JPS6136919B2 - - Google Patents

Info

Publication number
JPS6136919B2
JPS6136919B2 JP57012054A JP1205482A JPS6136919B2 JP S6136919 B2 JPS6136919 B2 JP S6136919B2 JP 57012054 A JP57012054 A JP 57012054A JP 1205482 A JP1205482 A JP 1205482A JP S6136919 B2 JPS6136919 B2 JP S6136919B2
Authority
JP
Japan
Prior art keywords
fermentation
alcohol
stage
tank
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57012054A
Other languages
Japanese (ja)
Other versions
JPS58129988A (en
Inventor
Kenji Kida
Shigeru Morimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP57012054A priority Critical patent/JPS58129988A/en
Publication of JPS58129988A publication Critical patent/JPS58129988A/en
Publication of JPS6136919B2 publication Critical patent/JPS6136919B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Description

【発明の詳細な説明】 本発明は醗酵によるアルコールの連続製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for continuous production of alcohol by fermentation.

近年石油代替エネルギーとして、石油化学によ
らず得られる醗酵アルコールが脚光を浴びてい
る。これはさとうきびやこれから採つた糖蜜、さ
つまいも、じやがいも、とうもろこし等のセルロ
ース質ないしはでん粉質を原料とし、これらを菌
体の作用によつて醗酵させて連続する。この方法
では、アルコールの生産性は菌体濃度に依存する
と考えられている。そのため菌体濃度を高めるた
めに、菌体を循環させる方法や、酵母を多糖系物
質中に包括させるいわゆる固定化増殖菌体法等が
開発されつつある。しかし前者の場合、菌体を濃
縮分離するのに用いる遠心分離器が、培養液中に
存在する固形物によつて目詰まりないしはノズル
詰まりをきたし、菌体の循環が次第に困難にな
る。そのため遠心分離器を定期的に洗浄してやる
必要があり、作業がはなはだ面倒になる。また後
者の場合には、工業的規模で大量生産するには、
技術的に解決困難な問題が多い。
In recent years, fermented alcohol, which can be obtained without petrochemistry, has been in the spotlight as an energy alternative to petroleum. It uses cellulosic or starchy materials such as sugar cane, molasses collected from sugar cane, sweet potatoes, potatoes, and corn as raw materials, and ferments them continuously using the action of bacterial cells. In this method, alcohol productivity is thought to depend on the bacterial cell concentration. Therefore, in order to increase the bacterial cell concentration, a method of circulating the bacterial cells and a so-called immobilized cell growth method in which yeast is encapsulated in a polysaccharide-based substance are being developed. However, in the former case, the centrifugal separator used to concentrate and separate the microbial cells becomes clogged or nozzles clogged by the solids present in the culture solution, making it increasingly difficult to circulate the microbial cells. Therefore, it is necessary to periodically clean the centrifuge, which makes the work extremely troublesome. In the latter case, for mass production on an industrial scale,
There are many problems that are technically difficult to solve.

本発明者らは、このような実情に鑑み、醗酵槽
の菌体濃度を高めるべく鋭意研究を重ねた結果、
本発明を完成するに至つた。
In view of these circumstances, the present inventors have conducted extensive research to increase the bacterial cell concentration in the fermenter, and as a result,
The present invention has now been completed.

この発明によるアルコールの製造法は、反応液
から担体を分離する分離手段を備えた2基の醗酵
装置を直列に配し、前段で担体に付着したアルコ
ール醗酵能を有する細菌を培養するとともに、後
段で凝集性酵母を培養することを特徴とする醗酵
によるアルコールの連続製造法である。
The method for producing alcohol according to the present invention involves arranging two fermentation apparatuses in series each equipped with a separation means for separating the carrier from the reaction solution, culturing bacteria with alcohol fermentation ability attached to the carrier in the first stage, and culturing the bacteria with alcohol fermentation ability in the second stage. This is a continuous method for producing alcohol by fermentation, which is characterized by culturing flocculent yeast in

