとし、第2バイパス形圧力補償弁12は余剰流体を
第2固定ポンプ7と第1チエツク弁8との間からバイパ
スライン9を通して、タンクに排出して上記差圧をバネ
圧△P2に制御しようとし、第8バイパス形圧力補償弁
13は余剰流体を第8固定ポンプ18と第2チエツク”
、)□ 弁14との間からバイパス、う、イン17を通してタン
クに排出して上記差圧をバネ圧△P8に制御しようとす
る。と2ころで、絞り弁8の開度が小さく、かつ、八P
0〉△P2〉△P8であるために、絞り弁8に対する所
要流量は第1固定ポンプlの吐出流量のみで十分であり
、したがって、第1バイパス形圧力補償弁5は上記差圧
△P1に制御し、ま九第1.第2チェック弁8,14は
夫々その前後の差圧のkめに閉鎖する。なお、減圧膨圧
力補償弁2はそのバネ圧△Poに絞り弁8の前後の差圧
を制御する。
At this moment, the first pressure compensator 5 discharges the surplus fluid from the bypass line 6, and the differential pressure between the upstream side of the decompression expansion pressure compensating valve 2 and the downstream side of the throttle valve 8 becomes the spring pressure △P1. The second bypass type pressure compensating valve 12 discharges the excess fluid from between the second fixed pump 7 and the first check valve 8 to the tank through the bypass line 9, thereby reducing the differential pressure to the spring pressure ΔP2. The eighth bypass type pressure compensation valve 13 transfers excess fluid to the eighth fixed pump 18 and the second check.
,)□ It is attempted to control the differential pressure to the spring pressure ΔP8 by discharging it to the tank from between the valve 14 and the bypass through the in 17. At point 2, the opening degree of throttle valve 8 is small and 8P
Since 0〉△P2〉△P8, the required flow rate for the throttle valve 8 is only the discharge flow rate of the first fixed pump l, and therefore the first bypass type pressure compensating valve 5 is able to maintain the above differential pressure △P1. Control, the ninth 1st. The second check valves 8 and 14 are respectively closed when the pressure difference across them is k. Note that the decompression expansion pressure compensation valve 2 controls the differential pressure before and after the throttle valve 8 to the spring pressure ΔPo.

一方、このとき、第2バイパス形圧力補償弁12のパイ
ロット室21とバネ室26とには、夫々、減圧膨圧力補
償弁2の上流側の圧力と絞り弁8の下流側の圧力とが伝
えられている。このため、上記パイロット室21とバネ
室26との差圧は、バネ圧△P よりも大きな△P0と
なって、第2バイパス形圧力補償弁12は完全に開放し
て静止する。したがって、第、2固定ポンプ7はアンロ
ード状態となっている。1!た、同様に、第8バイパス
形圧力補償弁16 (D、;<、イロット室28とバネ
室Iにも、夫々、減圧膨圧力補償弁2の上流側の圧力と
絞り弁8の下流側の圧力とが伝えられて、上記パイロッ
ト室28とバネ室27との差圧は、そのバネ圧△P よ
りも大きな△P0となる。このため、第3バイパス形圧
力補償弁16は完全に開放して静止し、第8固定ポンプ
18はアンロード状態となる。
On the other hand, at this time, the pressure on the upstream side of the decompression expansion pressure compensation valve 2 and the pressure on the downstream side of the throttle valve 8 are transmitted to the pilot chamber 21 and the spring chamber 26 of the second bypass type pressure compensation valve 12, respectively. It is being Therefore, the pressure difference between the pilot chamber 21 and the spring chamber 26 becomes ΔP0, which is greater than the spring pressure ΔP, and the second bypass type pressure compensation valve 12 is completely opened and stands still. Therefore, the second fixed pump 7 is in an unloaded state. 1! Similarly, the eighth bypass type pressure compensation valve 16 (D, ; As a result, the pressure difference between the pilot chamber 28 and the spring chamber 27 becomes ΔP0, which is larger than the spring pressure ΔP.Therefore, the third bypass type pressure compensation valve 16 is completely opened. Then, the eighth stationary pump 18 comes to an unloaded state.

