JPS5812990B2 - battery - Google Patents

battery

Info

Publication number
JPS5812990B2
JPS5812990B2 JP49140677A JP14067774A JPS5812990B2 JP S5812990 B2 JPS5812990 B2 JP S5812990B2 JP 49140677 A JP49140677 A JP 49140677A JP 14067774 A JP14067774 A JP 14067774A JP S5812990 B2 JPS5812990 B2 JP S5812990B2
Authority
JP
Japan
Prior art keywords
electrolyte
dimethoxymethane
mol
battery
butyrolactone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49140677A
Other languages
Japanese (ja)
Other versions
JPS5167920A (en
Inventor
研一 中村
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP49140677A priority Critical patent/JPS5812990B2/en
Publication of JPS5167920A publication Critical patent/JPS5167920A/en
Publication of JPS5812990B2 publication Critical patent/JPS5812990B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Description

【発明の詳細な説明】 本発明は、リチウム、マグネシウムなどの軽金属を負極
活物質とする電池の電解質の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in electrolytes for batteries using light metals such as lithium and magnesium as negative electrode active materials.

この種電池においては、γ−ブチロラクトン、プロピレ
ンカーボネート等の環状エステルにホウフツ化リチウム
、過塩素酸リチウム等のイオン解離性塩を溶解すること
によってイオン電導性をもたせた有機電解質が用いられ
てきた。
In this type of battery, an organic electrolyte has been used in which ion conductivity is imparted by dissolving an ion dissociative salt such as lithium borofluoride or lithium perchlorate in a cyclic ester such as γ-butyrolactone or propylene carbonate.

これら有機電解質を使用した場合、特に0℃以下の低温
において放電電圧の減少ならびに電池活物質の利用率低
下が大きい問題がある。
When these organic electrolytes are used, there is a problem that the discharge voltage decreases and the utilization rate of the battery active material decreases, especially at low temperatures of 0° C. or lower.

本発明は、この種電池の低温における放電特性を改良す
ることを目的とする。
The object of the present invention is to improve the discharge characteristics of this type of battery at low temperatures.

本発明は、電解質を少なくとも1種の溶質と2種の溶媒
で構成し、溶媒の1種がジメトキシメタンであり、他の
1種がγ−ブチロラクトンまたはプロピレンカーボネー
トであることを特徴とする。
The present invention is characterized in that the electrolyte is composed of at least one solute and two solvents, one of the solvents being dimethoxymethane and the other being γ-butyrolactone or propylene carbonate.

一般に電解質の電池性能におよぼす効果をみるめやすと
して、電解質の電導度があげられる。
Generally, the electrical conductivity of the electrolyte is used as a measure of the effect of the electrolyte on battery performance.

そして電導度の大きな電解質を用いた電池ほどその内部
抵抗が小さくなり、放電時の分極も小さくなる。
A battery using an electrolyte with a higher conductivity has a lower internal resistance and a lower polarization during discharge.

本発明は、このような観点から検討した結果に基づくも
のである。
The present invention is based on the results of studies from this perspective.

以下、本発明をその実施例により説明する。Hereinafter, the present invention will be explained with reference to examples thereof.

第1図はジメトキシメタンに対してL iC 104を
各種濃度で溶解させた電解質の−20℃における電導度
を示す。
FIG. 1 shows the electrical conductivity at -20° C. of electrolytes in which LiC 104 is dissolved at various concentrations in dimethoxymethane.

図からわかるようにL I C 104の濃度が3.5
モル/l付近に電導度の最大ピークが存在する。
As can be seen from the figure, the concentration of L I C 104 is 3.5
The maximum peak of electrical conductivity exists near mol/l.

第2図はγ−ブチロラク
トンとジメトキシメタンとを体積比で1対1の割合で混
合した溶媒に対してL iC 104を各種濃度で溶解
した電解質の−20℃における電導度を示す。
FIG. 2 shows the electrical conductivity at -20° C. of electrolytes prepared by dissolving LiC 104 at various concentrations in a solvent containing a mixture of γ-butyrolactone and dimethoxymethane at a volume ratio of 1:1.

