JPS58130250A - Ferritic iron and steel material having improved brittleness caused by irradiation of neutron, and its manufacture - Google Patents

Ferritic iron and steel material having improved brittleness caused by irradiation of neutron, and its manufacture

Info

Publication number
JPS58130250A
JPS58130250A JP412382A JP412382A JPS58130250A JP S58130250 A JPS58130250 A JP S58130250A JP 412382 A JP412382 A JP 412382A JP 412382 A JP412382 A JP 412382A JP S58130250 A JPS58130250 A JP S58130250A
Authority
JP
Japan
Prior art keywords
steel material
steel
irradiation
neutron
brittleness caused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP412382A
Other languages
Japanese (ja)
Inventor
Hiroshi Takaku
高久 啓
Hideo Kayano
茅野 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP412382A priority Critical patent/JPS58130250A/en
Publication of JPS58130250A publication Critical patent/JPS58130250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To obtain a ferrite iron and steel material used for an atomic reactor pressure vessel, etc., which is obtained by adding a trace of Ti or/and Al into the ferrite iron and steel material, and has improved brittleness caused by irradiation of a neutron. CONSTITUTION:In a component adjusting process in case of melting and making ferrite iron and steel, a ferrite iron and steel material which has improved brittleness caused by irradiation of a neutron is obtained by adding a trace of Ti or/ and Al. As a result, in a state that impurity elements of Cu, P, S, etc. remain contained, brittleness caused by irradiation of a neutron due to the presence of these impurity elements of a very small quantity is improved remarkably, by a very simple method. Also, as for this iron steel material, its brittle state can be restored remarkably by annealing treatment, and it can be utilized effectively for an atomic energy industrial field.

Description

【発明の詳細な説明】 本発明は原子炉圧力容器などに使用される、フェライト
系鉄鋼材料の中性子照射(=よる材質劣化の改善に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvement of material deterioration due to neutron irradiation of ferritic steel materials used in nuclear reactor pressure vessels and the like.

中性子の照射をうける機器、例えば原子炉の圧力容器そ
の他の構成材料として従来から第1表に示すような化学
的組成をもつ、低合金鋼や炭素鋼によって代表されるフ
ェライト系鉄鋼材料が使用されている。しかしこの鉄鋼
材料ではよく知られるように、含有される不純物元素で
ある銅(Cu)、燐(P)、硫黄(8)、バナジンMな
どを原因として、中性子により照射されたとき延性や靭
性の低−ドなどの所謂脆化を生じて材質の劣化を招き、
不測の事故の発生原因となる。従って圧力容器その他の
製作に当っては、慎重な材質の吟味が安全保持の面から
欠くことができないものとされるが、最近の傾向は不純
物元素の含有量が増大する傾向にあり、その対策が不可
避となりつ\ある。
Ferritic steel materials, represented by low-alloy steel and carbon steel, have traditionally been used as constituent materials for equipment that is exposed to neutron irradiation, such as the pressure vessels of nuclear reactors, and have the chemical compositions shown in Table 1. ing. However, as is well known in this steel material, due to the impurity elements contained in it, such as copper (Cu), phosphorus (P), sulfur (8), and vanadine M, ductility and toughness deteriorate when irradiated with neutrons. It causes so-called embrittlement such as low-density, which leads to deterioration of the material.
This may cause unexpected accidents. Therefore, when manufacturing pressure vessels and other equipment, careful examination of materials is essential from the standpoint of maintaining safety. However, the recent trend is toward an increase in the content of impurity elements, and countermeasures are being taken to prevent this. is becoming inevitable.