分離手段を備えた醗酵装置の例としては、添付
図面に示すようなものが挙げられる。すなわち第
1図イに示す醗酵装置1は、撹拌機2を備えた醗
酵槽3の側部に担体沈降部4を設け、同部4に担
体を沈降分離させて同槽外への流出を防ぐように
したものである。また第1図ロに示す醗酵装置1
1は、撹拌機12を備えた醗酵槽13の外部に担
体沈降槽14を設けて、醗酵槽13から流出した
担体を沈降槽14内に沈降分離させ、沈降した担
体を醗酵槽13へ戻すようにしたものである。ま
た第1図ハに示す醗酵装置21は、醗酵槽23の
槽底部に撹拌翼22を配置し、翼の上方に垂直に
円筒状の液循環部材24を配置して、反応液を同
部材24内を流下させて槽内を循環させ、液循環
部材24の上方で、担体を反応液から分離するよ
うにしたものである。さらに第1図ニに示す醗酵
装置31は、撹拌機32を備えた醗酵槽33内
に、担体を反応液から分離する略Y字管状の固液
分離部材34を配置し、大径分岐部から炭酸ガス
を排出し、小径分岐部から反応液を取出すように
したものである。そしてこれら醗酵装置1,1
1,21,31はいずれもPHおよび温度を至適値
に制御できるように構成されている。
Examples of fermentation devices equipped with separation means include those shown in the accompanying drawings. That is, in the fermentation apparatus 1 shown in FIG. 1A, a carrier settling section 4 is provided on the side of a fermentation tank 3 equipped with an agitator 2, and the carriers are allowed to settle and separate in the section 4 to prevent them from flowing out of the tank. This is how it was done. In addition, the fermentation apparatus 1 shown in FIG.
1, a carrier sedimentation tank 14 is provided outside the fermentation tank 13 equipped with an agitator 12, so that the carriers flowing out from the fermentation tank 13 are sedimented and separated in the sedimentation tank 14, and the settled carriers are returned to the fermentation tank 13. This is what I did. Further, the fermentation apparatus 21 shown in FIG. The carrier is allowed to flow down and circulated within the tank, and the carrier is separated from the reaction solution above the liquid circulation member 24. Furthermore, the fermentation apparatus 31 shown in FIG. Carbon dioxide gas is discharged and the reaction liquid is taken out from a small diameter branch. And these fermentation devices 1, 1
1, 21, and 31 are all configured so that the pH and temperature can be controlled to optimum values.

前段において、菌体付着用の担体としては、粉
砕ヒル石、活性炭、ゼオライト等が担体の流動性
の点から好ましく用いられる。アルコール醗酵能
を有する細菌としては、ザイモモナス・モービリ
ス(Zymomonas mobilis)が、担体への優れた
自然付着性を有するため好ましく用いられる。こ
の細菌はケーン(cane)・ジユースや廃糖蜜中に
含まれる醗酵性糖のうち、シユクロース、グルコ
ール、フラクトースを醗酵させて、アルコールを
生成する。アルコール醗酵能を有する細菌は、自
然付着性のよいものであればよく、上記細菌に限
定されない。前段で担体付着菌体を培養すること
により、槽内の菌体濃度を高めて、上記醗酵性糖
からのアルコールの生産性を向上させることがで
きる。
In the first stage, crushed vermiculite, activated carbon, zeolite, etc. are preferably used as the carrier for bacterial cell attachment from the viewpoint of fluidity of the carrier. As the bacteria having alcohol fermentation ability, Zymomonas mobilis is preferably used because it has excellent natural adhesion to the carrier. This bacterium produces alcohol by fermenting sucrose, glucose, and fructose, among the fermentable sugars contained in cane and blackstrap molasses. Bacteria having alcohol fermentation ability are not limited to the above-mentioned bacteria as long as they have good natural adhesion. By culturing the microbial cells attached to the carrier in the first stage, the concentration of microbial cells in the tank can be increased and the productivity of alcohol from the fermentable sugar can be improved.

後段において、凝集性酵母は、凝集性およびア
ルコール醗酵能を有するものであればよく、とり
わけサツカロマイセス(Ssccharomyces)属のも
のが好んで用いられる。後段で凝集性酵母を培養
することによつて、醗酵性糖のうち前段で醗酵さ
れなかつた未反応の醗酵性糖を醗酵させて、アル
コールを生成し、糖からのアルコール醗酵収率を
向上させることができる。
In the latter stage, the flocculating yeast may be any yeast having flocculating ability and alcohol fermentation ability, and those of the genus Ssccharomyces are particularly preferably used. By culturing flocculating yeast in the latter stage, unreacted fermentable sugars that were not fermented in the former stage are fermented to produce alcohol, improving the alcohol fermentation yield from sugar. be able to.

