JPS6136918B2 - - Google Patents

Info

Publication number
JPS6136918B2
JPS6136918B2 JP57012053A JP1205382A JPS6136918B2 JP S6136918 B2 JPS6136918 B2 JP S6136918B2 JP 57012053 A JP57012053 A JP 57012053A JP 1205382 A JP1205382 A JP 1205382A JP S6136918 B2 JPS6136918 B2 JP S6136918B2
Authority
JP
Japan
Prior art keywords
fermentation
alcohol
tank
stage
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57012053A
Other languages
Japanese (ja)
Other versions
JPS58129987A (en
Inventor
Kenji Kida
Shigeru Morimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP57012053A priority Critical patent/JPS58129987A/en
Publication of JPS58129987A publication Critical patent/JPS58129987A/en
Publication of JPS6136918B2 publication Critical patent/JPS6136918B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は醗酵によるアルコールの連続製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for continuous production of alcohol by fermentation.

近年石油代替エネルギーとして、石油化学によ
らずに得られる醗酵アルコールが脚光を浴びてい
る。これはさとうきびやこれから採つた糖蜜、さ
つまいも、じやがいも、とうもろこし等のセルロ
ース質ないしはでん粉質を原料とし、これらを菌
体の作用によつて醗酵させて製造する。この方法
では、アルコールの生産性は菌体濃度に依存する
と考えられている。そのため菌体濃度を高めるた
めに、菌体を循環させる方法や、酵母を多糖系物
質中に包括させるいわゆる固定化増殖菌体法等が
開発されつつある。しかし前者の場合、菌体を濃
縮分離するのに用いる遠心分離器が、培養液中に
存在する固形物によつて目詰まりないしはノズル
詰まりをきたし、菌体の循環が次第に困難にな
る。そのため遠心分離器を定期的に洗浄してやる
必要があり、作業がはなはだ面倒になる。また後
者の場合には、工業的規模で大量生産するには、
技術的に解決困難な問題が多い。
In recent years, fermented alcohol, which can be obtained without using petrochemicals, has been in the spotlight as an energy alternative to petroleum. It is produced from sugar cane, molasses harvested from sugar cane, cellulose or starch from sweet potatoes, potatoes, corn, etc., and ferments them through the action of bacterial cells. In this method, alcohol productivity is thought to depend on the bacterial cell concentration. Therefore, in order to increase the bacterial cell concentration, a method of circulating the bacterial cells and a so-called immobilized cell growth method in which yeast is encapsulated in a polysaccharide-based substance are being developed. However, in the former case, the centrifugal separator used to concentrate and separate the microbial cells becomes clogged or nozzles clogged by the solids present in the culture solution, making it increasingly difficult to circulate the microbial cells. Therefore, it is necessary to periodically clean the centrifuge, which makes the work extremely troublesome. In the latter case, for mass production on an industrial scale,
There are many problems that are technically difficult to solve.

本発明者らは、このような実情に鑑み、醗酵槽
内の菌体濃度を高めるべく鋭意研究を重ねた結
果、本発明を完成するに至つた。
In view of these circumstances, the present inventors have conducted extensive research to increase the bacterial cell concentration within the fermenter, and as a result, have completed the present invention.

この発明によるアルコールの製造法は、流動層
型醗酵装置2基を直列に配し、前段で担体に付着
したアルコール醗酵能を有する細菌を培養すると
ともに、後段で固定化酵母を培養することを特徴
とする醗酵によるアルコールの連続製造法であ
る。
The method for producing alcohol according to this invention is characterized by arranging two fluidized bed fermentation devices in series, culturing bacteria with alcohol fermentation ability attached to a carrier in the first stage, and culturing immobilized yeast in the second stage. This is a continuous method for producing alcohol by fermentation.