そこで例えば銅(Cu) l二対しては原料であるスク
ラップ、即ち屑鉄鋼を厳選する方法をとり、また燐(P
)、硫黄(S)などの残余の不純物元素分に対しては、
溶解炉の内外に特別の精錬工程を設けて極力排除するこ
とが行われているが、しかしこれでは必然的に製造コス
トの−E昇を招いて、圧力容器その他の製品コストの上
昇が不可避である欠点がある。
Therefore, for example, for copper (Cu), we carefully select scrap, that is, scrap steel, which is the raw material, and for phosphorus (P).
), for remaining impurity elements such as sulfur (S),
A special refining process is installed inside and outside the melting furnace to eliminate as much as possible, but this inevitably leads to an increase in manufacturing costs and an unavoidable increase in the cost of pressure vessels and other products. There is a certain drawback.

本発明は製品コストの上昇を招くような、不純物元素の
除去のための特殊の考慮を全く必要とすることなく、微
量の特定合金元素を添加するという極めて簡単な方法に
より、不純物元素を含有したま\で、中性子照射による
材質の脆化の少ないフェライト系鉄鋼材料が得られるこ
とを明らかにしてなされたものである。次に図面を用い
てその詳細を説明する。
The present invention does not require any special considerations for the removal of impurity elements, which would lead to an increase in product cost, and uses an extremely simple method of adding a trace amount of a specific alloying element. This work was done by demonstrating that a ferritic steel material with less embrittlement due to neutron irradiation can be obtained. Next, the details will be explained using the drawings.

本発明は通常容易に得られる微量のチタン(Ti)とア
ルミニウム(AJ)の何れか一方、または双方を製鋼熔
解時の成分調整過程C二おいて添加するという、極めて
簡単な方法によって作ることを特徴とし、これによって
上記のような銅、燐、硫黄などの微量不純物元素の含有
に起因する、中性子照射による脆化を著しく改善でき、
しがも焼鈍処理によって脆化の著しい回復が図られるこ
とがら、最近提案されている圧力容器の焼鈍処理による
脆化の回復操作にも大きな貢献をなすことを明らかにし
てなされたものである。
The present invention is made by an extremely simple method in which a trace amount of titanium (Ti) and/or aluminum (AJ), which are usually easily obtained, is added in the component adjustment step C2 during melting of steel. This feature significantly improves the embrittlement caused by neutron irradiation caused by the inclusion of trace impurity elements such as copper, phosphorus, and sulfur.
This study was made based on the fact that embrittlement can be significantly recovered by annealing, and this work also makes a significant contribution to the recently proposed annealing process for pressure vessels to recover from embrittlement.

第2表は従来の鋼材と本発明の鋼材とについて、中性子
照射時における降伏応力、引張応力および全伸びがどの
ように推移するかを示した比較実験結果であり、また図
は焼鈍処理による脆化の回復挙動の比較実験結果である
。また第3表は上記比軸実験結果に使用された鋼材の化
学的組成を示すもので、表中中種0は前記したスクラッ
プの厳選、特別の精錬工程を経て低Cu化、低P化、低
S化などを図った従来鋼材を示すもので、その下欄に現
在原子炉圧力容器鋼として使用されている、所謂A38
3B鋼の材料組成に関する規格値を参考として示してい
る。また表中5Cは不純物元素の含有による影響を調べ
るため、0鋼材に0.5重量%の銅を添加した鋼材を示
し、5C5Aは銅を添加した1℃鋼材ζ;、本発明脆化
改善合金元素である0、5重量%のアルミニウム(Al
)を添加したものである。また5C5Tは5C鋼に0.
5重量%のチタン(Ti)を添加した鋼材、5C10T
は上記5C鋼第   2   表 に1.0重量%のチタン(Tりを添加した鋼材である。
Table 2 shows the results of a comparative experiment showing how the yield stress, tensile stress, and total elongation change during neutron irradiation for conventional steel materials and the steel material of the present invention, and the figure shows how the yield stress, tensile stress, and total elongation change during neutron irradiation. These are the results of a comparative experiment on the recovery behavior of oxidation. In addition, Table 3 shows the chemical composition of the steel materials used in the above-mentioned specific axis experiment results. In the table, the middle grade 0 is made by carefully selecting the scrap mentioned above and undergoing a special refining process to reduce Cu and P. It shows conventional steel materials with low S content, etc. The column below shows so-called A38 steel, which is currently used as reactor pressure vessel steel.
Standard values for the material composition of 3B steel are shown for reference. In addition, in the table, 5C indicates a steel material in which 0.5% by weight of copper is added to a zero steel material in order to investigate the influence of the inclusion of impurity elements, and 5C5A indicates a 1°C steel material ζ with copper added; 0.5% by weight of elemental aluminum (Al
) is added. Also, 5C5T is 0.0% compared to 5C steel.
Steel material with 5% by weight of titanium (Ti) added, 5C10T
is a steel material to which 1.0% by weight of titanium (T) is added to the above 5C steel in Table 2.