この発明によるアルコール製造法は以上のとお
り構成されているので、つぎのような効果が奏さ
れる。
Since the alcohol production method according to the present invention is configured as described above, the following effects are achieved.

(1) 前段では、菌体を付着するための担体を用い
るので、菌体の付着し得る固体表面積を大きく
して、槽内の菌体濃度を高めることができ、そ
の結果アルコールの生産性を大幅に向上させる
ことができる。
(1) In the first stage, a carrier is used to attach the bacterial cells, so the solid surface area on which the bacterial cells can attach can be increased, and the concentration of bacterial cells in the tank can be increased.As a result, the productivity of alcohol can be increased. can be significantly improved.

(2) 後段では凝集性酵母を培養するので、前段で
醗酵されなかつた未反応の醗酵性糖を酵母によ
つて醗酵させることができ、その結果醗酵収率
を大幅に向上させることができる。
(2) Since flocculating yeast is cultured in the latter stage, unreacted fermentable sugars that were not fermented in the first stage can be fermented by the yeast, and as a result, the fermentation yield can be significantly improved.

(3) 担体への付着性のよい細菌および凝集性酵母
を用いるので、菌体の平均終端速度が大きくな
り、そのため菌体を簡単な分離手段で反応液か
ら分離することができ、設備費の点で大きな利
点が得られる。
(3) Since bacteria and flocculating yeast that have good adhesion to the carrier are used, the average terminal velocity of the bacterial cells is high, and therefore the bacterial cells can be separated from the reaction solution by a simple separation method, reducing equipment costs. There are big advantages in this point.

比較例 1 静置培養用の醗酵槽を用い、微生物としてサツ
カロマイセス・ホルモセンシス(Saccharomyces
formosensis)IFO寄託第0216号(以下、微生物
Aと称する)を用い、醗酵原料として滅菌剤の5
倍希釈ケーン廃糖蜜培地(酵母エキス:3g/
、(NH42SO4:1g/、KH2PO4:1g/お
よびMgC・6H2O:0.5g/を含む)を用
い、醗酵温度30℃における回分醗酵を行ない、醗
酵特性を経時的に調べた。
Comparative Example 1 Using a fermenter for static culture, Saccharomyces hormocensis was grown as a microorganism.
Formosensis) IFO Deposit No. 0216 (hereinafter referred to as microorganism A) was used as the fermentation raw material.
Double diluted Cane's molasses medium (yeast extract: 3g/
, (NH 4 ) 2 SO 4 : 1 g/, KH 2 PO 4 : 1 g/, and MgC 2.6H 2 O: 0.5 g/) were used for batch fermentation at a fermentation temperature of 30°C, and the fermentation characteristics were evaluated over time. I looked into it.

上記微生物の代わりに、協和醗酵社製パン酵母
(以下、微生物Bと称する)、ザイモモナス・モー
ビリスIFO寄託第13756号(以下、微生物Cと称
する)およびザイモモナス・モービリスATCC寄
託第10988号(以下、微生物Dと称する)を用い
て、それぞれ上記操作を繰返した。
Instead of the above microorganisms, baker's yeast manufactured by Kyowa Hakko Co., Ltd. (hereinafter referred to as microorganism B), Zymomonas mobilis IFO deposited No. 13756 (hereinafter referred to as microorganism C), and Zymomonas mobilis ATCC deposited No. 10988 (hereinafter referred to as microorganism The above operation was repeated using each sample (referred to as D).

各微生物について、静置培養時間とエタノール
濃度の関係を第2図に示す。同図かからわかるよ
うに、アルコール醗酵能については微生物Aが最
もすぐれ(2日目で55g/)、つぎが微生物Bで
あり、微生物CおよびDでは4日目になつてもア
ルコール濃度は約40g/にすぎなかつた。
Figure 2 shows the relationship between static culture time and ethanol concentration for each microorganism. As can be seen from the figure, microorganism A has the best alcohol fermentation ability (55 g/day on the second day), followed by microorganism B, and even on the fourth day, microorganisms C and D have an alcohol concentration of approximately It was only 40g/.

