JPS58130502A - Temperature depending resistor - Google Patents

Temperature depending resistor

Info

Publication number
JPS58130502A
JPS58130502A JP20122882A JP20122882A JPS58130502A JP S58130502 A JPS58130502 A JP S58130502A JP 20122882 A JP20122882 A JP 20122882A JP 20122882 A JP20122882 A JP 20122882A JP S58130502 A JPS58130502 A JP S58130502A
Authority
JP
Japan
Prior art keywords
resistor
substrate
intermediate layer
layer
resistor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20122882A
Other languages
Japanese (ja)
Other versions
JPH0145722B2 (en
Inventor
ニ−ルス・レアヴア−ド・アンデルセン
ペル・フイリツプセン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss AS
Original Assignee
Danfoss AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss AS filed Critical Danfoss AS
Publication of JPS58130502A publication Critical patent/JPS58130502A/en
Publication of JPH0145722B2 publication Critical patent/JPH0145722B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/041Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient formed as one or more layers or coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/183Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer characterised by the use of the resistive element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Thermistors And Varistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は絶縁性金属酸化物からなる基板および抵抗材料
としての薄い白金層を有し、抵抗を抵抗材料被覆後、酸
素含有雰囲気中で熱処理する、とくに抵抗温度計用の、
湿度依存抵抗に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a substrate made of an insulating metal oxide and a thin platinum layer as a resistive material, and after coating the resistor with the resistive material, heat treatment is performed in an oxygen-containing atmosphere. of,
Concerning humidity-dependent resistance.

この種の公知温度依存抵抗の場合、薄い白金層は絶縁基
板上に直接1−10μmの厚さで真空蒸着または陰極ス
・ξツタリングによって被覆される。ジグザグパターン
を製造するため、白金フィルム上に光導電ラッカを被覆
し、部分的にマスクし、露光および現像する。次にイオ
ンエツチングその他の方法によって所望の導体路が製造
される。この導体路の一定抵抗値への調節はレーザ光線
により行われる。電気抵抗のとくに高い温度係数を達成
するため、薄い白金層はアルゴン−酸素混合物中で陰極
ス・ξツタリングによって被覆し、800℃を超える温
度とくEl 000〜1200℃の範囲で後熱処理する
このように形成された抵抗の場合、白金フィルムが容易
に剥離する危険がある。たとえば白金フィルムは・・ン
ダ付けした導線を引張ることによって基板から剥離され
る。接着した常用接着テープの引剥しによっても白金層
は剥離する本発明の目的は白金層が基板に対しもつとよ
(付着している前記概念の温度依存抵抗を得ることであ
る。
In the case of known temperature-dependent resistors of this type, a thin platinum layer is deposited directly onto the insulating substrate to a thickness of 1-10 μm by vacuum evaporation or by cathodic sputtering. To produce a zigzag pattern, a photoconductive lacquer is coated onto a platinum film, partially masked, exposed and developed. The desired conductor tracks are then produced by ion etching or other methods. The adjustment of the conductor track to a constant resistance value takes place by means of a laser beam. In order to achieve particularly high temperature coefficients of electrical resistance, the thin platinum layer is coated by cathodic sintering in an argon-oxygen mixture and postheated in this way at temperatures above 800°C, particularly in the range El 000-1200°C. In the case of a resistor formed on the surface, there is a risk that the platinum film will peel off easily. For example, a platinum film is peeled off from a substrate by pulling on soldered conductive wires. The platinum layer can also be removed by peeling off the adhesive tape that has been adhered to it.The purpose of the present invention is to obtain the above-mentioned temperature-dependent resistance when the platinum layer is attached to the substrate.

この目的は本発明により基板と白金層の間に基板と白金
層を結合する金属からなる中間層を基板に被覆すること
によって解決される。
This object is solved according to the invention by coating the substrate with an intermediate layer of metal which bonds the substrate and the platinum layer between the substrate and the platinum layer.

この場合白金層は少なくとも白金層に)・ンダ付けした
線の破断に必要な力に耐える。
In this case, the platinum layer resists at least the force required to break the soldered wire.