また表中5Pは燐による影響を明らかにするため、O鋼
材に05重量%の燐(p)を添加してf′1られた鋼材
であり、5P5Aは5P鋼に05重)11係のアルミニ
ウム(Al)を添加して作られた鋼材である。
In addition, 5P in the table is a steel material that has been subjected to f'1 by adding 05% by weight of phosphorus (p) to O steel material in order to clarify the influence of phosphorus, and 5P5A is a steel material that has been subjected to f'1 by adding 05% by weight of phosphorus (p) to 5P steel material. It is a steel material made by adding (Al).

第2表が明らかにするように、供試鋼材のすべてが通常
原子炉圧力容器において予想される11x l On 
/ cTlおよび1.2X10  n /crI(E>
 1 & V )  の中性子照射において、降伏応力
および引張応力を増大する。また脆化に大きく関係する
全伸びは供試鋼材のすべてにおいて低下するが、特に微
量の銅(Cu)を含有する5C鋼においては、非照射時
が25.1%に対し中性子照射時においては6.9%(
1,1xlo  n/c++り、17%(1,2X10
  n/crI)であって最も小さい値を示し、微量の
燐(p)を含有させた5P鋼がこれについで小さい値を
示して、銀燭に起因する脆化の促進が顕著に見られる。
As Table 2 reveals, all of the steels tested were 11x l On, which is normally expected in a reactor pressure vessel.
/cTl and 1.2X10 n /crI (E>
1 & V) increases the yield stress and tensile stress upon neutron irradiation. In addition, the total elongation, which is largely related to embrittlement, decreases in all steel samples, but in particular, in 5C steel containing a trace amount of copper (Cu), it is 25.1% when not irradiated, but when irradiated with neutrons, it is 25.1%. 6.9% (
1,1xlo n/c++ri, 17% (1,2x10
n/crI), which showed the smallest value, and 5P steel containing a trace amount of phosphorus (p) showed the next smallest value, and the promotion of embrittlement caused by silver candles was clearly seen.

これに対し5C鋼に微量のアルミニウム(A/)とチタ
ン(Ti)を添加した。5c5A鋼と5C5T鋼におい
ては全伸びの低下は著し。
On the other hand, trace amounts of aluminum (A/) and titanium (Ti) were added to 5C steel. The decrease in total elongation was significant for 5c5A steel and 5C5T steel.

く緩和されて、例えば5C5A鋼においては9.9チ、
5.3%、また5C5T鋼においては11.6%、51
%となり、低不純物元素含有鋼である0鋼材の134チ
と6.2%に近い値にまで改善されることを示している
。またチタン(Ti)の添加量を5C5Tより大とした
5C10Tにおいても同様な結果を示しており、更に燐
を含有する5P鋼においては全伸びは0鋼材の%となる
が、アルミニウム(Al)を添υ口した5P5Aにおい
てはO鋼材の62%に近い61%となり、著しい改善を
示す。
For example, in 5C5A steel, it is 9.9 cm,
5.3%, and 11.6% in 5C5T steel, 51
%, which is an improvement to a value close to 134% and 6.2% for 0 steel, which is steel containing low impurity elements. Similar results were also shown for 5C10T, in which the amount of titanium (Ti) added was greater than that of 5C5T.Furthermore, in 5P steel containing phosphorus, the total elongation was 0% of that of steel, but when aluminum (Al) was added, In the case of 5P5A with the addition of υ, it was 61%, which is close to 62% of the O steel material, showing a remarkable improvement.

