JPS58129609A - Controlling system of moving body - Google Patents

Controlling system of moving body

Info

Publication number
JPS58129609A
JPS58129609A JP57013097A JP1309782A JPS58129609A JP S58129609 A JPS58129609 A JP S58129609A JP 57013097 A JP57013097 A JP 57013097A JP 1309782 A JP1309782 A JP 1309782A JP S58129609 A JPS58129609 A JP S58129609A
Authority
JP
Japan
Prior art keywords
tape
moving
signs
controlling
drawn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57013097A
Other languages
Japanese (ja)
Inventor
Kenichi Yoshida
健一 吉田
Koji Sato
浩二 佐藤
Akihiro Ooka
大岡 明裕
Yutaka Wada
豊 和田
Akira Takemoto
晃 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57013097A priority Critical patent/JPS58129609A/en
Publication of JPS58129609A publication Critical patent/JPS58129609A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0244Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using reflecting strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Steering Controls (AREA)

Abstract

PURPOSE:To improve the controlling accuracy of movement with a simple constitution and to prevent influences due to the change of external factors by reading out a long scaling body in which signs to indicate a moving passage are drawn by using an optical reader. CONSTITUTION:Tapes 12 in which signs to indicate information controlling the moving action of a moving body 11 are drawn are adhered to appropriate positions of a flower surface 1 along a tape 2 indicating the moving passage. These signs give movement controlling information such as left turn, right turn, slow going, temporary stop, and backdowk by combining characters, marks and figures. The signs drawn on the tapes 12 and the line setting tape 2 are read out by an image sensor 14 through a lens 13 and the output of the sensor 14 is binary-coded by a binary coding circuit 15 to supply the output to a pattern recognizing device 16. Referring information from a tape position detecting part 17, the pattern recognizing device 16 processes the output from the binary coding circuit 15 and sends a signal to a motor controlling circuit 7 to perform a specified movement.

Description

【発明の詳細な説明】 本発明は、移動体の移動方向と動作を指定する情報を光
学的に読取9この読取り結果に応じて移動体の移動動作
を制御できるようにした移動体制御システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mobile body control system that optically reads information specifying the moving direction and operation of a mobile body and controls the movement of the mobile body according to the reading result. .

工場内等での物の運搬に際し、無人移動車を使用して省
略化を図る例が多くなってきている。従来このような無
人移動車の運転方式の1つとして、床面に貼つ九テープ
によって移動経路を指足し、このテープと移動車との相
対位置を移動車に搭載した光電変換装置で検出し、この
検出結果に応じて移動車の移動方向を制御する光電誘導
方式が採用されている。
Increasingly, unmanned vehicles are used to simplify the transportation of objects within factories. Conventionally, one method of operating such an unmanned vehicle is to trace the travel route using a tape attached to the floor, and detect the relative position between this tape and the vehicle using a photoelectric conversion device mounted on the vehicle. A photoelectric induction method is used to control the moving direction of the moving vehicle according to the detection results.

すなわち第1図に示すように、床面1上に貼着され九移
動経路設定用テープ2が、その上を走行する移動体11
の移動経路を設定している。この移動体11にはランプ
3、光検出器4t、 、 4R等図示の装置が搭載され
ている。ランプ3から出走光はテープ2で反射されて左
右の光検出器4Lと4Rに入射し、ここで光電変換され
た電気信号がそれぞれ左右の増幅器5Lと5Rに入力す
る。これらの入力電気信号は各検出器に入射した光の強
度゛、すなわち第2図示のように各検出器とテープ2間
の距離X。
That is, as shown in FIG.
The travel route is set. The moving body 11 is equipped with the illustrated devices such as a lamp 3, photodetectors 4t, 4R, and the like. The light emitted from the lamp 3 is reflected by the tape 2 and enters the left and right photodetectors 4L and 4R, where the electrical signals photoelectrically converted are input to the left and right amplifiers 5L and 5R, respectively. These input electrical signals are the intensity of the light incident on each detector, ie, the distance X between each detector and the tape 2 as shown in the second diagram.

yに対応している。偏差検出器6は、増幅器5Lと5R
の出力を受けてそのレベル差を検出する。モータ制御回
路7は、偏差検出器6から出力されたレベル差に応じて
左右の車輪駆動用モータ8Lと8Rの動作を制御する。
It corresponds to y. The deviation detector 6 includes amplifiers 5L and 5R.
receives the output of and detects the level difference. The motor control circuit 7 controls the operation of the left and right wheel drive motors 8L and 8R according to the level difference output from the deviation detector 6.