したがって、上記絞り弁8の開度が第3図中のx2以下
の場合には、第2.第8固定ポンプ7゜18をアンロー
ドさせる上に、第1固定ポンプlの負荷圧力を絞り弁8
02次側圧力に応じて、それよりもバネ圧スP だけ高
い圧力に制御していす るから、この自動合流形流量制御回路は絞り弁の2次側
圧力とは無関係に固定ポンプの負荷圧力がリリーフ弁の
設定圧力となる合流形流□量制御回路に比べて、動力損
失が少なくなっている。
Therefore, when the opening degree of the throttle valve 8 is less than or equal to x2 in FIG. In addition to unloading the eighth fixed pump 7゜18, the load pressure of the first fixed pump l is reduced to the throttle valve 8.
Since the pressure is controlled to be higher than the secondary pressure by the spring pressure P according to the secondary pressure, this automatic merging type flow control circuit maintains the fixed pump load pressure regardless of the secondary pressure of the throttle valve. The power loss is lower than that of a combined flow rate control circuit that provides the set pressure for the relief valve.

次に、絞り弁8の開度を第8図I!IX2よ)も大きく
する。そうすると、第1固定デンブlからのみQ吐出流
体では、績圧形圧力補償弁2の上流側と絞り弁8の下流
側との差圧を、バイパス形圧力補償弁5が完全に閉鎖し
ても、5△P1′に制御することができなく°なる。そ
して、絞り弁8の開度をさらに大きくすると、それにつ
れて、上記差圧は低下し、絞り弁8の開度が第8図中の
S になると、上記差圧は△P2となる。一般的に開度
X2÷S か、あるいi、わずかに52の方が大である
と□される。
Next, the opening degree of the throttle valve 8 is determined as shown in FIG. IX2) will also be increased. In this case, with the Q discharged fluid only from the first fixed den l, the differential pressure between the upstream side of the pressure compensating valve 2 and the downstream side of the throttle valve 8 can be reduced even if the bypass type pressure compensating valve 5 is completely closed. , 5ΔP1'. As the opening degree of the throttle valve 8 is further increased, the differential pressure decreases accordingly, and when the opening degree of the throttle valve 8 reaches S in FIG. 8, the differential pressure becomes ΔP2. Generally, the opening degree X2÷S or i, which is slightly 52, is considered to be larger.

この開度がX からS になるまでの過渡領域がすぎて
、わずかに52よシ大きく゛なったとする。
Suppose that the transition region from when the opening degree changes from X to S has passed and it has become slightly larger than 52.

そうすると、□第1固定ポンプlからの吐出流量のみで
は不足して、減圧膨圧力補償弁2の上流側と絞り弁8の
下流側との差圧が△P2よりも小さくなろうとテるが、
このとき、第2バイパス形圧力補償弁12が上記差圧を
バネ圧△P2にするように開閉動作するから、第2固定
ポンプ7は自動的にオンロードされ、その吐出流体は第
1チエツク弁8を通って第1固定ポンプlからの流体に
合流する。この合流した流体は減圧膨圧力補償弁2を通
って、絞り弁8に供給される。上記減圧膨圧力補償弁2
は絞り弁8の前後の差圧をバネ圧△P。
In this case, the discharge flow rate from the first fixed pump l alone will be insufficient, and the differential pressure between the upstream side of the decompression expansion pressure compensation valve 2 and the downstream side of the throttle valve 8 will become smaller than △P2.
At this time, the second bypass type pressure compensating valve 12 opens and closes so that the differential pressure becomes the spring pressure ΔP2, so the second fixed pump 7 is automatically on-loaded and the discharged fluid is transferred to the first check valve. 8 to join the fluid from the first stationary pump l. This combined fluid passes through the decompression and expansion pressure compensation valve 2 and is supplied to the throttle valve 8. The above-mentioned pressure reduction and expansion pressure compensation valve 2
The differential pressure before and after the throttle valve 8 is the spring pressure △P.

に制御するd した力(つて、上記開度がS 以上の状態では、□第1
.第2固定ポンプ1.7をオンロードさせて、第2バイ
パス形圧力補償弁12によって減圧膨圧力補償弁2の上
流側と絞り弁8の下流側との差圧をバネ圧△P2に制御
して勝る。したがって、第1、第2固定ポンプ1.7の
負荷圧力は(2次圧力+△P2)となるから、この合流
形流量制御回路は従来の合流形回路に比べて省エネルギ
的である。また、このとき、第1バイパス形圧力補償弁
3は、そのバネ圧△P が上記差圧△P2より大きいた
めに、閉鎖している。また、第8バイパス形圧力補償弁
16は、そのバネ圧△P8が上記差圧△P2よりも小さ
いために、開放して静止している。このため、第8固定
ポンプ18はアンロード状類にある。
The force d controlled to
.. The second fixed pump 1.7 is on-loaded, and the differential pressure between the upstream side of the decompression expansion pressure compensation valve 2 and the downstream side of the throttle valve 8 is controlled to spring pressure △P2 by the second bypass type pressure compensation valve 12. I will win. Therefore, since the load pressure of the first and second fixed pumps 1.7 is (secondary pressure + ΔP2), this combined flow rate control circuit is more energy efficient than the conventional combined type circuit. Moreover, at this time, the first bypass type pressure compensation valve 3 is closed because its spring pressure ΔP is larger than the differential pressure ΔP2. Further, the eighth bypass type pressure compensation valve 16 is open and stationary because its spring pressure ΔP8 is smaller than the differential pressure ΔP2. Therefore, the eighth stationary pump 18 is in an unloaded state.

