JPS58129989A - Continuous preparation of alcohol by fermentation - Google Patents

Continuous preparation of alcohol by fermentation

Info

Publication number
JPS58129989A
JPS58129989A JP57012055A JP1205582A JPS58129989A JP S58129989 A JPS58129989 A JP S58129989A JP 57012055 A JP57012055 A JP 57012055A JP 1205582 A JP1205582 A JP 1205582A JP S58129989 A JPS58129989 A JP S58129989A
Authority
JP
Japan
Prior art keywords
fermentation
alcohol
carrier
fermenting device
fermenting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57012055A
Other languages
Japanese (ja)
Other versions
JPS6136920B2 (en
Inventor
Kenji Kida
建次 木田
Shigeru Morimura
茂 森村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP57012055A priority Critical patent/JPS58129989A/en
Publication of JPS58129989A publication Critical patent/JPS58129989A/en
Publication of JPS6136920B2 publication Critical patent/JPS6136920B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

PURPOSE:To improve the yield of an alcohol from a raw material saccharide, by setting a fermenting device having a means of separate a carrier from a fermented solution in the front part and a fermenting device of the fluidized bed type in the rear part, cultivating a bacterium capable of ferementing an alcohol attached to a carrier in the front part and an immobilized yest in the rear part. CONSTITUTION:For example, a solution of waste molasses diluted by five times is fed through the pump 71 to the fermenting device 51, sent from the branched part 53b with a small diameter of the solid-liquid separating part 51 of the device through the pump 72 to the fermenting device 61 of the fluidized bed type, and circulated through the pump 73. A bacterium capable of fermenting an alccohol attached to a carrier is cultivated in the fermenting device 51, and an immobilized yeast in the fermenting device 61 under fluidizing conditions. The solution of waste molasses is fermented in high yield by the two kinds of microorganisms. The fermented solution having finished fermentation is taken out of the top 62 of the fermenting device 61. The bacterium in the fermenting device 51 is separated by the solid-liquid separating member 53 and reused.

Description

【発明の詳細な説明】 本発明は醗酵によるアルコールの連続製造法に関する。[Detailed description of the invention] The present invention relates to a method for continuous production of alcohol by fermentation.

近年石油代替エネルギーとして、石油化学によらずに得
られる醗酵アルコールが脚光を浴びている。これはさと
うきびやこれから採った糖蜜、さつまいも、じゃがいも
、とうもろこし°等。
In recent years, fermented alcohol, which can be obtained without using petrochemicals, has been in the spotlight as an energy alternative to petroleum. This includes sugar cane, molasses, sweet potatoes, potatoes, corn, etc.

のセルロース質ないしはでん粉質を原料とし、これらを
菌体の作用によって醗酵させて製造する。この方法では
、アルコールの生産性は菌体濃度に依存すると考えらn
ている。そのため菌体濃度を高めるために、菌体を循環
させる方法や、酵母を多糖系物質中に包括させるいわゆ
る固定化増殖菌体法等が開発されつつある。しかし前者
の場合、菌体を濃縮分離するのに用いる遠心分離器が、
培養液中に存在する固形物によって目詰まりないしはノ
ズル詰まりをきたし、菌体の循環が次第に困難になる。
The raw material is cellulose or starch, and it is produced by fermenting it through the action of bacterial cells. In this method, alcohol productivity is considered to depend on bacterial cell concentration.
ing. Therefore, in order to increase the bacterial cell concentration, a method of circulating the bacterial cells and a so-called immobilized cell growth method in which yeast is encapsulated in a polysaccharide-based substance are being developed. However, in the former case, the centrifugal separator used to concentrate and separate the bacterial cells is
Solid matter present in the culture solution causes clogging or nozzle clogging, making it increasingly difficult to circulate the microbial cells.

そのため遠心分離器を定期的に洗浄してやる必要があり
、作業がはなはだ面倒になる。また後者の場合には、工
業的規模で大量生産するには、技術的に解決困難な問題
が多い。
Therefore, it is necessary to periodically clean the centrifuge, which makes the work extremely troublesome. In the latter case, there are many technical problems that are difficult to solve in mass production on an industrial scale.

本発明者らは、このような実情に鑑み、醗酵槽内の菌体
濃度を高めるべく鋭意研究を重ねた結果、本発明を完成
するに至った。
In view of these circumstances, the inventors of the present invention have conducted extensive research to increase the concentration of bacterial cells in the fermenter, and as a result, have completed the present invention.