例えば、左側の光検出器4Lの受光量が右側のそれに比
べて大きい場合には第2図においてx<yであることが
意味されておシ、この場合には左側車輪の回転速度を右
側車輪のそれよシも低下させるように車輪駆動用モータ
8Lと8Rの動作が制御され、これによってX=7  
の状態に近づけられる。停止位置検出回路9は、例えば
増幅器5Lと5Rの出力が共に一定値以下になったこと
(テープの終端)を検出゛して停止信号をモータ制御回
路7に出力する。
For example, if the amount of light received by the left photodetector 4L is larger than that of the right photodetector, it means that x<y in FIG. 2, and in this case, the rotation speed of the left wheel is The operation of wheel drive motors 8L and 8R is controlled so as to reduce the deviation of X=7.
The state can be approached. The stop position detection circuit 9 detects, for example, that the outputs of the amplifiers 5L and 5R are both below a certain value (the end of the tape), and outputs a stop signal to the motor control circuit 7.

しかしながら、上記従来方式には次のような欠点がある
。まず第1に、テープからの反射光量の差を検出すると
いう構成であるため、光検出器に塵埃等が付着して左右
の検出感度に偏差が生じたり、あるいは経年変動によっ
て左右の増幅器に利得の偏差が生ずると、これらの偏差
がその11制御ループの定常誤差となシ、極端な場合に
は制御可能範囲への引込みはずれを起こして走行不能と
なってしまうおそれがある。また、背景光量の変動の影
響を避けつつ制御精度を高めるうえで大きな光量のラン
プが必要となシ、かつランプの劣化によって光量が低下
すると背景光量の変動がその゛まま制御精度に影響を及
埋すという欠点がある。
However, the above conventional method has the following drawbacks. First of all, since the configuration detects the difference in the amount of light reflected from the tape, dust or the like may adhere to the photodetector, causing a deviation in the left and right detection sensitivities, or changes over time may cause gain in the left and right amplifiers. If deviations occur, these deviations will become steady errors in the 11 control loops, and in extreme cases, there is a risk that the vehicle will not be pulled into the controllable range and the vehicle will be unable to travel. In addition, in order to improve control accuracy while avoiding the effects of fluctuations in the amount of background light, a lamp with a large amount of light is required, and if the amount of light decreases due to deterioration of the lamp, fluctuations in the amount of background light will continue to affect control accuracy. There is a drawback to be compensated for.

従来方式の第2の欠点は、分岐を有する豪雑な移動経路
を設定することが困難な点にある。すなわち、移動経路
に分岐を設けようとすれば、移動車に1光電検出装置の
他に左折、徐行等の移動動作に関する制御情報を記憶す
る記憶回路や移動距離等移動車の履歴を□示す何らかの
情報を検出するための装置を搭載しなければならず装置
が複雑になる。を九この場合、移動距離等の検出誤差が
移動車の走行距離に比例して累積されたシ、あるいは検
出精度が時間と共に劣化するという問題もある。
The second drawback of the conventional method is that it is difficult to set a complicated travel route with branches. In other words, if a branch is to be provided in the travel route, in addition to a photoelectric detection device, the moving vehicle must be equipped with a memory circuit that stores control information regarding movement actions such as turning left or slowing down, or some kind of device that indicates the history of the moving vehicle, such as the distance traveled. The device must be equipped with a device for detecting information, making the device complicated. In this case, there is also the problem that detection errors such as the travel distance are accumulated in proportion to the travel distance of the moving vehicle, or that the detection accuracy deteriorates over time.

本発明は上記従来方式の欠点に鑑みてなされたものでT
oシ、その目的は、制御精度が高くかつ外的要因の変動
を受けにくく、しかも簡易な構成のもとに各種の移動制
御が行える移動体制御システムを提供することにある。
The present invention has been made in view of the above-mentioned drawbacks of the conventional method.
The purpose is to provide a mobile object control system that has high control accuracy, is less susceptible to fluctuations due to external factors, and can perform various types of movement control with a simple configuration.

以下本発明の詳細を実施例によって説明する。The details of the present invention will be explained below with reference to Examples.

第3図は本発明の一実施例の構成を示すブロック図であ
る。本図において第1図と同一の参照符号を付した要素
は、第1図に関し既に説明し九と同一の要素であるから
、これらについては重複した説明を要しないであろう。
FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention. Elements in this figure labeled with the same reference numerals as in FIG. 1 are the same elements as those already explained in connection with FIG.