前後2基の醗酵層として流動層型のものを用い
る理由は、担体に付着した菌体を流動化させるた
めの動力が節減でき、また担体の摩耗が防止でき
るからである。
The reason why a fluidized bed type is used as the two fermentation beds, front and rear, is that the power needed to fluidize the bacterial cells adhering to the carrier can be saved and wear of the carrier can be prevented.

前段において、菌体付着用の担体としては、粉
砕ヒル石、活性炭、ゼオライト等が、担体の流動
性の点から好ましく用いられる。アルコール醗酵
能を有する細菌としては、ザイモモナス・モービ
リス(Zymomonas mobilis)が、担体への優れ
た自然付着性を有するため好ましく用いられる。
この細菌はケーン(cane)・ジユースや廃糖蜜中
に含まれる醗酵性糖のうち、シユークロース、グ
ルコース、フラクトースを醗酵させて、アルコー
ルを生成する。アルコール醗酵能を有する細菌
は、自然付着性のよいものであればよく、上記細
菌に限定されない。前段で担体付着菌体を培養す
ることにより、槽内の菌体濃度を高めて、上記醗
酵性糖からのアルコールの生産性を向上させるこ
とができる。
In the first stage, crushed vermiculite, activated carbon, zeolite, etc. are preferably used as the carrier for bacterial cell attachment from the viewpoint of fluidity of the carrier. As the bacteria having alcohol fermentation ability, Zymomonas mobilis is preferably used because it has excellent natural adhesion to the carrier.
This bacterium produces alcohol by fermenting sucrose, glucose, and fructose, among the fermentable sugars contained in cane and blackstrap molasses. Bacteria having alcohol fermentation ability are not limited to the above-mentioned bacteria as long as they have good natural adhesion. By culturing the microbial cells attached to the carrier in the first stage, the concentration of microbial cells in the tank can be increased and the productivity of alcohol from the fermentable sugar can be improved.

後段において、固定化酵母は、アルコール醗酵
能を有するものであればよく、とりわけサツカロ
マイセス(Saccharomyces)属のものが好んで用
いられる。固定化酵母は、酵母をポリアクリルア
ミドゲル、アルギン酸ソーダ、K・カラギーナン
等で常法により包括することにより固定化された
ものである。後段で固定化酵母を培養することに
よつて、醗酵性糖のうち前段で醗酵されなかつた
未反応の醗酵性糖を醗酵させて、アルコールを生
成し、糖からのアルコール醗酵収率を向上させる
ことができる。
In the latter stage, the immobilized yeast may be any yeast having alcohol fermentation ability, and yeast of the genus Saccharomyces is particularly preferably used. Immobilized yeast is one that is immobilized by enclosing yeast in polyacrylamide gel, sodium alginate, K. carrageenan, etc. using a conventional method. By culturing the immobilized yeast in the latter stage, unreacted fermentable sugars that were not fermented in the first stage are fermented to produce alcohol and improve the alcohol fermentation yield from sugar. be able to.

この発明によるアルコール製造法は以上のとお
り構成されているので、つぎのような効果が奏さ
れる。
Since the alcohol production method according to the present invention is configured as described above, the following effects are achieved.

(1) 前後2基の醗酵槽としていずれも流動層型の
ものを用いるので、担体に付着した菌体を流動
化させるための動力が節減でき、また担体の摩
耗および固定化酵母の破砕が防止できる。
(1) Since both the front and rear fermenters are of the fluidized bed type, the power needed to fluidize the bacterial cells attached to the carrier can be saved, and the abrasion of the carrier and crushing of the immobilized yeast can be prevented. can.

(2) 前段では、菌体を付着するための担体を用い
るので、菌体の付着し得る固体表面積を大きく
して、槽内の菌体濃度を高めることができ、そ
の結果アルコールの生産性を大幅に向上させる
ことができる。
(2) In the first stage, a carrier is used to attach the bacterial cells, so the solid surface area on which the bacterial cells can attach can be increased, and the concentration of bacterial cells in the tank can be increased.As a result, alcohol productivity can be increased. can be significantly improved.