比較例 2 第1図ニに示す実容積1.2の醗酵装置31に
おいて凝集性の協和醗酵社製パン酵母を培養し、
醗酵原料として比較例1で用いたのと同じ滅菌剤
の5培希釈ケーン廃糖蜜培地を、流量0.06/hで
連続供給し、温度30℃およびPH5の醗酵条件下に
連続醗酵を行なつた。反応液をマイクロチユーブ
ポンプによつて連続的に引抜いた。流出反応液中
のエタノール濃度は、回分醗酵(比較例1)の場
合とほぼ等しく、約57g/であつた。
Comparative Example 2 A flocculating baker's yeast manufactured by Kyowa Hakko Co., Ltd. was cultured in a fermentation device 31 with an actual volume of 1.2 as shown in FIG.
A 5-culture diluted Cane's molasses medium containing the same sterilizer as that used in Comparative Example 1 was continuously supplied as a fermentation raw material at a flow rate of 0.06/h, and continuous fermentation was carried out under the fermentation conditions of a temperature of 30° C. and a pH of 5. The reaction solution was continuously drawn out using a microtube pump. The ethanol concentration in the effluent reaction solution was approximately the same as in the case of batch fermentation (Comparative Example 1), about 57 g/.

実施例 第3図に示す醗酵装置を用いた。これは第1図
ニに示す実容積1.2の醗酵装置31と同型の装
置2基を直列に配したもので、前後醗酵槽41,
42はそれぞれ撹拌機43,44を有し、温度制
御およびPH制御できるように構成されている。ま
たこれら醗酵槽41,42は担体を反応液から分
離する略Y字管状の固液分離部材45,46をそ
れぞれ備え、同部材45,46の大径分岐部45
a,46aから炭酸ガスを排出し、小径分岐部4
5b,46bから反応液を排出するようになされ
ている。そして醗酵原料はポンプ47で前段槽4
1に供給され、ついで反応液はポンプ48で前段
槽41から後段槽42に送られ、ポンプ49で後
段槽42から取出されるようになつている。
Example A fermentation apparatus shown in FIG. 3 was used. This is a system in which two devices of the same type as the fermentation device 31 with an actual volume of 1.2 shown in FIG.
42 has stirrers 43 and 44, respectively, and is configured to be able to control temperature and pH. Further, these fermentation tanks 41 and 42 are respectively equipped with substantially Y-shaped solid-liquid separation members 45 and 46 for separating the carrier from the reaction liquid, and the large-diameter branch portions 45 of the members 45 and 46
Carbon dioxide gas is discharged from a, 46a, and the small diameter branch part 4
The reaction liquid is discharged from 5b and 46b. Then, the fermentation raw material is transferred to the pre-stage tank 4 using a pump 47.
1, the reaction liquid is then sent from the former tank 41 to the latter tank 42 by a pump 48, and taken out from the latter tank 42 by a pump 49.

グルコース 100 g/ 酵母エキス 3 g/ KH2P04 1 g/ (NH42SO4 1 g/ MgC・6H2O 0.5g/ 消泡剤(東芝シリコン社製) 0.3g/ からなる培地を前段槽41に400ml、後段槽42
に600mlそれぞれ充填し、さらに前段槽41に加
熱処理した粉砕ヒル石(60〜80メツシユ)を5w
t/vol%になるように加え、上記培地を加熱滅菌
処理した。ついで上記培地を用いて培養したザイ
モモナス・モービリスTACC寄託第10988号の培
養液100ml前段槽41に加え、また上記と同様に
して培養したサツカロマイセス属のビール酵母
IFO寄託第2018号の培養液100mlを後段槽42に
加えた。両槽41,42ともPHを4.5に温度を30
℃それぞれに制御して、約8時間、上記微生物の
培養を行なつて、これら微生物を育生した。
Medium consisting of glucose 100 g/ yeast extract 3 g/ KH 2 P 04 1 g/ (NH 4 ) 2 SO 4 1 g/ MgC 2.6H 2 O 0.5 g/ antifoaming agent (manufactured by Toshiba Silicon Corporation) 0.3 g/ 400ml in the first tank 41, and the second tank 42
600ml each, and 5w of heat-treated crushed vermiculite (60 to 80 mesh) was added to the pre-stage tank 41.
t/vol%, and the above medium was heat sterilized. Next, 100 ml of the culture solution of Zymomonas mobilis TACC Deposit No. 10988 cultured using the above medium was added to the former tank 41, and brewer's yeast of the genus Satucharomyces was cultured in the same manner as above.
100 ml of the culture solution of IFO Deposit No. 2018 was added to the rear tank 42. Both tanks 41 and 42 have a pH of 4.5 and a temperature of 30.
These microorganisms were grown by culturing them for about 8 hours while controlling the temperature at each temperature.