この発明によるアルコールの製造法は、反応液から担体
を分離する分離手段を備えた醗酵装Q したアルコール醗酵能を有する細菌を培養するとともに
、後段で固定化酵母を培養することを特徴とする醗酵に
よるアルコールの連続製造法である。
The method for producing alcohol according to the present invention is a fermentation device Q equipped with a separation means for separating a carrier from a reaction solution. This is a continuous alcohol production method.

分離手段を備えた醗酵装置の例としてはっぎのものが挙
げられる。すなわち第1図(イ)に示す醗酵装置(1)
は、撹拌* t21を備えた醗酵槽(3)の側部に担体
沈降部(4)を設け、回部(4)に担体を沈降分離させ
て同槽外への流出を防ぐようにしたものである。また第
1図(ロ)に示す醗酵装置Cl11は1゜撹拌機a々を
備えた醗酵槽(13の外部に担体沈降槽0揚を設けて、
醗酵槽αJから流出した担体を沈降槽(141内に沈降
分離させ、沈降した担体を醗酵槽031へ戻すようにし
たものである。また第1図(ハ)に示す醗酵装置21+
は、醗酵槽@の槽底部に撹拌翼■を配置し、翼の上方に
垂直に円筒状の液循環部材(2句を配置して、反応液を
回部材■内を流下させて構内を循環させ、液循環部材−
の上方で、担体を反応液から分離するようにしたもので
ある。さらに第1図に)に示す醗酵装置(31)は、撹
拌機■を備えた醗酵槽国内に、担体を反応液から分離す
る略Y字管状の固液分離部材(財)を配置 置し、大径分岐部から炭酸ガスを排出し、小径分岐部か
ら反応液を取出すようにしたものである。そしてこれら
醗酵装置fi+ 01121) C311はいずれもp
Hおよび温度を至適値に制御できるように構成さnてい
る。
An example of a fermentation device equipped with a separation means is Haggi's. In other words, the fermentation apparatus (1) shown in Figure 1 (a)
A fermentation tank (3) equipped with stirring*t21 is provided with a carrier sedimentation section (4) on the side, and the carrier is sedimented and separated in the circulation section (4) to prevent it from flowing out of the tank. It is. Furthermore, the fermentation apparatus Cl11 shown in FIG.
The carrier flowing out from the fermentation tank αJ is separated by sedimentation in a sedimentation tank (141), and the sedimented carrier is returned to the fermentation tank 031.Furthermore, the fermentation apparatus 21+ shown in FIG.
In this method, a stirring blade ■ is placed at the bottom of the fermentation tank @, and a cylindrical liquid circulation member (two pieces) is placed vertically above the blade to allow the reaction liquid to flow down inside the circulation member ■ and circulate within the premises. and liquid circulation member-
The carrier is separated from the reaction solution above the reactor. Furthermore, the fermentation apparatus (31) shown in Fig. 1) has a solid-liquid separation member (property) in the shape of an approximately Y-shaped tube for separating the carrier from the reaction liquid placed inside the fermentation tank equipped with an agitator (2). Carbon dioxide gas is discharged from the large-diameter branch, and the reaction liquid is taken out from the small-diameter branch. And these fermentation devices fi+ 01121) C311 are all p
The structure is such that H and temperature can be controlled to optimum values.

流動層型醗酵装置は、第2図に示すように、ガラス製の
醗酵槽(41)を主体とし、温度制御およびpH制御で
きるように構成されている。そして醗酵原料はポンプ(
ハ)によって四槽(41)の底部に供給され、反応液は
ポンプ(43)で四槽の頂部から底部に戻され、槽頂の
担体沈降部(圓から流出するようになっている。また充
填式醗酵装置としては通常のものが用いられる。
As shown in FIG. 2, the fluidized bed fermentation apparatus is mainly composed of a glass fermentation tank (41) and is configured to be able to control temperature and pH. And the fermentation raw materials are pumped (
The reaction solution is supplied to the bottom of the four tanks (41) by the pump (43), and is returned from the top to the bottom of the four tanks by the pump (43), and flows out from the carrier sedimentation section (circle) at the top of the tank. A conventional packed fermentation device is used.