(3) 後段では固定化酵母を培養するので、前段で
醗酵されなかつた未反応の醗酵性糖を酵母によ
つて醗酵させることができ、その結果醗酵収率
を大幅に向上させることができる。
(3) Since immobilized yeast is cultured in the latter stage, the unreacted fermentable sugars that were not fermented in the first stage can be fermented by the yeast, and as a result, the fermentation yield can be significantly improved.

(4) 醗酵原料として高度に清澄なものを必要とし
ない。
(4) Highly clear materials are not required as fermentation raw materials.

比較例 1 静置培養用の醗酵槽を用い、微生物としてサツ
カロマイセス・ホルモセンシス(Saccharomyces
formosensis)IFO寄託第0216号(以下、微生物
Aと称する)を用い、醗酵原料として滅菌済の5
倍希釈ケーン廃糖蜜培地(酵母エキス:3g/
、(NH42SO4:1g/、KH2PO4:1g/お
よびMgCl2・6H2O:0.5g/を含む)を用い、
醗酵温度30℃における回分醗酵を行ない、醗酵特
性を経時的に調べた。
Comparative Example 1 Using a fermenter for static culture, Saccharomyces hormocensis was grown as a microorganism.
Formosensis) IFO Deposit No. 0216 (hereinafter referred to as microorganism A) was used as a fermentation raw material.
Double diluted Cane's molasses medium (yeast extract: 3g/
, (NH 4 ) 2 SO 4 : 1 g/, KH 2 PO 4 : 1 g/ and MgCl 2 6H 2 O: 0.5 g/),
Batch fermentation was carried out at a fermentation temperature of 30°C, and the fermentation characteristics were investigated over time.

上記微生物の代わりに、協和醗酵社製パン酵母
(以下、微生物Bと称する)、ザイモモナス・モー
ビリスIFO寄託第13756号(以下、微生物Cと称
する)およびザイモモナス・モービリスATCC寄
託第10988号(以下、微生物Dと称する)を用い
て、それぞれ上記操作を繰返した。
Instead of the above microorganisms, baker's yeast manufactured by Kyowa Hakko Co., Ltd. (hereinafter referred to as microorganism B), Zymomonas mobilis IFO deposited No. 13756 (hereinafter referred to as microorganism C), and Zymomonas mobilis ATCC deposited No. 10988 (hereinafter referred to as microorganism The above operation was repeated using each sample (referred to as D).

各微生物について、静置培養時間とエタノール
濃度の関係を第1図に示す。同図からわかるよう
に、アルコール醗酵能については微生物Aが最も
すぐれ(2日目で約55g/)、つぎが微生物Bで
あり、微生物CおよびDでは4日目においても、
アルコール濃度は約40g/にすぎなかつた。
Figure 1 shows the relationship between static culture time and ethanol concentration for each microorganism. As can be seen from the figure, microorganism A has the best alcohol fermentation ability (approximately 55 g/on the second day), followed by microorganism B, and microorganisms C and D have the highest alcohol fermentation ability even on the fourth day.
The alcohol concentration was only about 40g/.