本実施例において社、移動経路を指定するテープ2に沿
う床面l上の適宜な箇所に、この移動体11の移動動作
を制御するための情報を表示する標識を描いたテープU
が貼着されている。この標識は適宜な文字、記号1図形
あるいはこれらの適宜な組合せから成っておシ、移動体
11に対して左折、右折、徐行、一旦停止。
In this embodiment, a tape U depicting a sign indicating information for controlling the moving operation of the moving body 11 is drawn at an appropriate location on the floor l along the tape 2 specifying the moving route.
is pasted. This sign consists of appropriate letters, symbols, figures, or an appropriate combination of these, and tells the moving object 11 to turn left, turn right, slow down, or temporarily stop.

後退等の移動制御情報を与える。Provides movement control information such as retreat.

テープ12上に描かれた標識と経路設定用テープ2はレ
ンズ13を介してイメージセンサ14に読取られる。こ
のイメージセンサ14は、光電変換素子が一次元的ある
いは二次元的に配列された慣用の装置であり、素子の配
列数は読取るべき標識の複雑さ等に基づき必要となる分
解能に応じて適宜な値が選択される。イメージセンサ1
4による標識の走査を移動体の走行によって行う構成と
することもできるが、徐行あるいは停止状態での走査屯
可能とするため独自の走査機能が備えられてもよい。
The mark drawn on the tape 12 and the route setting tape 2 are read by the image sensor 14 through the lens 13. This image sensor 14 is a conventional device in which photoelectric conversion elements are arrayed one-dimensionally or two-dimensionally, and the number of arrayed elements is determined as appropriate depending on the required resolution based on the complexity of the label to be read, etc. A value is selected. Image sensor 1
It is also possible to adopt a configuration in which the scanning of the sign according to No. 4 is carried out by the traveling of the moving object, but a unique scanning function may be provided to enable scanning while moving slowly or in a stopped state.

イメージセンサ14からの出力は二値化回路15におい
て二値化され、パターン認識装置16に供給される。
The output from the image sensor 14 is binarized by a binarization circuit 15 and supplied to a pattern recognition device 16 .

パターン認識装置16は、慣用の適宜な装置から構成さ
れておプ、後述するテープ位置検出部17からの情報も
参照して例えば二次元的に配列され九シフトレジスタ内
に二値化信号を読込んで細め処理を行い、例えばパター
ンマツチング法では予め記憶しである標識と照合をとる
。照合一致によつてイメージセンサ14が読取った標識
の内容が検出されると、これに応じ九モータ制御信号が
モータ制御回路7に供給される。モータ制御回路7は供
給された制御信号に応じて車輪駆動用モータ8Lと8R
を制御する。これによって移動体11が左折。
The pattern recognition device 16 is composed of a conventional and appropriate device, and reads the binarized signal into nine shift registers arranged two-dimensionally, for example, with reference to information from a tape position detection section 17, which will be described later. Then, in the pattern matching method, for example, the image is compared with a pre-stored mark. When the content of the label read by the image sensor 14 is detected by matching, nine motor control signals are supplied to the motor control circuit 7 in response. The motor control circuit 7 controls the wheel drive motors 8L and 8R according to the supplied control signal.
control. This causes the moving object 11 to turn left.

徐行等標識によって指定された動作を行なう。Carry out the actions specified by the signs, such as slowing down.

上述し九標識と制御動作との対応付けは、例えば数字の
″3”を読取ったときには徐行、数字の″l”を読取っ
たときKは左折というように標識と制御動作とをl対I
K対応付ける構成でもよい。あるいはまた、経路上の各
位置においてなされるべき制御動作を移動体に搭載した
記憶回路に予め記憶しておき、移動体が現在経路上のど
の位置にあるかを標識によって指示する構成であっても
よい。
The above-mentioned correspondence between the nine signs and control actions is such that when the number "3" is read, slow down, and when the number "l" is read, K means turn left.
A configuration in which K is associated may be used. Alternatively, the control operation to be performed at each position on the route may be stored in advance in a memory circuit mounted on the moving body, and the position on the route at which the moving body is currently located may be indicated by a sign. Good too.