次に、絞り弁8の開度をさらに大きくして第8図中のx
3よりも大きくする。
Next, the opening degree of the throttle valve 8 is further increased to
Make it larger than 3.

そうすると、第1.第2固定ポンプ1.7からの流体の
みでは絞り弁償″に対して流量が不足するため、減圧膨
圧力補償弁2の上流側と絞フ弁8の下流側との差圧は△
P2よりも低くなる。そして、絞り弁3の開度をさらに
大きくすると、それにつれて、上記差圧は低下し、絞り
弁3の開度が第8図中の88となると、上記差圧は△P
8となる。
Then, the first. Since the flow rate from only the second fixed pump 1.7 is insufficient for the throttle compensation, the differential pressure between the upstream side of the decompression expansion pressure compensation valve 2 and the downstream side of the throttle valve 8 is △
It becomes lower than P2. Then, as the opening degree of the throttle valve 3 is further increased, the above-mentioned differential pressure decreases accordingly, and when the opening degree of the throttle valve 3 reaches 88 in FIG.
It becomes 8.

この開度がx8からS8まで過渡領域においても、第1
.第2固定ポンプ1,7はオンロード状態にあり、第8
固定ポンプ13はアンロード状態にある。
Even in the transient region where this opening degree is from x8 to S8, the first
.. The second fixed pumps 1 and 7 are in the on-load state, and the eighth
The stationary pump 13 is in an unloaded state.

次に、絞り弁8の開度を第8図中88よりも大きくする
Next, the opening degree of the throttle valve 8 is made larger than 88 in FIG.

そうすると、減圧膨圧力補償弁2の上流側と絞り弁8の
下流側との差圧が△P8よりも小さくなろうとするが、
第8バイパス形圧力補償弁16が上記差圧をバネ圧△P
8にするように開閉動作するから、第8固定ポンプ18
は自動的にオンロードされ、その吐出流体は第2チエツ
ク弁14を通って第1.第2[i1定ポンプ1.7から
の吐出流体に合流する。そ゛して、このとき、第1.第
2.第8固定ポンプ1.’7.18は全てオンロード状
態になっており、第8バイパス形圧力補償弁16は減圧
膨圧力補償弁2の上流側と絞り弁8の下流側との差圧を
△P8に制御してお夕、減圧膨圧カ補償弁2は絞り弁3
の前後の差圧を△P、 K制御している。また、第2.
第3バイパヌ形圧力補償弁5.12は共に閉鎖している
Then, the pressure difference between the upstream side of the decompression expansion pressure compensation valve 2 and the downstream side of the throttle valve 8 tends to become smaller than △P8.
The eighth bypass type pressure compensation valve 16 converts the above differential pressure into spring pressure △P
8, the eighth fixed pump 18
is automatically on-loaded, and its discharge fluid passes through the second check valve 14 to the first check valve 14. It joins the discharge fluid from the second [i1 constant pump 1.7. So, at this time, the first. Second. Eighth fixed pump 1. '7.18, all of them are in the on-load state, and the eighth bypass type pressure compensation valve 16 controls the differential pressure between the upstream side of the pressure reduction expansion pressure compensation valve 2 and the downstream side of the throttle valve 8 to △P8. In the evening, the pressure reduction turgor force compensation valve 2 is the throttle valve 3
The differential pressure before and after is controlled by △P and K. Also, the second.
The third bypass valve 5.12 is both closed.

このように、この自動合流形流量制御回路は、絞り弁8
の開度の増大に応じて、第1.第2.第3固定ポンプ1
.7.11を順次自動的にオンロードさせるのである。
In this way, this automatic merging type flow control circuit has the throttle valve 8
In response to an increase in the opening degree of the first. Second. Third fixed pump 1
.. 7.11 will be automatically loaded one after another.