そしてこれら醗酵装置は、第3図に示すように、分離手
段を備えた醗酵装置が前段にまた流動層型ないし充填式
醗酵装置が後段になるように配されている。
As shown in FIG. 3, these fermentation apparatuses are arranged such that a fermentation apparatus equipped with a separation means is at the front stage, and a fluidized bed type or packed type fermentation apparatus is at the rear stage.

前段において、菌体付着用の担体は、耐摩耗性および流
動性のよい小径粒体であればよく、最適例としては粉砕
ヒル石が挙げられる。担体はセラミック製やプラスチッ
ク製のものであってもよい。アルコール醗酵能を有する
細菌としては、ザイモモナス・モービリス(Zymom
onaamobilia)が、担体への優れた自然付着
性を有するために好ましく用いられる。この細菌はケー
ン(cane)・ジュースや廃糖蜜中に含まれる醗酵性
糖のうち、シュクロース、グルコース、フラクトースを
醗酵させて、アルコールを生成する。
In the first stage, the carrier for attaching the bacterial cells may be small-diameter particles with good abrasion resistance and fluidity, and an optimal example is crushed vermiculite. The carrier may be made of ceramic or plastic. Bacteria with alcohol fermentation ability include Zymomonas mobilis (Zymomonas mobilis).
onaamobilia) is preferably used because it has excellent natural adhesion to the carrier. This bacterium ferments sucrose, glucose, and fructose among the fermentable sugars contained in cane juice and blackstrap molasses to produce alcohol.

アルコール醗酵能を有する細菌は、自然付着性のよいも
のであればよ(、上記細菌に限定されない。W段で担体
付着菌体を培養することにより、槽内の菌体濃度を高め
て、上記醗酵性糖からのアルコールの生産性を向上させ
ることができる。
Bacteria with alcohol fermentation ability may be any bacteria that has good natural adhesion (but is not limited to the above bacteria. By culturing the bacteria adhering to the carrier in the W stage, the concentration of bacteria in the tank can be increased, and the above bacteria can be used. The productivity of alcohol from fermentable sugar can be improved.

後段において、固定化酵母はアルコール醗酵能を有する
ものであればよく、とりわけサツカロ□マイセス(Sa
ccharomyces)属のものが好んで用いられる
。固定化酵母は酵母がポリアクリルアミドゲル、アルギ
ン酸ソーダ、K1カラギーナン等で常法により包括され
ることにより固定化されたものである。そして後段にお
いて固定化酵母を培養することによって、醗酵性糖のう
ち前段において細菌によって醗酵さゎ、なかった未反応
の醗酵性糖を醗酵させて、アルコールを生成し、糖から
のアルコール醗酵収率を向上させることができる。
In the latter stage, the immobilized yeast may be of any type as long as it has alcohol fermentation ability, and in particular, Saccharomyces
Those of the genus Ccharomyces are preferably used. Immobilized yeast is one in which yeast is immobilized by entrapping it in polyacrylamide gel, sodium alginate, K1 carrageenan, etc. using a conventional method. Then, in the latter stage, by culturing the immobilized yeast, unreacted fermentable sugars that were not fermented by bacteria in the previous stage are fermented to produce alcohol, and the alcohol fermentation yield from sugar is increased. can be improved.

この発明によるアルコール製造法は以上のとおり構成さ
れているので、つきのような効果が奏される。
Since the alcohol production method according to the present invention is configured as described above, effects similar to those described above are produced.

(1)  前段では、菌体を付着するための担体を用い
るので、菌体の付着し得る固体表面積を太キ<L、”c
、s槽内の菌体濃度を高めることができ、その結果アル
コールの生産性を大幅に向上させることができる。
(1) In the first step, a carrier is used to attach the bacterial cells, so the solid surface area to which the bacterial cells can adhere is determined by
, the bacterial cell concentration in the S tank can be increased, and as a result, alcohol productivity can be significantly improved.

(2)  後段では固定化酵母を培養するので、前段で
醗酵されなかった未反応の醗酵性糖を酵母によって醗酵
させることができ、その結果醗酵収率を大幅に向上させ
ることができる。
(2) Since immobilized yeast is cultured in the latter stage, unreacted fermentable sugars that were not fermented in the first stage can be fermented by the yeast, and as a result, the fermentation yield can be significantly improved.