ついで、醗酵原料として滅菌済の5倍希釈ケー
ン廃糖蜜培地(酵母エキス:3g/、
(NH42SO4:1g/、KH2PO4:1g/および
MgC・6H2O:0.5g/を含む)を、流量
0.07/hで前段槽41に連続供給して、上記醗酵
条件下に連続醗酵を行なつた。前後槽41,42
の各出口における反応液中のエタノール濃度は、
それぞれ45g/および64g/であつた。
Next, sterilized 5-fold diluted Cane's molasses medium (yeast extract: 3 g/,
(NH 4 ) 2 SO 4 : 1 g/, KH 2 PO 4 : 1 g/, and
MgC 2.6H 2 O: 0.5g/), flow rate
Continuous fermentation was carried out under the above fermentation conditions by continuously supplying to the pre-stage tank 41 at a rate of 0.07/h. Front and rear tanks 41, 42
The ethanol concentration in the reaction solution at each outlet of
They were 45g/ and 64g/, respectively.

つぎに原料供給流量を0.07/hから0.14/h、
0.21/hおよび0.28/hに順次上げて、各流量に
おけるエタノール濃度を測定した。原料希釈率
(=原料供給流量/醗酵槽全実容積)とアルコー
ル生産性の関係を第4図に示す。同図からわかる
ように、アルコール生産性は希釈率に比例して向
上し、希釈率0.2h-1(流量0.28/h)ではアルコ
ール生産性は約13g/・hという高い値となつ
た。また後段槽42から流出する反応液のエタノ
ール濃度はほとんど変化しなかつた。
Next, increase the raw material supply flow rate from 0.07/h to 0.14/h.
The ethanol concentration at each flow rate was measured by increasing the flow rate sequentially to 0.21/h and 0.28/h. The relationship between the raw material dilution rate (=raw material supply flow rate/total actual volume of the fermenter) and alcohol productivity is shown in FIG. As can be seen from the figure, alcohol productivity improved in proportion to the dilution rate, and at a dilution rate of 0.2 h -1 (flow rate 0.28/h), alcohol productivity reached a high value of about 13 g/h. Moreover, the ethanol concentration of the reaction liquid flowing out from the latter stage tank 42 hardly changed.

以上の如く、分離手段を備えた前後2基の醗酵
装置を用いて、前段で担体に付着したアルコール
醗酵能を有する細菌を培養するとともに、後段で
凝集性酵母を培養することにより、高い醗酵収率
と高いアルコール生産性を得ることができた。こ
れに対し、菌体付着用担体を用いない基本的な連
続培養法では、エタノールの生産性は2〜3g/
・hであると報告されている。このように、本
発明によれば、アルコール醗酵収率を高く維持
し、生産性を大幅に向上させることができる。
As described above, high fermentation yield can be achieved by culturing bacteria with alcohol fermentation ability attached to the carrier in the first stage and cultivating flocculating yeast in the second stage, using two fermentation devices equipped with separation means. and high alcohol productivity. On the other hand, in the basic continuous culture method that does not use carriers for bacterial attachment, the productivity of ethanol is 2 to 3 g/
・It is reported that h. As described above, according to the present invention, it is possible to maintain a high alcohol fermentation yield and significantly improve productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,ロ,ハ,ニはいずれも分離手段を備
えた醗酵装置の概略図、第2図は回分醗酵による
各種微生物についての培養時間とエタノール濃度
の関係を示すグラフ、第3図は実施例で用いた醗
酵装置の概略図、第4図は実施例における原料希
釈率とアルコール生産性の関係を示すグラフであ
る。 41……前段醗酵槽、42……後段醗酵槽、4
5,46……固液分離部材。
Figure 1 A, B, C, and D are all schematic diagrams of fermentation equipment equipped with separation means. Figure 2 is a graph showing the relationship between culture time and ethanol concentration for various microorganisms in batch fermentation. Figure 3 is a graph showing the relationship between culture time and ethanol concentration for various microorganisms in batch fermentation. FIG. 4, which is a schematic diagram of the fermentation apparatus used in the examples, is a graph showing the relationship between the raw material dilution rate and alcohol productivity in the examples. 41...Front stage fermenter, 42...Late stage fermenter, 4
5, 46...Solid-liquid separation member.

