JPS58131712A - Electromagnet for heat pump cooling lifting type magnet, etc. - Google Patents

Electromagnet for heat pump cooling lifting type magnet, etc.

Info

Publication number
JPS58131712A
JPS58131712A JP1397182A JP1397182A JPS58131712A JP S58131712 A JPS58131712 A JP S58131712A JP 1397182 A JP1397182 A JP 1397182A JP 1397182 A JP1397182 A JP 1397182A JP S58131712 A JPS58131712 A JP S58131712A
Authority
JP
Japan
Prior art keywords
working fluid
coil
heat
heat pump
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1397182A
Other languages
Japanese (ja)
Inventor
Susumu Nakagawa
進 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP1397182A priority Critical patent/JPS58131712A/en
Publication of JPS58131712A publication Critical patent/JPS58131712A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/206Electromagnets for lifting, handling or transporting of magnetic pieces or material

Abstract

PURPOSE:To enhance performance of the electromagnet by a method wherein the reservoir part for an working fluid and the condensation part to cool the evaporated working fluid of the heat pump are provided to radiate efficiently Joule heat in a coil. CONSTITUTION:Because the coil 3 is immersed in the working fluid 6, heat generated according to turning on electricity of the coil 3 is removed as the heat of evaporation due to the boiling of the working fluid 6. The evaporated working fluid 6 ascends passing through air vents 7, delivers heat of a large quantity at condensing fins 9, and heat thereof is radiated in the atmosphere from radiating fins 10 at the condensation part having small heat resistance between the atmosphere. While the working fluid 6 is condensed to be liquefied, it does not come in the air vents 7 being interrupted by ring type dams 7a, descends in liquid passage holes 8, and flows back to the reservoir part at the circumference of the coil, is evaporated again to absorb heat of the coil 3, and cools the coil effectively through working circulatingly.

Description

【発明の詳細な説明】 本発明は、コイルの冷却効果を高めるため、ヒートポン
プによる冷却方法を適用し九リフティングマグネット等
の電磁石に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnet such as a nine-lifting magnet that uses a cooling method using a heat pump to enhance the cooling effect of the coil.

従来のり7テインクマグネツトの構成の一例を第1図に
ついて説明する。同図において、各部材は左右対称にな
っているので、右半部について符号を付して示しである
。1はヨーク5laelbはいずれも磁極、2は非磁性
板、3はコイル、4はコイルを覆う絶縁物である。
An example of the structure of a conventional adhesive magnet will be described with reference to FIG. In the figure, since each member is symmetrical, the right half is shown with a reference numeral. 1 is a yoke 5laelb is a magnetic pole, 2 is a non-magnetic plate, 3 is a coil, and 4 is an insulator covering the coil.

上記のような構成において、コイル3に通電することK
より磁界が発生し、a極1a、lbに対向する被つり上
げ物とヨーク1に磁束φ1*す。
In the above configuration, energizing the coil 3 K
A magnetic field is generated, and a magnetic flux φ1* is applied to the object to be lifted and the yoke 1 facing the a-poles 1a and lb.

リフティングマグネット本体は、クレーン等の搬送装置
に取付けられており、電磁力によりつり上げられ丸物体
を運搬する。
The lifting magnet body is attached to a transport device such as a crane, and is lifted up by electromagnetic force to transport round objects.

ところで、上記のような構成であると、:フイル3への
通電により発生し九ジュール熱は、絶縁物4から目−り
1に伝わり大気中に放熱されるが。
By the way, with the above configuration, the 9 joule heat generated by energizing the film 3 is transmitted from the insulator 4 to the mesh 1 and radiated into the atmosphere.

絶縁物4は熱抵抗が大きいため、コイル3で発生した熱
が伝導されにくいので、コイル3に熱が蓄積し、コイル
3の温度が高くなる。コイル3の温度が高くなれば、電
気抵抗が増加してジュール熱の発生が増加するので、コ
イルの温度上昇をさらに助長することになる。
Since the insulator 4 has a large thermal resistance, the heat generated in the coil 3 is difficult to conduct, so the heat accumulates in the coil 3 and the temperature of the coil 3 becomes high. If the temperature of the coil 3 increases, the electrical resistance increases and the generation of Joule heat increases, which further promotes the temperature rise of the coil.