(3)  前段では担体への付着性のよい菌体を用いる
ので、菌体の平均終端速度が大きくなり、そのため菌体
を簡単な分離手段で反応液から分離することができ、設
備費の点で大きな利点が得られる。
(3) Since cells with good adhesion to the carrier are used in the first stage, the average terminal velocity of the cells is high, and therefore the cells can be separated from the reaction solution by a simple separation method, reducing equipment costs. You can get big advantages.

比較例1 静置培養用の醗酵槽を用い、微生物としてす’7 カC
I ?イセXSホル%センシス(Saceharomy
eesformosensia)IFO寄託第0216
号(以下、微生物Aと称する)を用い、醗酵原料として
滅菌済の5倍希釈ケーン廃糖蜜培地(酵母エキス: 3
9/l、(NH4)2804 : 1 f/l。
Comparative Example 1 Using a fermenter for static culture, microorganisms were grown.
I? Ise XS Hol%sensis (Saceharomy)
eesformosensia) IFO Deposit No. 0216
(hereinafter referred to as microorganism A), sterilized 5-fold diluted Cane's molasses medium (yeast extract: 3
9/l, (NH4)2804: 1 f/l.

KH2PO4二1グ/lおよびM g Cl 2・6H
20:0.5グ/jを含む)を用い、醗酵温度30℃に
おける回分醗酵を行ない、醗酵特性を経時的に調べた。
KH2PO421g/l and MgCl2.6H
Batch fermentation was carried out at a fermentation temperature of 30° C. and the fermentation characteristics were examined over time.

上記微生物の代わりに、協和醗酵社製パン酵母(以下、
微生物Bと称する)、ザイモモナス・モービリスIFO
寄託第13756号(以下、微生物Cと称する)および
ザイモモナス・モービリスATCC寄託第10988号
(以下、微生物゛Dと称する)を用いて、それぞれ上記
操作を繰返した。
Instead of the above microorganisms, baker's yeast manufactured by Kyowa Hakko Co., Ltd. (hereinafter referred to as
Microorganism B), Zymomonas mobilis IFO
The above operation was repeated using Deposit No. 13756 (hereinafter referred to as Microorganism C) and Zymomonas mobilis ATCC Deposit No. 10988 (hereinafter referred to as Microorganism D), respectively.

ル濃度の関係を第4図に示す。同図かられかるように、
アルコール醗酵能については微生物^が最もすぐれ(2
日目で約559 / / ) 、つぎが微生物Bであり
、微生物CおよびDでは4日目においてもアルコール濃
度は約409/lにすぎなかった。
Figure 4 shows the relationship between the concentrations of the fluorophores. As you can see from the same figure,
Regarding alcohol fermentation ability, microorganisms^ are the best (2
The alcohol concentration was approximately 559//l on the fourth day, followed by microorganism B, and the alcohol concentration of microorganisms C and D was only approximately 409/l even on the fourth day.

比較例2 第2図に示す実容積0,7jの流動層型醗酵装置を用い
た。この醗酵装置にアルギン酸ソーダで包括した固定化
酵母サツカロマイセス・ホルモセンシス(Saecha
romyeea formoaensis )I FO
寄託第0216号を、培地に対して約5 vo1%にな
るように充填し、醗酵原料として比較例1で用いたのと
同じ滅菌済の5便希釈ケーン廃め 糖蜜培地を、流量0.03//hて醗酵検眼に連下に連
続醗酵を行なった。
Comparative Example 2 A fluidized bed fermentation apparatus with an actual volume of 0.7j shown in FIG. 2 was used. The immobilized yeast Saecha formocensis (Saecha
romyeea formoaensis ) I FO
Deposit No. 0216 was filled to a concentration of about 5 vol% to the culture medium, and the same sterilized 5-diluted Cane waste molasses medium used in Comparative Example 1 was used as a fermentation raw material at a flow rate of 0.03. //h Continuous fermentation was carried out for fermentation optometry.

反応後の流出反応液中のエタノール濃度は、回分醗酵(
比較例1)の場合とほぼ等しく、約55971であった
The ethanol concentration in the effluent reaction solution after the reaction is determined by the batch fermentation (
It was about 55,971, which is almost the same as in Comparative Example 1).