Claims (1)

【特許請求の範囲】[Claims] 1 反応液から担体を分離する分離手段を備えた
2基の醗酵装置を直列に配し、前段で担体に付着
したアルコール醗酵能を有する細菌を培養すると
ともに、後段で凝集性酵母を培養することを特徴
とする醗酵によるアルコールの連続製造法。
1. Two fermentation devices equipped with separation means for separating the carrier from the reaction solution are arranged in series, and bacteria with alcohol fermentation ability attached to the carrier are cultured in the first stage, and flocculating yeast is cultured in the second stage. A method for continuous production of alcohol by fermentation characterized by:
JP57012054A 1982-01-27 1982-01-27 Continuous preparation of alcohol by fermentation Granted JPS58129988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012054A JPS58129988A (en) 1982-01-27 1982-01-27 Continuous preparation of alcohol by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012054A JPS58129988A (en) 1982-01-27 1982-01-27 Continuous preparation of alcohol by fermentation

Publications (2)

Publication Number Publication Date
JPS58129988A JPS58129988A (en) 1983-08-03
JPS6136919B2 true JPS6136919B2 (en) 1986-08-21

Family

ID=11794881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012054A Granted JPS58129988A (en) 1982-01-27 1982-01-27 Continuous preparation of alcohol by fermentation

Country Status (1)

Country Link
JP (1) JPS58129988A (en)

Also Published As

Publication number Publication date
JPS58129988A (en) 1983-08-03

Similar Documents

Publication Publication Date Title
CA1173381A (en) Ethanol production in a continuous process with cell recycle
US4167450A (en) Method and apparatus for the production of secondary metabolites by the maintenance-state cultivation of microorganisms
Sheoran et al. Continuous ethanol production from sugarcane molasses using a column reactor of immobilized Saccharomyces cerevisiae HAU‐1
US4876196A (en) Method of continuously producing ethanol from sugar-containing substrates
US4413058A (en) Continuous production of ethanol by use of flocculent zymomonas mobilis
HÄggström et al. Continuous production of butanol with immobilized cells of Clostridium acetobutylicum
FI85502C (en) Process for the production of polyols by industrial-based sugar fermentation
JPS62278989A (en) Production of acetone and butanol
Strandberg et al. Continuous ethanol production by a flocculent strain of Zymomonas mobilis
JPS6136920B2 (en)
JPS6136919B2 (en)
Amin et al. Ethanol production from sucrose by immobilized Zymomonas mobilis cells in polyurethane foam
JPS6135836B2 (en)
JPS6135834B2 (en)
CN210261773U (en) Fermentation reactor for producing citric acid by immobilized aspergillus niger
JPS6135835B2 (en)
JPS6136917B2 (en)
CN1124349C (en) Process for preparing arabitol by transforming glucose with yeast cells
JPS6135837B2 (en)
JPS6136918B2 (en)
Parekh et al. Performance of a novel continuous dynamic immobilized cell bioreactor in ethanolic fermentation
Joshi et al. Film fermentor for ethanol production by yeast immobilized on cotton cloth
JPS6136916B2 (en)
JPS6225986A (en) Method and apparatus for producing carbon dioxide and ethanol
JPH04179488A (en) Continuous method for fermenting alcohol using agglutinative microorganism