このようなコイル温度上昇の丸めに、従来のリフティン
グマグネットは、耐熱限界以下の小電流しか供給できな
いこと、及び電気抵抗増加による無効電力が多くなると
いう欠点があった。
Due to this rounding of the coil temperature rise, conventional lifting magnets have the disadvantage that they can only supply a small current below the heat resistance limit and that reactive power increases due to increased electrical resistance.

本発明は、上記のような欠点を除去することを目的とす
るもので、ヒートポンプ冷却方式を適用しコイル内のジ
ュール熱を効率喪〈放散し、リフティングマグネット等
の電磁石の性能を向上するようにしたものである。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, and to improve the performance of electromagnets such as lifting magnets by applying a heat pump cooling method to efficiently dissipate Joule heat in the coil. This is what I did.

以下9本発明を二つのり7テイングマグネツトに関する
実施例について説明する。
The present invention will be described below with reference to embodiments relating to two glued magnets.

第1実施例 第211において、1〜3は第1Eに示す部材と同等の
部材を示す。5はコイル3をヨーク1に固定する丸めの
スペーサである。6はヒートポンプの作動流体で9例え
はフロン112のような流体であり、コイル3の周辺の
ヨーク1及び非磁性板2との間の空間に形成された貯留
部に貯留される。
In the first embodiment No. 211, 1 to 3 indicate members equivalent to the members shown in No. 1E. 5 is a round spacer that fixes the coil 3 to the yoke 1. Reference numeral 6 denotes a working fluid of the heat pump, and 9 is a fluid such as Freon 112, which is stored in a storage portion formed in a space between the yoke 1 and the non-magnetic plate 2 around the coil 3.

7は曹−り1中に明けられた通気孔で、気化した作動流
体の上昇通路である。8はヨーク1中に明けられた液体
通路孔で、液化した作動流体がコイル周辺の貯留部に下
降還流する通路である。通気孔7及び液体通路孔8の一
例の一部瞳細図を第3図に示す、7mは環状のせきで、
液化した作動流体が通気孔7内に浸入しないようにして
いる。第2図において、9は凝縮フィン、10は放熱フ
ィンで9両者は凝縮部を形成する。凝縮部の一例を第4
図に示す、気化した作動流体は凝縮フィン9によって気
化熱を奪われ液化する。凝縮フィン9が受取つ九気化熱
は放熱フィン10によって大気中に放散される。
Reference numeral 7 denotes a vent hole opened in the sluice 1, which is a passage for vaporized working fluid to rise. Reference numeral 8 denotes a liquid passage hole formed in the yoke 1, which is a passage through which liquefied working fluid descends and flows back into the reservoir around the coil. A partial pupil view of an example of the ventilation hole 7 and the liquid passage hole 8 is shown in FIG. 3. 7m is an annular weir;
The liquefied working fluid is prevented from entering the vent hole 7. In FIG. 2, 9 is a condensing fin, 10 is a radiation fin, and both 9 form a condensing section. An example of the condensation part is shown in the fourth example.
The vaporized working fluid shown in the figure is liquefied by the condensing fins 9, which remove the heat of vaporization. The heat of vaporization received by the condensing fins 9 is radiated into the atmosphere by the radiation fins 10.

上記のような構成において、コイル3は作動流体6の中
に浸漬されているので、コイル3に通電することにより
発生する熱は9作動流体6の沸騰による蒸発熱として取
り去られる。気化した作動流体6は通気孔7を通って上
昇し、凝縮フィン9で多量の熱を引渡し、その熱は大気
間との熱抵抗の少ない凝縮部の放熱フィン1oよ)大気
中に放散される。一方9作動流体6は凝縮して液化し。
In the above configuration, since the coil 3 is immersed in the working fluid 6, the heat generated by energizing the coil 3 is removed as heat of evaporation due to boiling of the working fluid 6. The vaporized working fluid 6 rises through the ventilation holes 7, transfers a large amount of heat to the condensing fins 9, and the heat is dissipated into the atmosphere (through the radiating fins 1o of the condensing section, which have low thermal resistance to the atmosphere). . Meanwhile, the working fluid 6 is condensed and liquefied.