実施例 $3図に示す醗酵装置を用いた。これは第1図に)に示
す実容積1,21の醗酵装置と、第2図に示す実容積0
.77の流動層型醗酵装置とを前後に配したものである
。そして前段槽511は撹拌器畷を有し、温度制御およ
びpH制御できるように構成さnlまた担体を反応液か
ら分離する略Y字管状の固液分離部材[株]を備え、同
部材[株]の大径分岐部(53m)から炭酸ガスを排出
し、小径分岐115 (53b)から反応液を排出する
ようになされている。他方、後段槽(61)はやはり温
度制御およびpH制御できるように構成さn1槽頂部に
担体沈降部(62)を有する。そして醗酵原料はポンプ
(71)で前段槽1511に供給さnlついで反応液は
ポンプ(72)で前段槽・151)から後段槽(61)
に送られ、ポンプ(73)で後段槽(61)内を循環さ
せられるようになっている。
Example $3 A fermentation apparatus shown in Figure 3 was used. This consists of a fermenter with an actual volume of 1 and 21 as shown in Figure 1) and a fermenter with an actual volume of 0 as shown in Figure 2.
.. 77 fluidized bed fermentation devices are arranged in front and behind. The pre-stage tank 511 has a stirring rack, is configured to be able to control temperature and pH, and is equipped with a substantially Y-shaped solid-liquid separation member [Co., Ltd.] for separating the carrier from the reaction liquid. ] Carbon dioxide gas is discharged from the large diameter branch (53m), and the reaction liquid is discharged from the small diameter branch 115 (53b). On the other hand, the latter stage tank (61) is also configured to be able to control temperature and pH, and has a carrier sedimentation section (62) at the top of the n1 tank. Then, the fermentation raw material is supplied to the first stage tank 1511 by the pump (71), and then the reaction liquid is transferred from the first stage tank 151) to the second stage tank (61) by the pump (72).
The water is sent to the tank and circulated in the latter tank (61) by a pump (73).

グルコース         100グ/j酵母エキス
          3 f/lKH2PO419/1 (NH4)2804        1り71MgC1
2・6H200,5f/1 消泡剤(来夏シリコン社製)       0.397
1からなる培地を前段槽allに400 m / %後
段槽(61)に600 m lそれぞれ充填し、さらに
前段槽(51)に加熱処理した粉砕ヒル石(60〜80
メツシユ)を5 wt / vol  %になるように
加え、上記培地を加熱滅菌処理した。ついで上記培地を
用いて培養したザイモモナス・モービリスATCC寄託
第10988号の培養液100 m /を前段槽r51
1に加えた。またアルギン酸ソーダで包括した固定化酵
母サツカロマイセス・ホルモセンシス(Saochar
omyees formosenais) I F O
(θ 寄託第0216号を、後段槽鋪に約5マof%になるよ
うに加えた。前後両槽(51+(61)ともpHを生物
を育生した。
Glucose 100g/j Yeast Extract 3 f/l KH2PO419/1 (NH4)2804 1ri71MgC1
2.6H200,5f/1 Antifoaming agent (manufactured by Next Summer Silicon Co., Ltd.) 0.397
400 ml of culture medium consisting of 1 was filled in all of the former tanks and 600 ml of the latter tank (61), and heat-treated crushed vermiculite (60 to 80
Mesh) was added at a concentration of 5 wt/vol%, and the medium was heat sterilized. Next, 100 m of the culture solution of Zymomonas mobilis ATCC Deposit No. 10988, which was cultured using the above medium, was transferred to the former tank r51.
Added to 1. In addition, the immobilized yeast Satucharomyces hormocensis (Saochar
I F O
(θ Deposit No. 0216 was added to the rear tank at a concentration of approximately 5%. Both the front and rear tanks (51+(61) were used to grow organisms.

ついで、醗酵原料として滅菌済の5倍希釈ケーン廃糖蜜
培地(酵母エキス: aIi/js (Na3)2so
4:xfI7’1XKa2po4:19/lおよびM 
g Cl 2・6H20:0.5グ/Iを含む)を、流
量0.11/hで前段槽51)に連続供給して、上記醗
酵条件下に連続醗酵を行なつた。前後両槽1511 (
61#A出日における反応液中のエタノール濃度は、そ
れぞれ459/l芦よび64グ/jであった。
Next, sterilized 5-fold diluted Cane's molasses medium (yeast extract: aIi/js (Na3)2so
4:xfI7'1XKa2po4:19/l and M
Continuous fermentation was carried out under the above-mentioned fermentation conditions by continuously supplying Cl2.6H20 (containing 0.5 g/I) to the pre-stage tank 51) at a flow rate of 0.11/h. Both front and rear tanks 1511 (
The ethanol concentrations in the reaction solution in 61#A Dehi were 459/l and 64 g/j, respectively.