比較例 2 第4図に示すアルコール醗酵装置1基を用い
た。これは実容積0.7のガラス製流動層型醗酵
槽11を主体とし、温度制御およびPH制御できる
ように構成されている。そして醗酵原料はポンプ
12によつて同槽11の底部に供給され、反応液
はポンプ13で同槽の頂部から底部に戻され、槽
頂の担体沈降部14から流出するようになつてい
る。この醗酵装置にアルギン酸ソーダで包括した
固定化酵母サツカロマイセス・ホルモセンシス
(Saccharomyces formosensis)IFO寄託第0216
号を、培地に対して約5vol%になるように充填
し、醗酵原料として比較例1で用いたのと同じ滅
菌済の5倍希釈ケーン廃糖蜜培地を、流量0.035
/hで醗酵槽11に連続供給し、温度30℃およ
びPH5の醗酵条件下に連続醗酵を行なつた。
Comparative Example 2 One alcohol fermentation apparatus shown in FIG. 4 was used. This main body is a glass fluidized bed type fermenter 11 with an actual volume of 0.7, and is configured to be able to control temperature and pH. The fermentation raw material is supplied to the bottom of the tank 11 by the pump 12, and the reaction solution is returned from the top to the bottom of the tank by the pump 13, and flows out from the carrier settling section 14 at the top of the tank. Immobilized yeast Saccharomyces formosensis encased in sodium alginate in this fermentation apparatus IFO Deposit No. 0216
The same sterilized 5-fold diluted Cane's molasses medium used in Comparative Example 1 as the fermentation raw material was filled at a flow rate of 0.035.
The mixture was continuously supplied to the fermenter 11 at a rate of 30° C./h, and continuous fermentation was carried out under the fermentation conditions of a temperature of 30° C. and a pH of 5.

反応後の流出反応液中のエタノール濃度は、回
分醗酵(比較例1)の場合とほぼ等しく、約55
g/であつた。
The ethanol concentration in the effluent reaction solution after the reaction was approximately the same as in the case of batch fermentation (Comparative Example 1), about 55
It was g/.

実施例 第2図に示すアルコール連続醗酵装置を用い
た。これは、直列に配された実容積0.7の前後
2基のガラス製流動層型醗酵槽1,2からなり、
これら槽1,2は温度およびPHを至適値に制御で
きるように構成されている。そして醗酵原料はポ
ンプ3で前段槽1に供給されて、ポンプ4で同槽
1内を循環させられ、ついで反応液はポンプ5で
前段槽1から後段槽2に送られ、ポンプ6で同槽
2内を循環させられるようになつている。
Example A continuous alcohol fermentation apparatus shown in FIG. 2 was used. It consists of two glass fluidized bed fermentation tanks 1 and 2 arranged in series with an actual volume of 0.7,
These tanks 1 and 2 are constructed so that the temperature and pH can be controlled to optimum values. The fermentation raw material is supplied to the first stage tank 1 by the pump 3, circulated in the same tank 1 by the pump 4, then the reaction liquid is sent from the first stage tank 1 to the second stage tank 2 by the pump 5, and the same tank is circulated by the pump 6. 2 can be circulated.

グルコース 100 g/ 酵母エキス 3 g/ KH2PO4 1 g/ (NH42SO4 1 g/ MgCl2・6H2O 0.5g/ 消包剤(東芝シリコン社製) 0.3g/ からなる培地を前段槽1に400ml、後段槽2に600
mlそれぞれ充填し、さらに前段槽1に加熱処理し
た粉砕ヒル石(60〜80メツシユ)を5wt/vol%に
なるように加え、上記倍地を加熱滅菌処理した。
ついで上記培地を用いて培養したザイモモナス・
モービリスATCC寄託第10988号の培着液100mlを
前段槽1に加えた。またアルギン酸ソーダで包括
した固定化酵母サツカロマイセス・ホルモセンシ
ス(Saccharomyces formosensis)IFO寄託第
0216号を、後段槽2に約5vol%になるように加え
た。両槽1,2ともPHを4.5に温度を30℃それぞ
れに制御して、約8時間、上記微生物の培養を行
なつて、これら微生物を育生した。
A medium consisting of glucose 100 g/ yeast extract 3 g/ KH 2 PO 4 1 g/ (NH 4 ) 2 SO 4 1 g/ MgCl 2 6H 2 O 0.5 g/ anti-packaging agent (manufactured by Toshiba Silicon Co., Ltd.) 0.3 g/ 400ml in front tank 1, 600ml in rear tank 2
ml each, and then heat-treated crushed vermiculite (60 to 80 mesh) was added to the pre-stage tank 1 at a concentration of 5 wt/vol%, and the medium was heat sterilized.
Zymomonas was then cultured using the above medium.
100 ml of culture solution of Mobilis ATCC Deposit No. 10988 was added to the first tank 1. In addition, the immobilized yeast Saccharomyces formosensis encased in sodium alginate was deposited at IFO.
No. 0216 was added to the second tank 2 at a concentration of about 5 vol%. In both tanks 1 and 2, the pH was controlled to 4.5 and the temperature was controlled to 30° C., and the microorganisms were cultured for about 8 hours to grow these microorganisms.