また第2表においては示していないが、以上の結果から
アルミニウム(Al)とチタン(T1)の両者を添加し
た場合にも、改善効果を示すことを容易に類推でき、こ
れから本発明による微量の合金元素の添加が不純物元素
による全伸びの低下、即ち脆化の改善に大きな効果を示
すことが顕著に示されている。
Although not shown in Table 2, it can be easily inferred from the above results that an improvement effect is also exhibited when both aluminum (Al) and titanium (T1) are added. It has been clearly shown that the addition of alloying elements has a significant effect on reducing the total elongation, that is, improving embrittlement, caused by impurity elements.

次に図は第3表に示した鋼材5C15C5A、5C5T
、5CIOTに対して1.lX10  n/c++!(
E>1MeV)の中性子照射を行ったのち、1時間の焼
なまし処理を行った場合の全伸びの回復挙動を調査した
結果である。これから明らかなように、非照射の状態を
示す白印でプロットされたA曲線群と、中性子照射時の
状態を示す黒印でプロットされたB曲線群とから明らか
なように、焼なまし温度の上昇と共に中性子照射により
低下した全伸びの回復の度合は大となるが、低不純物元
素含有鋼(0鋼材)に銅を添加して作った5C鋼材に対
して、微量の合金元素を添加した5C5A、5C5T、
5C10T鋼材の回復が著しく、焼なまし温度600℃
(873°K)において殆ど非照射時の全伸びまで回復
することが示されている。
Next, the figure shows steel materials 5C15C5A and 5C5T shown in Table 3.
, 1 for 5 CIOT. lX10 n/c++! (
These are the results of investigating the recovery behavior of total elongation when annealing was performed for 1 hour after neutron irradiation (E>1 MeV). As is clear from this, the A curve group plotted with white marks indicating the non-irradiated state and the B curve group plotted with black marks indicating the state during neutron irradiation, the annealing temperature The degree of recovery of the total elongation decreased by neutron irradiation increases as the 5C5A, 5C5T,
The recovery of 5C10T steel is remarkable, and the annealing temperature is 600℃.
(873°K), it has been shown that the elongation almost recovers to the full elongation when not irradiated.

このことは圧力容器の焼なまし処理の適用が、そ△ の強度保持上極めて有利な条件となることを示し2てい
る。
This shows that application of annealing treatment to pressure vessels is an extremely advantageous condition for maintaining its strength2.