この場合はL iC 104の濃度が2.5モル/lで
電導度が最大値をとる。
In this case, the conductivity reaches its maximum value when the concentration of LiC 104 is 2.5 mol/l.

第3図はプロピレンカーボネートとジメトキシメタンと
を1対2の体積比で混合した溶媒に対してLiCl04
を溶解した電解質の−20℃における電導度を示す。
Figure 3 shows LiCl04 in a solvent containing propylene carbonate and dimethoxymethane mixed at a volume ratio of 1:2.
It shows the electrical conductivity at -20°C of an electrolyte in which .

図からL iC 104濃度が2モルA付近で電導度が
最大値をとる。
From the figure, the electrical conductivity reaches its maximum value when the LiC 104 concentration is around 2 mol A.

第4図の曲線AはプロピレンカーボネートにL i C
104を溶解したもの、曲線Bはγ−ブチロラクトン
にLiCl04を溶解したもののそれぞれの−20℃に
おける電導度を示す。
Curve A in Figure 4 shows L i C for propylene carbonate.
Curve B shows the electrical conductivity at -20°C of LiCl04 dissolved in γ-butyrolactone.

第1図と第4図を比較すると、溶媒としてジメトキシメ
タンを使用する電解質を用いた電池の低温での放電に伴
う分極は、γ−ブチロラクトンあるいはプロピレンカー
ボネートといった従来溶媒で構成された電解質を用いた
電池の分極に比べて小さくなることが予想される。
Comparing Figures 1 and 4, it is clear that the polarization associated with low-temperature discharge of batteries using electrolytes with dimethoxymethane as the solvent is significantly lower than that with electrolytes composed of conventional solvents such as γ-butyrolactone or propylene carbonate. It is expected that this will be smaller than the polarization of the battery.

また第2、第3図と第1,4図を比較すると、従来の溶
媒であるγ−ブチロラクトンあるいはプロピレンカーボ
ネートに対してジメトキシメタンを適当な比率で混合し
た溶媒を用いることによって、ジメトキシメタン単独溶
媒あるいはγ−ブチロラクトン、プロピレンカーボネー
トの単独溶媒を用いるより一層電解質の低温特性の向上
が期待できることがわかる。
Comparing Figures 2 and 3 with Figures 1 and 4, we can see that by using a solvent in which dimethoxymethane is mixed in an appropriate ratio to the conventional solvent γ-butyrolactone or propylene carbonate, dimethoxymethane alone can be used as a solvent. Alternatively, it can be seen that the low-temperature properties of the electrolyte can be expected to be further improved than when using γ-butyrolactone or propylene carbonate as a sole solvent.

すなわち−20℃における各種電解質の電導度の最大値
は次の順で小さくなっている。
That is, the maximum value of the electrical conductivity of various electrolytes at -20°C decreases in the following order.

(1)プロピレンカーボネートとジメトキシメタンとを
1対2の割合(体積比)で混合した溶媒にLi C 1
04を2.0モル/l溶解した電解質(2) γ−ブ
チロラクトンとジメトキシメタンとを1対1の割合で混
合した溶媒にLiCl04を2.0モル/l溶解した電
解質 (3)ジメトキシメタン単独に3.5モル/lのLiC
IO4を溶解した電解質 (4) γ−ブチロラクトンに1.0モル/lのL
IC 104を溶解した電解質 (5)プロピレンカーボネートに1.0モル/ZのLi
CIO4を溶解した電解質 次に上記の各電解質を用いたフツ化炭素一リチウム系電
池の低温での放電特性の比較結果を示す.負極は大きさ
20×20mm、厚さ0.5mmのリチウム金属板をニ
ッケルネットの集電体に埋込んで構成した。
(1) Li C 1 is added to a solvent in which propylene carbonate and dimethoxymethane are mixed at a ratio of 1:2 (volume ratio).
Electrolyte (2) with 2.0 mol/l of LiCl04 dissolved in a 1:1 ratio of γ-butyrolactone and dimethoxymethane (3) Electrolyte with 2.0 mol/l of LiCl04 dissolved in dimethoxymethane alone 3.5 mol/l LiC
Electrolyte (4) in which IO4 is dissolved 1.0 mol/l L in γ-butyrolactone
Electrolyte (5) 1.0 mol/Z Li in propylene carbonate in which IC 104 is dissolved
Electrolyte with CIO4 dissolved Next, we will show the results of a comparison of the discharge characteristics at low temperatures of carbon monolithium fluoride batteries using each of the above electrolytes. The negative electrode was constructed by embedding a lithium metal plate with a size of 20×20 mm and a thickness of 0.5 mm in a nickel net current collector.