また、逆に、絞り弁8の開度を減少させると、容易に分
かるように、第8゜第2.第1固定ポンプ1B、7.1
を順次自動的にアンロードさせる。第8図中の領域A1
は第1固定ポンプ1をオンロードさせ、領域A2は第1
゜第2固足ポンプ1.7iオンロードさせ、領域へは第
1.第2.第8固定ポンプ1,7.18t−オンロード
させる。
Conversely, if the opening degree of the throttle valve 8 is decreased, as can be easily seen, the 8th degree second degree. First fixed pump 1B, 7.1
are automatically unloaded in sequence. Area A1 in Figure 8
causes the first stationary pump 1 to be on-loaded, and the area A2 is
゜The second solid foot pump 1.7i is on-loaded, and the first solid foot pump is loaded into the area. Second. 8th stationary pump 1, 7.18t-onload.

上記実施例においては、減圧膨圧力補償弁2で絞り弁3
の前後の差圧を常に一定に制御するようにしたから、第
8図中曲線Qに示す如く、絞り弁8の出力流量は絞り弁
8の開度に略比例した曲線となる。但し、減圧膨圧力補
償弁2を除去すると、第3図中の曲線Bに示す如く、上
記過渡領域は明確に現われ、絞り弁3の出力流量の増大
しない区間が生ずる。
In the above embodiment, the throttle valve 3 is
Since the differential pressure before and after the throttle valve 8 is always controlled to be constant, the output flow rate of the throttle valve 8 becomes a curve approximately proportional to the opening degree of the throttle valve 8, as shown by a curve Q in FIG. However, if the decompression expansion pressure compensation valve 2 is removed, the above-mentioned transient region clearly appears as shown by curve B in FIG. 3, and a section where the output flow rate of the throttle valve 3 does not increase occurs.

上記実施例では、第8固定ポンプ7、第8パイパヌ形圧
力補償弁16および第2チエツク弁14からなる糸を付
加したが、これは省略してもよく、さらに、固定ポンプ
、バイパス形圧力補償弁、チェック弁からなる糸は8個
以上の複数個設けてもよい。また、第4図に示す如く圧
力制御弁5は第2図の第1バイパス形圧力補償弁5のか
わV<単ニリリーフ弁5を用いても良い。なお、過負荷
圧力制御時に第2固定ポンプ7全自動的にアンロードさ
すためのアンロード用パイロット弁40が第4図には示
されている。すなわち第4図は流量制御時、圧力制御時
のいずれの場合においても第2固定ポンプを自動的にオ
ンロード、アンロードさすものである。以上、つまり、
第1固定ポンプ、バイパス路、圧力制御弁、絞り弁、第
2固定ポンプ、第2固定ポンプのためのバイパス形圧力
補償弁、および第1チエツク弁を含み、それらを上記の
如く接続した回路は全て本発明の範囲に属するのである
。なお、この発明で、絞り弁とは負荷圧検知ボート付絞
り切換弁をも含む概念である。
In the above embodiment, a thread consisting of the eighth fixed pump 7, the eighth pipe-type pressure compensation valve 16, and the second check valve 14 is added, but this may be omitted. A plurality of threads including eight or more valves and check valves may be provided. Further, as shown in FIG. 4, the pressure control valve 5 may be the first bypass type pressure compensating valve 5 of FIG. Incidentally, an unloading pilot valve 40 for fully automatically unloading the second fixed pump 7 during overload pressure control is shown in FIG. That is, in FIG. 4, the second fixed pump is automatically loaded and unloaded in both flow rate control and pressure control. Above, that is,
A circuit including a first fixed pump, a bypass path, a pressure control valve, a throttle valve, a second fixed pump, a bypass type pressure compensation valve for the second fixed pump, and a first check valve, and connecting them as described above, All fall within the scope of the present invention. In this invention, the concept of the throttle valve includes a throttle switching valve with a load pressure detection boat.