ついで、醗酵原料として滅菌済の5倍希釈ケー
ン廃糖蜜培地(酵母エキス:3g/、
(NH42SO4:1g/、KH2PO4:1g/および
MgCl2・6H2O:0.5g/を含む)を、流量0.07
/hで前段槽1に連続供給して、上記醗酵条件
下に連続醗酵を行なつた。前後両槽1,2の各出
口における反応液中のエタノール濃度は、それぞ
れ45g/および64g/であつた。
Next, sterilized 5-fold diluted Cane's molasses medium (yeast extract: 3 g/,
(NH 4 ) 2 SO 4 : 1 g/, KH 2 PO 4 : 1 g/, and
MgCl26H2O : 0.5g/), flow rate 0.07
Continuous fermentation was carried out under the above-mentioned fermentation conditions by continuously supplying the mixture to the pre-stage tank 1 at a rate of 1/h. The ethanol concentrations in the reaction solution at each outlet of both the front and rear tanks 1 and 2 were 45 g/ and 64 g/, respectively.

つぎに原料供給流量を0.07/hから0.14/h、
0.21/hおよび0.28/hに順次上げて、各流量に
おけるエタノール濃度を測定した。原料希釈率
(=原料供給流量/醗酵槽全実容積)とアルコー
ル生産性の関係を第3図に示す。同図からわかる
ように、アルコール生産性は希釈率に比例して向
上し、希釈率0.2h-1(流量0.28/h)ではアルコ
ール生産性は約13g/・hという高い値となつ
た。また後段槽2から流出する反応液のエタノー
ル濃度はほとんど変化しなかつた。
Next, increase the raw material supply flow rate from 0.07/h to 0.14/h.
The ethanol concentration at each flow rate was measured by increasing the flow rate sequentially to 0.21/h and 0.28/h. FIG. 3 shows the relationship between the raw material dilution rate (=raw material supply flow rate/total actual volume of the fermenter) and alcohol productivity. As can be seen from the figure, alcohol productivity improved in proportion to the dilution rate, and at a dilution rate of 0.2 h -1 (flow rate 0.28/h), alcohol productivity reached a high value of about 13 g/h. Moreover, the ethanol concentration of the reaction liquid flowing out from the latter stage tank 2 hardly changed.

以上の如く、前後2基の流動層型醗酵槽を用
い、前段槽で担体に付着したアルコール醗酵能を
有する細菌を培養するとともに、後段槽で固定化
酵母を培養することにより、高い醗酵収率と高い
アルコール生産性を得ることができた。これに対
し、菌体付着用担体を用いない基本的な連続培養
法では、エタノールの生産性は2〜3g/・hで
あると報告されている。このように、本発明によ
れば、アルコール醗酵収率を高く維持し、生産性
を大幅に向上させることができる。
As described above, high fermentation yields can be achieved by using two fluidized bed fermentation tanks, the front and rear tanks, and culturing bacteria with alcohol fermentation ability attached to the carrier in the first tank, and culturing immobilized yeast in the second tank. and was able to obtain high alcohol productivity. On the other hand, it has been reported that in a basic continuous culture method that does not use a carrier for attaching bacterial cells, the ethanol productivity is 2 to 3 g/h. As described above, according to the present invention, it is possible to maintain a high alcohol fermentation yield and significantly improve productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回分醗酵による各種微生物についての
培養時間とエタノール濃度の関係を示すグラフ、
第2図は実施例で用いた醗酵装置の概略図、第3
図は実施例における原料希釈率とアルコール生産
性の関係を示すグラフ、第4図は比較例2で用い
た醗酵装置の概略図である。 1,2……流動層型醗酵槽。
Figure 1 is a graph showing the relationship between culture time and ethanol concentration for various microorganisms in batch fermentation.
Figure 2 is a schematic diagram of the fermentation equipment used in the examples, Figure 3
The figure is a graph showing the relationship between raw material dilution rate and alcohol productivity in Examples, and FIG. 4 is a schematic diagram of the fermentation apparatus used in Comparative Example 2. 1, 2...Fluidized bed fermentation tank.