つぎに原料供給流量を0.1//hから0.191/b
−,0,2911bおよび0.38?/hに順次上げて
、各流量におけるエタノール濃度を測定した。原料希釈
率(=原料供給流量/醗酵槽金臭容積)とアルコール生
産性の関係を第5図に示す。同図かられかるように、ア
ルコール産性は希釈率に比例して向上し、希釈率0.2
1171(流量0.3817h)ではアルコール生産性
は約135’//llbという高い値となった。また後
段槽(61)から流出する反応液のエタノール濃度はほ
とんど変化しなかった。
Next, change the raw material supply flow rate from 0.1//h to 0.191/b
−,0,2911b and 0.38? /h, and the ethanol concentration at each flow rate was measured. The relationship between the raw material dilution rate (=raw material supply flow rate/fermentation tank golden odor volume) and alcohol productivity is shown in FIG. As can be seen from the figure, alcohol productivity increases in proportion to the dilution rate, with a dilution rate of 0.2
1171 (flow rate 0.3817 h), the alcohol productivity was as high as about 135'//llb. Moreover, the ethanol concentration of the reaction liquid flowing out from the latter stage tank (61) hardly changed.

以上の如く、前段にて分離手段を備えた醗酵装置を用い
、後段にて流動層型醗酵槽を用し)、前段槽で担体に付
着したアルコール醗酵能を有する細菌を培養するととも
に、後段槽で固定化酵母を培養することにより、高い醗
酵収率と高いアルコール生産性を得ることができた。こ
れに対し、菌体付着用担体を用いない基本的な連絞培養
法では、エタノールの生産性は2〜3g/ l @hで
あると報告されている。このように1本発明によれば、
アルコール醗酵収率を高く維持し、生産性を大幅に向上
させることができる。
As described above, using a fermentation device equipped with a separation means in the first stage and a fluidized bed fermentation tank in the second stage, bacteria with alcohol fermentation ability attached to the carrier are cultured in the first stage tank, and bacteria with alcohol fermentation ability are cultured in the second stage tank. By culturing the immobilized yeast in this way, we were able to obtain high fermentation yields and high alcohol productivity. On the other hand, it has been reported that in the basic continuous squeeze culture method that does not use carriers for attachment of bacterial cells, the ethanol productivity is 2 to 3 g/l @h. Thus, according to the present invention,
It is possible to maintain a high alcohol fermentation yield and significantly improve productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)(ロ)G9に)はいずれも分離手段を備え
た醗酵装置の概略図、第2図は流動層型醗酵装置の概略
図、第3図は実施例で用いた醗酵装置の概略図、第4図
は回分醗酵による各種微生物についての培養時間とエタ
ノール濃度の関係を示すグラフ、第5図は実施例に詔け
る原料希釈率とアルコール生産性の関係を示すグラフで
ある。 G11・・・分離手段を備えた前段槽、(61)・・・
流動層型の後段槽。 以  上 特許出願人  日立造船株式会社 外4名 第2図 第3図
Figure 1 (a), (b), and G9) are all schematic diagrams of a fermentation device equipped with separation means, Figure 2 is a schematic diagram of a fluidized bed fermentation device, and Figure 3 is a fermentation device used in the examples. FIG. 4 is a graph showing the relationship between culture time and ethanol concentration for various microorganisms in batch fermentation, and FIG. 5 is a graph showing the relationship between raw material dilution rate and alcohol productivity that can be used in Examples. G11...Pre-stage tank equipped with separation means, (61)...
Fluidized bed type rear stage tank. Patent applicants: 4 people other than Hitachi Zosen Corporation Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 反応液から担体を分離する分離手段を備えた醗酵装置を
前段に配するとともに、流動層型ないし充填式醗酵装置
を後段に配し、前段で担体に付着したアルコール醗酵能
を有する細菌を培養するとともに、後段で固定化酵母を
培養することを特徴とする醗酵によるアルコールの連続
製造法。
A fermentation device equipped with a separation means for separating the carrier from the reaction solution is placed in the first stage, a fluidized bed type or packed fermentation device is placed in the second stage, and bacteria with alcohol fermentation ability attached to the carrier are cultured in the first stage. A method for continuous production of alcohol by fermentation, characterized by culturing immobilized yeast in the latter stage.
JP57012055A 1982-01-27 1982-01-27 Continuous preparation of alcohol by fermentation Granted JPS58129989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012055A JPS58129989A (en) 1982-01-27 1982-01-27 Continuous preparation of alcohol by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012055A JPS58129989A (en) 1982-01-27 1982-01-27 Continuous preparation of alcohol by fermentation