とくに中間層はチタンを有する。これによってとくに高
い結合力が保証される。
In particular, the intermediate layer contains titanium. This ensures particularly high bonding strength.

中間層は基板と密接に結合するため基板に蒸着するのが
有利である。
Advantageously, the intermediate layer is deposited on the substrate to form an intimate bond with the substrate.

この場合中間層は約2〜5 nm、とくに約2゜5 n
mの厚さを有する。このように小さい厚さは白金層の中
間層への確実な支持を保証するため罠十分である。
In this case, the intermediate layer has a thickness of approximately 2 to 5 nm, in particular approximately 2°5 nm.
It has a thickness of m. Such a small thickness is sufficient to ensure reliable support of the platinum layer to the intermediate layer.

白金層は約0,4〜1.2μmと(に約1μmの厚さを
有することができる。この範囲の層厚により白金層にお
ける)・/ダ結合の所要強度のみならず、しばしば長い
導線を介する測定の際に導体抵抗の変化が大きく影響し
ないために必要な比較的高い抵抗値を得ることができる
The platinum layer can have a thickness of about 0.4 to 1.2 μm (and can have a thickness of about 1 μm. This range of layer thicknesses not only increases the required strength of the bond, but also often leads to long conductors). Since changes in conductor resistance do not have a large effect on measurements made through the conductor, it is possible to obtain the necessary relatively high resistance values.

白金層は中間層に蒸着または陰極スノξツタリ/グによ
って被覆することができる。この場合も白金層と中間層
とくにチタン中間層との間の比較的高い結合強度が保証
されろ。
The platinum layer can be applied to the intermediate layer by vapor deposition or cathode sintering/gluing. In this case as well, a relatively high bonding strength between the platinum layer and the intermediate layer, in particular the titanium intermediate layer, should be ensured.

基板材料はとくに酸化アルミニウムである。The substrate material is in particular aluminum oxide.

この材料は良好な絶縁体として作用するだけでなく、同
様基板と中間層とくにチタンの間の高い結合強度が保証
される。
This material not only acts as a good insulator, but also ensures a high bonding strength between the substrate and the intermediate layer, especially titanium.

次に抵抗は空気中で熱処理することができる。この方法
によりとくにそれぞれの温度における呼称値からの熱ま
たは劣化による抵抗値誤差が十分に防止される。
The resistor can then be heat treated in air. In particular, this method largely prevents resistance value errors due to heat or deterioration from the nominal value at the respective temperature.

抵抗を約1200〜1425℃と(に約1300℃の温
度で熱処理することにより抵抗値の一呼称値からの変化
はとくに小さくなる。
By heat-treating the resistor at a temperature of approximately 1200 to 1425 DEG C. and approximately 1300 DEG C., the change in resistance value from its nominal value becomes particularly small.

この場合熱処理時間は僅か約1時間で十分である。In this case, a heat treatment time of only about 1 hour is sufficient.

次に本発明を図面により説明する。Next, the present invention will be explained with reference to the drawings.

第1および2図に示す温度依存抵抗は電気的絶縁基板1
、中間層2および白金層3からなる基板1は絶縁性金属
酸化物層とくに酸化アルミニウムからなるけれど、酸化
マグネシウムのような他の金属酸化物からなることもで
きる。
The temperature dependent resistance shown in FIGS. 1 and 2 is
, an intermediate layer 2 and a platinum layer 3, the substrate 1 consists of an insulating metal oxide layer, in particular aluminum oxide, but can also consist of other metal oxides, such as magnesium oxide.

中間層2は金属とくにチタンからなるけれど、銅を使用
することもできる。この層は約2〜5 nmと(に約2
.5nmの厚さを有し、とくに基板1を約250℃に加
熱後、基板lに蒸着または陰極スパッタリングによって
被覆することができる。
The intermediate layer 2 consists of metal, in particular titanium, but copper can also be used. This layer is approximately 2-5 nm thick (approximately 2 to 5 nm thick).
.. It has a thickness of 5 nm and can be applied to the substrate l by vapor deposition or cathodic sputtering, in particular after heating the substrate 1 to approximately 250°C.