Claims (1)

【特許請求の範囲】[Claims] 1 流動層型醗酵装置2基を直列に配し、前段で
担体に付着したアルコール醗酵能を有する細菌を
培養するとともに、後段で固定化酵母を培養する
ことを特徴とする醗酵によるアルコールの連続製
造法。
1. Continuous production of alcohol by fermentation, characterized by arranging two fluidized bed fermentation devices in series, culturing bacteria with alcohol fermentation ability attached to a carrier in the first stage, and culturing immobilized yeast in the second stage. Law.
JP57012053A 1982-01-27 1982-01-27 Continuous preparation of alcohol by fermentation Granted JPS58129987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012053A JPS58129987A (en) 1982-01-27 1982-01-27 Continuous preparation of alcohol by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012053A JPS58129987A (en) 1982-01-27 1982-01-27 Continuous preparation of alcohol by fermentation

Publications (2)

Publication Number Publication Date
JPS58129987A JPS58129987A (en) 1983-08-03
JPS6136918B2 true JPS6136918B2 (en) 1986-08-21

Family

ID=11794855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012053A Granted JPS58129987A (en) 1982-01-27 1982-01-27 Continuous preparation of alcohol by fermentation

Country Status (1)

Country Link
JP (1) JPS58129987A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000616A1 (en) * 1986-07-17 1988-01-28 University Of Queensland Conversion of fermentable carbohydrates to ethanol using mixed cultures of zymomonas mobilis and yeast

Also Published As

Publication number Publication date
JPS58129987A (en) 1983-08-03

Similar Documents

Publication Publication Date Title
CA1174191A (en) Ethanol production
CA2054329C (en) Process for preparing trehalulose and isomaltulose
CN104845896B (en) Produce the bacterial strain and method of Weilan gum
EP0120369A2 (en) Production of acetic acid by a continuous fermentation process
CN108949713B (en) Preparation method of aspergillus oryzae fermentation broth and application of aspergillus oryzae fermentation broth in production of fructo-oligosaccharide
Margaritis et al. Repeated batch production of ethanol from Jerusalem artichoke tubers using recycled immobilized cells of Kluyveromyces fragilis
HÄggström et al. Continuous production of butanol with immobilized cells of Clostridium acetobutylicum
Nampoothiri et al. Immobilization of Brevibacterium cells for the production of L-glutamic acid
JPS6135836B2 (en)
JPS6136918B2 (en)
JPS6136917B2 (en)
CN102115768B (en) Method for producing hexadecanedioic acid by synchronously fermenting n-hexadecane with microbe
CN210261773U (en) Fermentation reactor for producing citric acid by immobilized aspergillus niger
JPS6135834B2 (en)
JPS6136920B2 (en)
DK176108B1 (en) Levansaccharase enzyme, process and microorganisms for its preparation and compositions containing it
JPS6136916B2 (en)
JPS6135835B2 (en)
JPS6136919B2 (en)
JPS6135837B2 (en)
JPS5910795B2 (en) Alcohol production method by fermentation
JPS62208293A (en) Production of multiplication growth factor of mold of bifidobacterium
JPH0198500A (en) Method for refining sucrose solution
CA1257554A (en) Conversion of carbohydrates to alcohol with certain yeasts
JPS58129979A (en) Continuous preparation of alcohol by fluidizing immobilized microbial cell