ところで本発明のようにチタン(T1)アルミニウム(
Al)の微量添加が、何故に中性子照射脆化の改善に寄
与するかの理由については、現在これを明確に与えにく
いが、おそらくチタン、アルミニウムの微量添加によっ
て、内部複合体の状態および性質が中性子照射による脆
化感受性を弱めるように変化することによるものと考え
られる。このことは添付参考写真即ち第3表の低不純物
含有のO鋼材、これに銅を添加した5C鋼材、この5C
鋼に微量のチタン(TI)を添加した本発明の5C5T
鋼材における、中性子非照射時と1.2 X 1020
n/crd (E> I Me V )の中性子照射時
の内部組織写真が成る程度これを証明しているものと考
えられる。即ちO鋼材と50鋼材に対する非照射時と照
射時の写真(a)(b)および(c)(d)と、5C5
T鋼材における非照射時と照射時の写真tel(f)と
を対比して明らかなように、5C5T鋼材の場合には微
量のチタン(Tりの添加によって、粒径02μm前後の
チタン炭化物(TiC)の析出が認められ、これが中性
子照射感受性の小さい内部状態を形成することによるも
のと思われるが、これについては以上の実施例に示した
以外のフェライト系の低合金鋼および炭素鋼についても
容易に類推できる。従ってこれから実施例以外のフェラ
イト系鉄鋼材料に対しても、微量の銅や燐などの不純物
元素の含有に起因して促進される中性子照射脆化を改1
;(1できる。
By the way, as in the present invention, titanium (T1) aluminum (
It is currently difficult to give a clear explanation as to why the addition of a small amount of Al) contributes to improving neutron irradiation embrittlement, but it is probably due to the addition of a small amount of titanium and aluminum that changes the state and properties of the internal composite. This is thought to be due to a change that weakens the susceptibility to embrittlement due to neutron irradiation. This can be seen in the attached reference photos, that is, the O steel material with low impurity content in Table 3, the 5C steel material with copper added to it, and this 5C steel material.
5C5T of the present invention with a trace amount of titanium (TI) added to steel
Steel material, when not irradiated with neutrons and 1.2 x 1020
This is considered to be evidenced by the photograph of the internal structure taken during neutron irradiation of n/crd (E>I Me V ). That is, photos (a), (b), (c), and (d) of O steel material and 50 steel material when not irradiated and when irradiated, and 5C5
As is clear from the comparison of the photo tel (f) of the T steel material when it is not irradiated and when it is irradiated, in the case of the 5C5T steel material, due to the addition of a trace amount of titanium (T), titanium carbide (TiC) with a grain size of around 02 μm is ) was observed, and this is thought to be due to the formation of an internal state with low neutron irradiation sensitivity, but this can easily be seen in ferritic low-alloy steels and carbon steels other than those shown in the examples above. Therefore, it can be inferred that neutron irradiation embrittlement, which is promoted due to the inclusion of trace amounts of impurity elements such as copper and phosphorus, will be improved for ferritic steel materials other than the examples.
;(I can do 1.

以上の説明から明らかなように、本発明によれば製品コ
ストの上昇を招くような、不純物元素除去のための特殊
の考慮を全く必要とすることなく、特定された微量の合
金元素を成分調整時に添加する極めて簡単な方法により
、不純物元素を含有したま\で中性子照射による材質の
脆化の少ないフェライト系鉄鋼材料が得られるもの、で
、原子カニ業分野における貢献には著しいものがある。
As is clear from the above explanation, according to the present invention, there is no need for any special consideration for removing impurity elements, which would lead to an increase in product costs, and the composition of the identified trace alloying elements is adjusted. Ferritic steel materials that contain impurity elements and are less susceptible to embrittlement due to neutron irradiation can be obtained by an extremely simple method of adding ferritic materials, making a remarkable contribution to the field of atomic crab industry.

【図面の簡単な説明】[Brief explanation of the drawing]

図は焼なまし処理による脆化の回復挙動を示す全伸びと
焼なまし温度の関係図である。
The figure is a diagram showing the relationship between total elongation and annealing temperature, showing the recovery behavior of embrittlement caused by annealing treatment.

Claims (2)

【特許請求の範囲】[Claims] (1)  フェライト系鉄鋼材料中に、微量のチタンま
たはアルミニウムまたはその双方を添加して中性子照射
脆化を改善したことを特徴とする中性子照射による脆化
を改善したフェライト系鉄鋼材料。
(1) A ferritic steel material with improved embrittlement due to neutron irradiation, which is characterized by adding a small amount of titanium or aluminum or both to the ferritic steel material to improve embrittlement caused by neutron irradiation.
(2)製鋼時の成分調整過程において、微量のチタで作
ることを特徴とする中性子照射脆化を改善ハ したフェライト系鉄鋼材料の製造方法。
(2) A method for producing a ferritic steel material that improves neutron irradiation embrittlement, which is characterized by using a small amount of titanium in the component adjustment process during steel manufacturing.
JP412382A 1982-01-14 1982-01-14 Ferritic iron and steel material having improved brittleness caused by irradiation of neutron, and its manufacture Pending JPS58130250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP412382A JPS58130250A (en) 1982-01-14 1982-01-14 Ferritic iron and steel material having improved brittleness caused by irradiation of neutron, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP412382A JPS58130250A (en) 1982-01-14 1982-01-14 Ferritic iron and steel material having improved brittleness caused by irradiation of neutron, and its manufacture