白金層は温度依存抵抗材料を形成し、約O14〜1.2
μmとくに0.5〜1μmの厚さi有する。
The platinum layer forms a temperature-dependent resistance material, approximately O14-1.2
It has a thickness i of .mu.m, in particular 0.5 to 1 .mu.m.

白金層は中間l1i2と同様ジグザグ形にホトレジスト
法によって形成され、中間層2上に蒸着または陰極ス・
ξツタリングによって被覆される。
The platinum layer is formed in a zigzag shape by the photoresist method like the intermediate layer 2, and is deposited on the intermediate layer 2 by vapor deposition or cathode film.
ξ Covered by ivy.

しかし、ジグザグ形はレーザ光線による燃焼除去によっ
て形成することもできる。
However, the zigzag shape can also be produced by burning away with a laser beam.

ジグザグ形形成まで仕上げた抵抗はまず酸素含有雰囲気
と(に空気中で約1100〜1425℃とくに約120
0〜1300℃の温度で熱処理される。その際その抵抗
値のそれぞれの動作温度における呼称値からの誤差を非
常に小さく保持するためにもつとも有利な温度は約13
00℃である。熱処理後、ジグザグ形が形成され、次に
抵抗値の微調節が同様レーザ光線による燃焼除去によっ
て行われる。続いてもう1度後熱処理が行われる。
The resistor, which has been finished to form a zigzag shape, is first heated in an oxygen-containing atmosphere (in air at about 1100 to 1425°C, especially at about 120°C).
Heat treated at a temperature of 0-1300°C. In order to keep the deviation of the resistance value from the nominal value at the respective operating temperature very small, a temperature of approximately 13
It is 00℃. After heat treatment, a zigzag shape is formed, and then a fine adjustment of the resistance value is also carried out by burning out with a laser beam. Subsequently, another post-heat treatment is performed.

次の表1は第1および2図に示した原理の構造を有する
抵抗の種々の実施例を示し、これらは熱処理温度、白金
層厚および中間層金属が異なり、その呼称抵抗値は0℃
で100オームである。中間層厚は2.5 nmである
。熱処理は雰囲気空気中で約1時間実施した。基板1は
酸化アルミニウムからなる。
The following Table 1 shows various examples of resistors having the structure according to the principles shown in Figures 1 and 2, which differ in heat treatment temperature, platinum layer thickness and intermediate layer metal, and whose nominal resistance value is 0°
and 100 ohms. The intermediate layer thickness is 2.5 nm. The heat treatment was carried out in atmospheric air for about 1 hour. Substrate 1 is made of aluminum oxide.

表     1 例  熱処理温度(℃)   白金層厚(μm)   
中間層500      038〜05   銅、2し
Sツタリングb         850 200 d1400             チタン、蒸着1
375       o、s f        1425         1g 
      1375        1h     
   1300         1第3図は表1の種
々の例の抵抗値の誤差と動作温度の関係を示す。さらに
図中にDIN規格による2つの許容差範囲±Aおよび±
Bが破線または鎖線で記入され、許容差範囲±Aは許容
差範囲上Bより狭い。
Table 1 Example Heat treatment temperature (℃) Platinum layer thickness (μm)
Intermediate layer 500 038-05 Copper, 2S vine ring b 850 200 d1400 Titanium, vapor deposition 1
375 o, s f 1425 1g
1375 1h
13001 FIG. 3 shows the relationship between resistance error and operating temperature for various examples in Table 1. Furthermore, the two tolerance ranges ±A and ±A according to the DIN standard are shown in the figure.
B is drawn with a broken line or chain line, and the tolerance range ±A is narrower than B in the tolerance range.