以上の説明で明らかな如く、この発明によれば、第1固
定ポンプと絞り弁との間から分岐したバイパスラインに
、圧力制御弁を設けると共に、第2固定ポンプを、第1
チエツク弁を介設したラインを介して5上記第1固定ポ
ンプと上記絞り弁との間に2接続し、上記第2固定ポン
プと第1チエツク弁との間から分岐したバイパスライン
に、パイロット室を第1チエツク弁の下流側に接続して
上記絞り弁の前後の差圧を一定に制御し得るバイバク形
圧力補償弁を設けたから、絞り弁の開度に応動して、第
1.第2固定ポンプを自動的にアンロード、オンロード
させることができ、したがって、制御系を簡単、安価に
でき、しかも、第1.第2固定″′プの″°−ド状箸□
、!0そ0合流負荷圧力はバイバク形圧力補償弁の体動
により、絞り弁の2次側圧力に応じた圧力となり、動力
損失を少なくすることができる。
As is clear from the above description, according to the present invention, a pressure control valve is provided in the bypass line branched from between the first fixed pump and the throttle valve, and the second fixed pump is connected to the first fixed pump.
2 are connected between the first fixed pump and the throttle valve via a line provided with a check valve, and a pilot chamber is connected to a bypass line branched from between the second fixed pump and the first check valve. The first check valve is connected to the downstream side of the first check valve to control the differential pressure across the throttle valve to a constant value. The second stationary pump can be automatically unloaded and loaded, so the control system can be made simple and inexpensive, and the first fixed pump can be automatically unloaded and loaded. 2nd fixed ``°''-do shaped chopsticks □
,! The 0 so 0 confluence load pressure becomes a pressure corresponding to the secondary side pressure of the throttle valve due to the body movement of the bi-vacuum type pressure compensation valve, and power loss can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の合流形流量制御回路の回路図、第2図は
本発明の一実施例に係る自動合流形流量制御回路の回路
図、第8図は第2図に示す絞ジ弁の開度と出力流量との
関係を示すグラフ、第4図1は他の実施例である。 l・・・第1固定ポンプ、 8・・・絞り弁、 5・・
・第1バイパス形圧力補償弁、 7・・・第2固定ポン
プ、8・・・第1チエツク弁、 12・・・第2バイパ
ス形圧力補償弁。 特 許 出 願 人 ダイキン工業株式会社代 理 人
 弁理士 青白 葆  ほか2名1・:::、。 II2■
Fig. 1 is a circuit diagram of a conventional merging type flow control circuit, Fig. 2 is a circuit diagram of an automatic merging type flow control circuit according to an embodiment of the present invention, and Fig. 8 is a circuit diagram of a throttle valve shown in Fig. 2. A graph showing the relationship between the opening degree and the output flow rate, FIG. 4, is another example. l...first fixed pump, 8...throttle valve, 5...
・First bypass type pressure compensation valve, 7... Second fixed pump, 8... First check valve, 12... Second bypass type pressure compensation valve. Patent applicant: Daikin Industries, Ltd. Representative: Patent attorney: Aobai Ao and two others 1.:::. II2■

Claims (2)

【特許請求の範囲】[Claims] (1)第1固定ポンプ(1)と絞り弁(8)との間のメ
インラインから分岐したバイパスラインに、圧力制御弁
(5)を設けると共に、第2固定ボン7”(7)′fr
:第1チェック弁(8)を介設したラインを介して上記
第1固定ポンプ(1)と上記絞シ弁(8)との間に接続
し、上記第2固定ポンプ■と第1チエツク弁(8)との
間から分岐したバイパスラインに、パイロット室(21
)全第1チエツク弁(8)の下流側に接続して上記絞り
弁(3)の前後の差圧・を一定に制御し得る□バイパス
形圧力補償弁(2)を設けたことを特徴とする自動合流
形流量制御回路。
(1) A pressure control valve (5) is provided in a bypass line branched from the main line between the first fixed pump (1) and the throttle valve (8), and a second fixed pump 7''(7)'fr
: Connected between the first fixed pump (1) and the throttle valve (8) via a line with a first check valve (8) interposed therein; The bypass line branched from between (8) and the pilot room (21
) A bypass type pressure compensation valve (2) is provided which is connected to the downstream side of all the first check valves (8) and can control the differential pressure across the throttle valve (3) at a constant level. Automatic merging type flow control circuit.
(2)第3固定ポンプ(至)を、第2チエツク弁α4を
介設したラインを介して上記第1固定ポンプ(1)と上
記絞り弁(8)との間に接続し、上記第8固定ポンプa
3と第2チエツク弁α◆との間から分岐したバイパスラ
インに、パイロット室(28)を第2チエツク弁α尋の
下流側に接続して上記絞り弁(3)の前後の差圧を一定
に制御し得る第8バイパス形圧力補償升α呻を設け、該
第8バイパス形圧力補償弁α呻のバネ室のバネ圧を第2
バイパス形圧力補償弁(2)のバネ室のバネ圧よりも小
さく設定したことを特徴とする特許 流量制御回路。
(2) A third fixed pump (to) is connected between the first fixed pump (1) and the throttle valve (8) via a line in which a second check valve α4 is interposed; fixed pump a
The pilot chamber (28) is connected to the bypass line branched from between the throttle valve (3) and the second check valve α◆ on the downstream side of the second check valve α◆ to maintain a constant differential pressure across the throttle valve (3). An eighth bypass type pressure compensation valve α which can be controlled is provided, and the spring pressure of the spring chamber of the eighth bypass type pressure compensation valve α is controlled by a second bypass type pressure compensation valve α.
A patented flow control circuit characterized in that the spring pressure is set lower than the spring pressure of the spring chamber of the bypass type pressure compensation valve (2).
JP10990081A 1981-07-13 1981-07-13 Flow control circuit capable of joining fluid flows automatically Granted JPS5813278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10990081A JPS5813278A (en) 1981-07-13 1981-07-13 Flow control circuit capable of joining fluid flows automatically