Publications (1)

Publication Number Publication Date
JPS58130250A true JPS58130250A (en) 1983-08-03

Family

ID=11576004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP412382A Pending JPS58130250A (en) 1982-01-14 1982-01-14 Ferritic iron and steel material having improved brittleness caused by irradiation of neutron, and its manufacture

Country Status (1)

Country Link
JP (1) JPS58130250A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829005A (en) * 1971-08-16 1973-04-17
JPS51112415A (en) * 1975-03-28 1976-10-04 Sumitomo Metal Ind Ltd Molten steel additives
JPS53112218A (en) * 1976-12-23 1978-09-30 Molycorp Inc Method of producing alloy consisting of aluminum* silicon and third metal selected from rare earth metals and metals of 4b* 5b and 6b groups of periodic table

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829005A (en) * 1971-08-16 1973-04-17
JPS51112415A (en) * 1975-03-28 1976-10-04 Sumitomo Metal Ind Ltd Molten steel additives
JPS53112218A (en) * 1976-12-23 1978-09-30 Molycorp Inc Method of producing alloy consisting of aluminum* silicon and third metal selected from rare earth metals and metals of 4b* 5b and 6b groups of periodic table

Similar Documents

Publication Publication Date Title
JP4536119B2 (en) Elements for use in nuclear reactors, comprising a zirconium-based alloy having creep resistance and corrosion resistance to water and water vapor, and a method for producing the same
US4227925A (en) Heat-resistant alloy for welded structures
WO2016006280A1 (en) Austenitic stainless steel and method for producing same
US4162930A (en) Austenitic stainless steel having excellent resistance to intergranular and transgranular stress corrosion cracking
DE3020844A1 (en) HIGHLY HEAT-RESISTANT, BOTH AGAINST NEUTRON-INDUCED THRESHOLD, ALSO RESISTANT TO CORROSION IN LIQUID SODIUM, AUSTENITIC IRON-NICKEL-CHROME ALLOYS
CA2876847C (en) Austenitic alloy tube
US4503129A (en) Shielded metal arc welding electrode for Cr-Mo low alloy steels
EP0909830A1 (en) Hot working high chromium alloy
JPS59190351A (en) Austenite structure stainless steel available for use under high temperature
JP2002509991A (en) Alloys and tubes for nuclear fuel assemblies and methods of making them
JPS58130250A (en) Ferritic iron and steel material having improved brittleness caused by irradiation of neutron, and its manufacture
US3576622A (en) Nickel-base alloy
JPH0114991B2 (en)
US2624669A (en) Ferritic chromium steels
US4816214A (en) Ultra slow EB melting to reduce reactor cladding
JP3297698B2 (en) Method for producing B-containing stainless steel and B-containing stainless steel
US4744824A (en) Method of producing metallic materials for the components of nuclear reactors
JPS6277446A (en) Electrode alloy for glass melting furnace
JPS5839910B2 (en) Tubular body for nuclear reactor
JPH0132290B2 (en)
US3370940A (en) Iron-nickel alloys
JPH0425342B2 (en)
JPS6039118A (en) Manufacture of austenitic stainless steel containing boron and having superior resistance to intergranular corrosion and intergranular stress corrosion cracking
JPS59110767A (en) Austenite stainless steel
JPS61130465A (en) Austenitic stainless steel containing boron and having superior intergranular corrosion resistance