第3図に示すように呼称値からの偏差は例a、bおよび
Cの場合許容差範囲AおよびBを非常に早く超えるけれ
ど、例dおよびeでは少なくとも一50℃〜+140℃
の間で狭い許容差±Aの範囲内にあり、例f、gおよび
hでは少なくとも0℃を超える温度で偏差はさらに小さ
く、さらに大きい温度範囲にわたって許容差範囲上A内
に留まる。その際例りの偏差が少なくとも約145℃ま
で最小である。非常に多く使用さjる約−30℃〜+1
80℃の温度測定範囲内でそれゆえ例りは最適である。
As shown in Figure 3, the deviation from the nominal value exceeds the tolerance ranges A and B very quickly for examples a, b and C, but at least 150°C to +140°C for examples d and e.
In examples f, g and h, the deviation is even smaller at temperatures above at least 0° C. and remains within the tolerance range A over a larger temperature range. In this case, typical deviations are minimal up to at least about 145°C. Approximately -30℃~+1 which is used very often
Within the temperature measuring range of 80° C. the example is therefore optimal.

白金層2と基板1の結合強度はすべての例で白金層2に
ハンダ付けした導線を引張る際にハンダが切れる程度に
高く、すべての場合に白金層2へ接着した常用接着テー
プの引剥しによって白金層の剥離は生じなかった。
The bonding strength between the platinum layer 2 and the substrate 1 is in all cases so high that the solder breaks when the conductive wire soldered to the platinum layer 2 is pulled, and in all cases the bonding strength between the platinum layer 2 and the substrate 1 is so high that the solder breaks when the conductive wire soldered to the platinum layer 2 is pulled. No peeling of the platinum layer occurred.

次の表2は本発明による抵抗を製造するための2つの有
利な基本的例を示し、この2つは/eターン(たとえば
ジグザグ形)形成法においてのみ、1つはレーザ法、他
はホトレジスト法による点で異なる。
Table 2 below shows two advantageous basic examples for manufacturing the resistors according to the invention, two only in the /e-turn (for example zigzag) formation method, one by laser method and the other by photoresist method. The difference is based on the law.

表   2 レーザ法         ホトレジスト法1 基板の
清浄化      1.基板の清浄化2 チタン蒸着、
層厚約252 光導電ラッカ塗布m 1μm 11、接続導線の設置 12、カプセルへ封入 本発明の範囲内で前記実施例から変化することもできる
。たとえば中間層2の銅またはチタンの代りにジルコニ
ウムを使用することができる。
Table 2 Laser method Photoresist method 1 Cleaning of substrate 1. Substrate cleaning 2 Titanium deposition,
Layer thickness approx. 252 photoconductive lacquer coating m 1 μm 11, installation of connecting conductor 12, encapsulation in the capsule Variations from the embodiment described above can also be made within the scope of the invention. For example, zirconium can be used instead of copper or titanium in the intermediate layer 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による抵抗の断面図、第2図はその平面
図、第3図は本発明による抵抗の種々の実施例の誤差曲
線を示す図である。 l・・・基板、2・・・中間層、3・・・白金層1面の
浄l(内容:二変更なし) 第1図 、3 第2図 手続補正書(ガ式) 111(和51t、3月 9 日 4!I−+i’l庁長官殿 1 ・1111の)〈示昭和57年特許願第20122
8号2、発明の名称 温度依存抵抗 J 補11をする者 ・μ注との関係 特許出願人 名 称   ダ/フォス−ニー・ニス 4 代理人 0 補しトの4象 図面 7 補11の内も 別紙のとおり 11」シ図面の浄書(内容に変更なし)9−
1 is a sectional view of a resistor according to the invention, FIG. 2 is a plan view thereof, and FIG. 3 is a diagram showing error curves of various embodiments of the resistor according to the invention. l... Substrate, 2... Intermediate layer, 3... Platinum layer 1 side cleaning l (Contents: 2 No changes) Figure 1, 3 Figure 2 Procedural amendment form (G type) 111 (Total: 51 tons) , March 9th, 4!I-+i'l Director General 1・1111)
8 No. 2, Name of Invention Temperature-dependent Resistance J Supplement 11 Relationship with μ Note Name of Patent Applicant Name Da/Fosny Nis 4 Agent 0 Supplementary Drawings 7 Also in Supplement 11 As shown in the attached sheet, engraving of the drawing of ``11'' (no change in content) 9-

Claims (1)