Publications (2)

Publication Number Publication Date
JPS58129989A true JPS58129989A (en) 1983-08-03
JPS6136920B2 JPS6136920B2 (en) 1986-08-21

Family

ID=11794911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012055A Granted JPS58129989A (en) 1982-01-27 1982-01-27 Continuous preparation of alcohol by fermentation

Country Status (1)

Country Link
JP (1) JPS58129989A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000616A1 (en) * 1986-07-17 1988-01-28 University Of Queensland Conversion of fermentable carbohydrates to ethanol using mixed cultures of zymomonas mobilis and yeast
JPS63198989A (en) * 1987-01-16 1988-08-17 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Method and apparatus for continuously producing alcohol
WO1991007511A1 (en) * 1988-10-13 1991-05-30 The University Of Queensland Ethanol production by zymomonas cultured in yeast-conditioned media

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000616A1 (en) * 1986-07-17 1988-01-28 University Of Queensland Conversion of fermentable carbohydrates to ethanol using mixed cultures of zymomonas mobilis and yeast
JPS63198989A (en) * 1987-01-16 1988-08-17 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Method and apparatus for continuously producing alcohol
JPH0560351B2 (en) * 1987-01-16 1993-09-02 Nestle Sa
WO1991007511A1 (en) * 1988-10-13 1991-05-30 The University Of Queensland Ethanol production by zymomonas cultured in yeast-conditioned media

Also Published As

Publication number Publication date
JPS6136920B2 (en) 1986-08-21

Similar Documents

Publication Publication Date Title
Park et al. Effect of dissolved oxygen concentration and impeller tip speed on itaconic acid production by Aspergillus terreus
CN102146415A (en) Gene knockout bacterium of gluconobacter oxydans and preparation method thereof
FI85502C (en) Process for the production of polyols by industrial-based sugar fermentation
Park et al. Itaconic acid production using an air-lift bioreactor in repeated batch culture of Aspergillus terreus
JPS58129989A (en) Continuous preparation of alcohol by fermentation
HÄggström et al. Continuous production of butanol with immobilized cells of Clostridium acetobutylicum
FI85501C (en) FOERFARANDE FOER FRAMSTAELLNING AV POLYOLER GENOM PAO INDUSTRIELL SKALA BASERAD FERMENTATION AV SOCKER.
Vijaikishore et al. Glycerol production by immobilised cells of Pichia farinosa
JPS6135836B2 (en)
JPS6135835B2 (en)
JPS6135834B2 (en)
JPS58129986A (en) Continuous preparation of alcohol by fermentation
El-Sayed et al. Continuous penicillin production by Penicillium chrysogenum immobilized in calcium alginate beads
JPS6136918B2 (en)
JPS6136919B2 (en)
JPS58129984A (en) Continuous preparation of alcohol by mixed cultivation
CN105969653B (en) A kind of bioreactor and its fermentation process of Cordyceps militaris standing for fermentation
JPS6136916B2 (en)
US2817624A (en) Preparation of ergosterol containing yeast
EP0136804A2 (en) Industrial-scale process for the production of polyols by fermentation of sugars
JPS58129979A (en) Continuous preparation of alcohol by fluidizing immobilized microbial cell
JPS5910795B2 (en) Alcohol production method by fermentation
Soetaert et al. Production of mannitol by Leuconostoc mesenteroides, immobilized on reticulated polyurethane foam
JPS58129980A (en) Continuous preparation of alcohol by fluidizing immobilized microbial cell
Maheswari et al. INDUSTRIAL BIOTECHNOLOGY