環状のせき7aKjlぎられて通気孔7内には入らず、
液体通路孔8を下降してコイル周辺の貯留部Kll流す
る。そして、再び気化してコイル3の熱を奪い、循環作
動してコイルを効果的に冷却する。
The annular weir 7aKjl prevents it from entering the ventilation hole 7,
The liquid flows down through the liquid passage hole 8 to the reservoir Kll around the coil. Then, it vaporizes again to remove heat from the coil 3, and circulates to effectively cool the coil.

第2実施例 第2実施例は上記第1実施例を簡単化したもので、その
−例を第5図に示す。第1実施儒と異なるところは2通
気孔7と液体通路孔8とを、同一の通路孔11で兼用し
九点である。この場合、気化して上昇する作動流体と液
化して下降する作動流体とが同一通路孔11を通るとと
Kなる。構成は簡単化されるがコイルの冷却作用は上記
第111施例と同様である。
Second Embodiment The second embodiment is a simplified version of the first embodiment, and an example thereof is shown in FIG. The difference from the first embodiment is that the same passage hole 11 serves as both the two ventilation holes 7 and the liquid passage hole 8, and there are nine points. In this case, if the working fluid that vaporizes and rises and the working fluid that liquefies and descends pass through the same passage hole 11, then K. Although the structure is simplified, the cooling effect of the coil is the same as in the 111th embodiment.

なお、上記実施例は、いずれもリフティングマグネット
について説明し九が1本発明は鉄片等の分離用電磁石等
にも適用できるものである。
It should be noted that all of the above embodiments describe lifting magnets, and the present invention can also be applied to electromagnets for separating iron pieces and the like.

以上述べたように0本発明に係るヒートポンプ冷却式リ
フティングマグネット等の電磁石は9作動流体がコイル
の発熱it’を奪って冷却するので。
As described above, the electromagnet such as the heat pump cooling type lifting magnet according to the present invention is cooled by the working fluid taking away the heat generated by the coil.

フィルは効果的に冷却され、コイルの耐熱限界以下で大
電流を流すことが可能となり、ま九、マイルの電気抵抗
も増加しないので無効電力が減少し起磁力が増大するた
め、リフティングマグネット等の電磁石の性能が飛躍的
に向上し、小形軽量化を図ることができるという極めて
優れた効果がある。
The fill is effectively cooled, making it possible to flow a large current below the heat resistance limit of the coil, and the electrical resistance of the coil does not increase, reducing reactive power and increasing magnetomotive force, making it suitable for lifting magnets, etc. This has the extremely excellent effect of dramatically improving the performance of electromagnets and making them smaller and lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のリフティングマグネットの構成の一例を
示す断面正面図、第2図は本発明の第1実施例を示す右
半部断l正面図、第3図は第2図の通気孔及び液体通路
孔の詳l/IAを示す一部断面斜視図、第4図は第2図
の#細部の一例を示す一部断面斜視図、第5図は本発明
の第2実施例を−示す右半部断面正面図である。 1:ヨーク。 3:コイル。 6:作動流体。 7:通気孔。 8:液体通路孔。 11:通路孔。 第1図 φ1 第2図 113図 第4図 0 第5図 [: ヒ′
FIG. 1 is a cross-sectional front view showing an example of the configuration of a conventional lifting magnet, FIG. 2 is a front view of a right half section showing a first embodiment of the present invention, and FIG. FIG. 4 is a partial cross-sectional perspective view showing an example of the details of the liquid passage hole I/IA; FIG. 4 is a partial cross-sectional perspective view showing an example of the details of FIG. 2; FIG. It is a right half cross-sectional front view. 1: York. 3: Coil. 6: Working fluid. 7: Ventilation hole. 8: Liquid passage hole. 11: Passage hole. Fig. 1 φ1 Fig. 2 113 Fig. 4 0 Fig. 5 [: H'

Claims (1)