正極はフツ化炭素(CFx)n,xklとアセチレンブ
ラックと結着剤のフッ素樹脂粉末とを重量比で10:1
:2の割合で混合した粉末をニッケルネットの集電体に
圧着成形した大きさ20×20mm,厚さ0. 5mm
のものを用いた。
The positive electrode is made of carbon fluoride (CFx) n, xkl, acetylene black, and fluororesin powder as a binder in a weight ratio of 10:1.
: A powder mixed in a ratio of 2:2 was pressure-molded onto a nickel net current collector, measuring 20 x 20 mm and having a thickness of 0.2 mm. 5mm
I used the one from

この正極の理論容量は350mAhである。The theoretical capacity of this positive electrode is 350mAh.

上記の正極、負極および両電極間に介在したポリプロピ
レン不織布のセパレタを、上記の電解液を満たしたポリ
エチレンケースに封入し、5種の電池を作成した。
The positive electrode, the negative electrode, and the polypropylene nonwoven fabric separator interposed between the two electrodes were enclosed in a polyethylene case filled with the electrolytic solution to prepare five types of batteries.

これらの電池を−20°Cにおいて150Ωの定抵抗放
電をした場合の放電特性を第5図に示す。
FIG. 5 shows the discharge characteristics when these batteries were discharged at a constant resistance of 150Ω at -20°C.

図の曲線に付した番号は上記各番号の電解質を用いた電
池に相当する。
The numbers attached to the curves in the figure correspond to batteries using the electrolytes with the respective numbers above.

第5図から明らかなように、ジメトキシメタンとプロピ
レンカーボネートまたはγ−ブチロラクトンとの混合溶
媒系電解質を用いた電池は、γ一ブチロラクトン、プロ
ピレンカーボネートの単独溶媒電解質を用いた電池に比
べて、低温特性が放電々圧および活物質利用率の面です
ぐれている。
As is clear from Figure 5, a battery using a mixed solvent electrolyte of dimethoxymethane and propylene carbonate or γ-butyrolactone has better low-temperature characteristics than a battery using a single solvent electrolyte of γ-butyrolactone and propylene carbonate. is excellent in terms of discharge pressure and active material utilization.

さらにこの混合系は、ジメトキシメタン単独系に比較す
ると、用いる溶質の量を減少できるという長所を有する
Furthermore, this mixed system has the advantage that the amount of solute used can be reduced compared to a dimethoxymethane-only system.

すなわち、第1〜3図から明らかなように、最大電導度
を得るのに、ジメトキシメタン単独では3.5モル/l
のL iC 104濃度が必要であるのに対し、混合系
では2.5モル/lあるいは2モル/lで最大電導度が
得られている。
That is, as is clear from Figures 1 to 3, in order to obtain the maximum conductivity, dimethoxymethane alone requires 3.5 mol/l.
A LiC 104 concentration of 2.5 mol/l or 2 mol/l is required in mixed systems, whereas maximum conductivity has been obtained at 2.5 mol/l or 2 mol/l.

このことは実用電池のコスト低減により有利となる。This is advantageous in reducing the cost of practical batteries.

上例では、正極活物質にフツ化炭素を用いたが、クロム
酸銀、硫化銅、酸化銅などこの種有機電解質電池に用い
られるものを使用することができる。
In the above example, carbon fluoride was used as the positive electrode active material, but silver chromate, copper sulfide, copper oxide, and other materials used in this type of organic electrolyte battery can also be used.