【特許請求の範囲】 1、  P練性金属酸化物からなる基板および抵抗材料
としての薄い白金層を有し、抵抗を抵抗材料の被覆後・
、酸素含有雰囲気中で熱処理する温度依存抵抗において
、基板(1)と白金層(3)の間に基板(1)と白金層
(3)を結合する金稿からなる中間層を基板(1)上に
被覆しであることを特徴とする温度依存抵抗。 2、 中間層(2)がチタンを有する特許請求の範囲第
1、項記載の抵抗。 3、 中間層(2)を基板(1)上に蒸着しである特許
請求の範囲第1項または第2項記載の抵抗。 4、中間層(2)が2〜5 nmの厚さを有する特許請
求の範囲第1項〜第3項の1つに記載の抵抗。 5、白金層(3)が0.4〜1.2 μmの厚さを有す
る特許請求の範囲第1項〜第4項の1つに記載の抵抗。 6、 白金層(3)が中間層(2)上に蒸着または陰極
ス・ξツタリングによって被覆されている特許請求の範
囲第1項〜第5項の1つに記載の抵抗。 7、 基板材料が酸化アルミニウムである特許請求の範
囲第1項〜第6項の1つに記載の抵抗8、空気中で熱処
理した特許請求の範囲第1項〜第7項の1つに記載の抵
抗、。、 9.1200〜1425°の温度で熱処理した特許請求
の範囲第1項〜第8項の1つに記載の抵抗。 10、1時間熱処理した特許請求の範囲第1項〜第9項
の1つに記載の抵抗。
[Claims] 1. A substrate made of a P-molten metal oxide and a thin platinum layer as a resistor material, and a resistor is coated with the resistor material.
In temperature-dependent resistance heat treatment in an oxygen-containing atmosphere, an intermediate layer consisting of a gold plate bonding the substrate (1) and the platinum layer (3) is placed between the substrate (1) and the platinum layer (3). A temperature-dependent resistor characterized in that it is coated on top. 2. The resistor according to claim 1, wherein the intermediate layer (2) comprises titanium. 3. The resistor according to claim 1 or 2, wherein the intermediate layer (2) is deposited on the substrate (1). 4. Resistor according to one of claims 1 to 3, in which the intermediate layer (2) has a thickness of 2 to 5 nm. 5. Resistor according to one of claims 1 to 4, in which the platinum layer (3) has a thickness of 0.4 to 1.2 μm. 6. Resistor according to one of the claims 1 to 5, in which the platinum layer (3) is coated on the intermediate layer (2) by vapor deposition or cathodic scattering. 7. The resistor according to one of claims 1 to 6, in which the substrate material is aluminum oxide; 8, the resistor according to one of claims 1 to 7, heat-treated in air; resistance,. 9. Resistor according to one of claims 1 to 8, heat treated at a temperature of 1200 to 1425[deg.]. 10. A resistor according to one of claims 1 to 9 which has been heat treated for 1 hour.
JP20122882A 1981-11-20 1982-11-18 Temperature depending resistor Granted JPS58130502A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3146020.8 1981-11-20
DE19813146020 DE3146020C2 (en) 1981-11-20 1981-11-20 Temperature-dependent resistance, especially for resistance thermometers

Publications (2)

Publication Number Publication Date
JPS58130502A true JPS58130502A (en) 1983-08-04
JPH0145722B2 JPH0145722B2 (en) 1989-10-04

Family

ID=6146817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20122882A Granted JPS58130502A (en) 1981-11-20 1982-11-18 Temperature depending resistor

Country Status (6)