【特許請求の範囲】 1、 コイル(3)周辺にヒートポンプの作動流体(6
)の貯留部を設けるとと4に、気化し九作動流体(6)
を冷却する凝縮部を備え、かつ、気化し九作動流体(6
)を凝縮部に導く通気孔(7)と、凝縮部にて液化した
作動流体(6)を貯留部に還流させる液体通路孔(8)
とをヨーク(1)K設けたことを特徴とするヒートポン
プ冷却式リフティングマグネット等の電磁石。 2、気化した作動流体(6)を凝縮部に尋く通気孔(ア
)と、凝縮部にて液化した作動流体(6)を貯留部に還
流させる液体通路孔(8)とを同一の通路孔(11)で
兼用した特許請求の範lI第1項記載のヒートポンプ冷
却式リフティングマグネット尋の電磁石。
[Claims] 1. Working fluid of the heat pump (6) around the coil (3).
) is provided, and 4 is vaporized and 9 working fluid (6) is provided.
It is equipped with a condensing section that cools the vaporized working fluid (6
) to the condensing section, and a liquid passage hole (8) that allows the working fluid (6) liquefied in the condensing section to flow back to the storage section.
An electromagnet such as a heat pump cooling type lifting magnet characterized by having a yoke (1) K and a yoke (1) K. 2. The ventilation hole (A) that carries the vaporized working fluid (6) to the condensing section and the liquid passage hole (8) that allows the working fluid (6) liquefied in the condensing section to flow back to the storage section are connected in the same passage. An electromagnet having a heat pump cooling type lifting magnet according to claim 1, which also serves as a hole (11).
JP1397182A 1982-01-30 1982-01-30 Electromagnet for heat pump cooling lifting type magnet, etc. Pending JPS58131712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1397182A JPS58131712A (en) 1982-01-30 1982-01-30 Electromagnet for heat pump cooling lifting type magnet, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1397182A JPS58131712A (en) 1982-01-30 1982-01-30 Electromagnet for heat pump cooling lifting type magnet, etc.

Publications (1)

Publication Number Publication Date
JPS58131712A true JPS58131712A (en) 1983-08-05

Family

ID=11848104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1397182A Pending JPS58131712A (en) 1982-01-30 1982-01-30 Electromagnet for heat pump cooling lifting type magnet, etc.

Country Status (1)

Country Link
JP (1) JPS58131712A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295221A (en) * 2011-08-18 2011-12-28 江阴新日冶金装备有限公司 Lifting electromagnet with ventilating pipeline
JP2017519701A (en) * 2014-06-20 2017-07-20 エッセジエッメ ガントリー ソシエタ ペル アチオニ Electromagnetic lifter for high temperature materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295221A (en) * 2011-08-18 2011-12-28 江阴新日冶金装备有限公司 Lifting electromagnet with ventilating pipeline
JP2017519701A (en) * 2014-06-20 2017-07-20 エッセジエッメ ガントリー ソシエタ ペル アチオニ Electromagnetic lifter for high temperature materials

Similar Documents

Publication Publication Date Title
US3651865A (en) Cooled electronic equipment mounting plate
US6477045B1 (en) Heat dissipater for a central processing unit
TW465165B (en) A motor with heat pipe
US10302367B2 (en) Non-metallic vapor chambers
CN110621533A (en) Induction charging device with cooling means
JP2010118503A (en) Reactor
US20190115144A1 (en) Bobbin and coil assembly and electromagnet equipment including same
JPS58131712A (en) Electromagnet for heat pump cooling lifting type magnet, etc.
CN117334547A (en) Magnetic lens heat storage and shock absorption system of combined PCM and application
KR20210069226A (en) Wireless charging system capable of releasing heat generated by wireless power transmission
JPH10227585A (en) Heat spreader and cooler employing the same
CN110868087A (en) High-frequency switching power supply voltage transformation rectifying device
KR102378524B1 (en) Device for preventing deformation of electron beam three-dimension laminating
JP7012404B1 (en) Cooling device for electronic components
CN214477409U (en) Radiator, cooling system and electronic equipment
JPS5849797B2 (en) heat pipe
CN210693784U (en) High-frequency switching power supply voltage transformation rectifying device
JP4810779B2 (en) Induction heating device
JP2699251B2 (en) Magnetic field generator
JPS5893872A (en) Sputtering device
JPH0223700A (en) Cooling structure of electronic circuit device
JPH04350910A (en) Electric apparatus
JPH08222442A (en) Reactor with cooling device for electric car
JPS5848765Y2 (en) magnetron device
JPS5937637B2 (en) electrodynamic speaker