なお、正極にフツ化炭素を用いた場合は、ジメトキシメ
タンにより正極の電解質によるぬれがよくなり、他の活
物質を用いる場合に比較して低温特性の改良効果が大き
い。
Note that when carbon fluoride is used for the positive electrode, dimethoxymethane improves wetting of the positive electrode with the electrolyte, and the effect of improving low-temperature characteristics is greater than when using other active materials.

また、溶質としてはL i C 104の他リチウムチ
オシアネート、L s BF4 , L t P F
6あるいはこれらの混合物などを使用することができる
In addition to L i C 104, the solutes include lithium thiocyanate, L s BF4 , L t P F
6 or a mixture thereof can be used.

以上のように、本発明によれば、有機電解質電池の低温
特性を著しく向上することができる。
As described above, according to the present invention, the low-temperature characteristics of an organic electrolyte battery can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は各種溶媒を用いた電解質の溶質の
濃度と電導度との関係を示し、第5図は各種電解質を用
いたフツ化炭素−リチウム系電池の放電特性を示す。
1 to 4 show the relationship between the solute concentration and conductivity of electrolytes using various solvents, and FIG. 5 shows the discharge characteristics of fluorocarbon-lithium batteries using various electrolytes.

Claims (1)

【特許請求の範囲】[Claims] 1 正極と、軽金属を活物質とする負極と、少なくとも
1種の溶質および2種の溶媒からなる電解質とを有し、
前記溶媒の1種がジメトキシメタンであり、他の1種が
γ−ブチロラクトンまたはプロピレンカーボネートであ
ることを特徴とする電池。
1 having a positive electrode, a negative electrode using a light metal as an active material, and an electrolyte consisting of at least one solute and two solvents,
A battery characterized in that one of the solvents is dimethoxymethane and the other solvent is γ-butyrolactone or propylene carbonate.
JP49140677A 1974-12-06 1974-12-06 battery Expired JPS5812990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49140677A JPS5812990B2 (en) 1974-12-06 1974-12-06 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49140677A JPS5812990B2 (en) 1974-12-06 1974-12-06 battery

Publications (2)

Publication Number Publication Date
JPS5167920A JPS5167920A (en) 1976-06-12
JPS5812990B2 true JPS5812990B2 (en) 1983-03-11

Family

ID=15274176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49140677A Expired JPS5812990B2 (en) 1974-12-06 1974-12-06 battery

Country Status (1)

Country Link
JP (1) JPS5812990B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100341182C (en) * 2004-10-13 2007-10-03 惠州市德赛能源科技有限公司 Needle shape lithium-manganese dioxide cell and its producing method

Also Published As

Publication number Publication date
JPS5167920A (en) 1976-06-12

Similar Documents

Publication Publication Date Title
US3532543A (en) Battery employing lithium - sulphur electrodes with non-aqueous electrolyte
CN109994322B (en) Battery type super capacitor and application thereof
CA1066767A (en) Halogen electrode
JPS63102173A (en) Lithium secondary battery
US3413154A (en) Organic electrolyte cells
CN109755554A (en) A kind of aluminium selenium secondary cell
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JP3367060B2 (en) Negative electrode for lithium secondary battery
JPS5856466B2 (en) dench
JP2002260728A (en) Lithium secondary battery using nonaqueous electrolyte solution
JPS6362869B2 (en)
JPS5812990B2 (en) battery
JPS5816303B2 (en) dench
JPH11329492A (en) Secondary power source
JP3831599B2 (en) Lithium secondary battery
JPS5812991B2 (en) battery
JPH08124597A (en) Solid electrolytic secondary cell
JPH0359963A (en) Lithium secondary battery
JPH1140197A (en) Polymer electrolyte battery
JPH0227664A (en) Nonaqueous electrolyte battery
JPH0711967B2 (en) Non-aqueous electrolyte battery
JP2000353544A (en) Nonaqueous electrolyte secondary battery
JP2000106212A (en) Lithium battery
JPS62283571A (en) Nonaqueous solvent secondary cell
JPS55111075A (en) Lithium battery