Country Link
JP (1) JPS58130502A (en)
CH (1) CH659342A5 (en)
DE (1) DE3146020C2 (en)
DK (1) DK503582A (en)
FR (1) FR2517056B1 (en)
GB (1) GB2109998B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502856A (en) * 1984-07-31 1986-12-04 ロ−ズマウント インコ. Manufacturing method of platinum resistance thermometer
WO2007148454A1 (en) * 2006-06-23 2007-12-27 Nsk Ltd. Bearing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188901A (en) * 1985-02-16 1986-08-22 株式会社日本自動車部品総合研究所 Membrane type resistance for flow rate sensor
DE9013464U1 (en) * 1990-09-25 1991-01-31 Arnheiter, Bernd, Dipl.-Phys., 4040 Neuss Temperature sensor
DE19540194C1 (en) * 1995-10-30 1997-02-20 Heraeus Sensor Gmbh Resistance thermometer for accurately measuring temperatures between -200 and 500 deg. C
EP1962070B1 (en) * 2006-10-23 2012-04-11 UST Umweltsensortechnik GmbH High temperature sensor and test method therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE828930C (en) * 1949-11-01 1952-01-21 W C Heraeus G M B H Platinschm Resistance thermometer
GB1002358A (en) * 1961-07-07 1965-08-25 Philco Corp Improvements in and relating to the manufacture of electrical components by coating of metal on to an insulating substrate
GB1248142A (en) * 1969-06-20 1971-09-29 Decca Ltd Improvements in or relating to electrical circuits assemblies
DE2450551C2 (en) * 1974-10-24 1977-01-13 Heraeus Gmbh W C ELECTRICAL RESISTOR FOR A RESISTANCE THERMOMETER AND PROCESS FOR ITS PRODUCTION
DE2507731C3 (en) * 1975-02-22 1978-09-07 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Measuring resistor for resistance thermometer and process for its manufacture
DE2527739C3 (en) * 1975-06-21 1978-08-31 W.C. Heraeus Gmbh, 6450 Hanau Process for the production of an electrical measuring resistor for a resistance thermometer
DE2558752C3 (en) * 1975-12-24 1978-10-19 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Process for the production of a sheet resistor as a measuring resistor for resistance thermometers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502856A (en) * 1984-07-31 1986-12-04 ロ−ズマウント インコ. Manufacturing method of platinum resistance thermometer
WO2007148454A1 (en) * 2006-06-23 2007-12-27 Nsk Ltd. Bearing device
JP2008002591A (en) * 2006-06-23 2008-01-10 Nsk Ltd Bearing device
US8221001B2 (en) 2006-06-23 2012-07-17 Nsk Ltd. Bearing apparatus

Also Published As

Publication number Publication date
JPH0145722B2 (en) 1989-10-04
DE3146020A1 (en) 1983-06-01
DE3146020C2 (en) 1985-11-07
GB2109998B (en) 1985-08-07
GB2109998A (en) 1983-06-08
FR2517056B1 (en) 1986-06-27
CH659342A5 (en) 1987-01-15
FR2517056A1 (en) 1983-05-27
DK503582A (en) 1983-05-21

Similar Documents

Publication Publication Date Title
US4434544A (en) Multilayer circuit and process for manufacturing the same
JPS61288401A (en) Thin film resistor
US4068022A (en) Methods of strengthening bonds
JPH0770366B2 (en) Electric resistor
US5032694A (en) Conductive film circuit and method of manufacturing the same
US4169032A (en) Method of making a thin film thermal print head
JPS58130502A (en) Temperature depending resistor
JPH11204304A (en) Resistor and its manufacture
US4613404A (en) Materials which exhibit a surface active effect with vacuum baked photoresists and method of using the same
KR900003849B1 (en) Circuit substrate and thermal printing head using the same caller identifying method
JPS60214544A (en) Method of bonding by contacting metal with insulating material
US4694568A (en) Method of manufacturing chip resistors with edge around terminations
JPH0661600A (en) Flexible circuit board
CA1153128A (en) Electrical circuit assemblies
JPH02114601A (en) Manufacture of electronic component
JPS625358B2 (en)
JPH0427180Y2 (en)
JPS63164450A (en) Electronic circuit component
JPS60198761A (en) Soldering method
JP2613197B2 (en) Manufacturing method of chip-shaped electronic component
JPH104263A (en) Electronic circuit substrate and its manufacturing method
JPS5942477B2 (en) thin film integrated circuit
JPH0376190A (en) Thin-film circuit board
JPH0778640A (en) Contact structure with oxide type superconductor and its forming method
JPS5911554B2 (en) Metal film formation method for insulator substrates