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10990081A JPS5813278A (en) 1981-07-13 1981-07-13 Flow control circuit capable of joining fluid flows automatically

Publications (2)

Publication Number Publication Date
JPS5813278A true JPS5813278A (en) 1983-01-25
JPH0147645B2 JPH0147645B2 (en) 1989-10-16

Family

ID=14521999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10990081A Granted JPS5813278A (en) 1981-07-13 1981-07-13 Flow control circuit capable of joining fluid flows automatically

Country Status (1)

Country Link
JP (1) JPS5813278A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316832A (en) * 2003-04-18 2004-11-11 Nissan Motor Co Ltd Hydraulic control device of continuously variable transmission
US20130037144A1 (en) * 2010-02-24 2013-02-14 Torotrak (Development) Limited Fluid supply for continuously variable transmission
WO2020136841A1 (en) * 2018-12-27 2020-07-02 株式会社島津製作所 Load-sensitive hydraulic fluid supply device for industrial vehicle, and industrial vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136493U (en) * 1978-03-15 1979-09-21
JPS5670106A (en) * 1979-11-12 1981-06-11 Daikin Ind Ltd Combination fluid circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136493U (en) * 1978-03-15 1979-09-21
JPS5670106A (en) * 1979-11-12 1981-06-11 Daikin Ind Ltd Combination fluid circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316832A (en) * 2003-04-18 2004-11-11 Nissan Motor Co Ltd Hydraulic control device of continuously variable transmission
US20130037144A1 (en) * 2010-02-24 2013-02-14 Torotrak (Development) Limited Fluid supply for continuously variable transmission
WO2020136841A1 (en) * 2018-12-27 2020-07-02 株式会社島津製作所 Load-sensitive hydraulic fluid supply device for industrial vehicle, and industrial vehicle

Also Published As

Publication number Publication date
JPH0147645B2 (en) 1989-10-16

Similar Documents

Publication Publication Date Title
JPS6128854B2 (en)
KR100592149B1 (en) Gas turbine combined lift/hydraulic system
JPS5813278A (en) Flow control circuit capable of joining fluid flows automatically
US4630639A (en) Apparatus for controlling pressure and flow rate
CN112709723A (en) Oil pressure type emulsion pump unloading valve centralized control station
CN113007157A (en) Load-sensitive multi-way valve, boom hydraulic control system and concrete pump truck
JPS58193908A (en) Hydraulic type pump controller
JPS5812016A (en) Automatic joining type flow rate controlling circuit
JPH0138963B2 (en)
CN108975188A (en) A kind of hydraulic system
JPH08100805A (en) Pressure control valve
JPH0310802B2 (en)
JPS635595B2 (en)
JP2579201Y2 (en) Hydraulic circuit with closed center valve and unload valve
JPH01275902A (en) Discharge rate control circuit for load pressure compensating pump
JPH0448966B2 (en)
JPS5926083Y2 (en) hydraulic circuit
JPS6014606A (en) Circuit for combining two flows
JPH0219601Y2 (en)
JPH03279753A (en) Multi-refrigerating cycle starting load reduction structure
JPS6347503A (en) Automatic confluent circuit
JP3558862B2 (en) Hydraulic system
JPH08303407A (en) Confluent circuit using operating valve
JPH0118690Y2 (en)
CN115929718A (en) Valve post-compensation system with pressure division and pressure limiting functions