一方、二値化回路「の出力はテープ位置検出回路17に
も供給される。テープ位置検出回路17は、入力され九
二値化信号の配列からテープ2の像がイメージセンナ1
4の視野内のどこに存在しているか、すなわちテープ2
の儂がこのテープと垂直方向に配列され九どのセルに結
像されているかを検出し、複数のセルにわたって結像さ
れているときには、中心のセル位置を算定する。次にテ
ープ位置検出回路17は、算定し九セル位置と予め定め
である所定のセル位置との差分に比例した信号をその差
分O極性と共にモータ制御回路7に出力する。
On the other hand, the output of the binarization circuit is also supplied to the tape position detection circuit 17.
4, i.e. tape 2.
Detects which cell is imaged on the nine cells arranged perpendicularly to the tape, and calculates the center cell position when the image is formed over a plurality of cells. Next, the tape position detection circuit 17 outputs a signal proportional to the difference between the calculated nine cell position and a predetermined cell position to the motor control circuit 7 together with the polarity of the difference O.

これを受けたモータ制御回路7は、差分の極性によって
指定された方向に差分の絶対値に比例した大きさだけ移
動体11の移動が行なわれるように車輪駆動用モータ8
Lと8Rに制御信号を供給する。
Upon receiving this, the motor control circuit 7 controls the wheel drive motor 8 so that the moving body 11 is moved in the direction specified by the polarity of the difference by an amount proportional to the absolute value of the difference.
Supply control signals to L and 8R.

上記実施例においてイメージセンサ14を1次元的に配
列され九複数のセルで構成し九場合の例を第4図によっ
て説明する。同図において、蜀は複数セル群から成るイ
メージセンサ14の視野でTon。
An example in which the image sensor 14 in the above embodiment is arranged one-dimensionally and consists of nine cells will be explained with reference to FIG. In the figure, Shu is Ton in the field of view of the image sensor 14 consisting of a plurality of cell groups.

これはそれぞれ時刻1..1.及びt、に図中で同一の
符号を付した位置に移動する。時刻t、においては、テ
ープ2は3個のセルgj1gm及び2nに結像されてい
る。位置検出回路17は、これを検出し、中心のセルg
mと予め定めである所定のセル位置21と1 の差分すなわち4セル分の差分とそのずれの方向を示す
極性(この場合正の極性とする)をモータ制御回路7に
供給する。これに基づいてモータ制御回路7は左側の車
輪を右側よシも高速回転させるような制御信号を車輪駆
動用モータ8Lと8Rに供給する。この結果移動体11
は右側に向きを変え時刻t2においてはセル2h、2i
及び2jにンープ2が結像され、位置検出回路17から
出力される差分信号はゼロになる。この結果、モータ制
御回路7は以後左右両輪を等速回転させる制御信号を車
輪駆動用モータ8Lと8Rに供給し、移動体11は直進
動作を継続する。時刻t1においてイメージセンサ14
の視野がテープ2と逆方向にずれていた場合にも全く同
様の動作が行なわれる。但しこの場合、位置検出回路1
丁からは負極性の差分信号が出力され移動体11は左側
に向きを変える。
This is time 1. .. 1. and t to the positions indicated by the same reference numerals in the figure. At time t, the tape 2 is imaged into three cells gj1gm and 2n. The position detection circuit 17 detects this and detects the center cell g.
The motor control circuit 7 is supplied with a difference between m and a predetermined cell position 21 and 1, that is, a difference of four cells, and a polarity indicating the direction of the deviation (in this case, positive polarity). Based on this, the motor control circuit 7 supplies a control signal to the wheel drive motors 8L and 8R to rotate the left wheel at a high speed as well as the right wheel. As a result, the moving body 11
turns to the right and at time t2 cells 2h and 2i
The loop 2 is imaged at 2j and 2j, and the difference signal output from the position detection circuit 17 becomes zero. As a result, the motor control circuit 7 thereafter supplies a control signal to the wheel drive motors 8L and 8R to rotate both the left and right wheels at a constant speed, and the moving body 11 continues to move straight. At time t1, the image sensor 14
Exactly the same operation is performed when the field of view of the tape 2 is shifted in the opposite direction. However, in this case, position detection circuit 1
A differential signal of negative polarity is output from the terminal, and the moving body 11 changes its direction to the left.

第5図は、第3図、第4図示の実施例において、パター
ン認識装置16に入力される二値化パターンの時系列を
示し九ものである。移動体11はテープ2に沿いほぼ一
定の速度で移動するように制御されておシ、この結果、
第5図示のような正しい二値化パターンがパターン認識
装置16に取込まれ、これに基づいてパターンマツチン
グ法、特徴抽出法等適宜な方式によるパターン認識が実
行される。
FIG. 5 shows nine time series of binarized patterns input to the pattern recognition device 16 in the embodiments shown in FIGS. 3 and 4. The moving body 11 is controlled to move at a substantially constant speed along the tape 2, and as a result,
A correct binarized pattern as shown in FIG. 5 is taken into the pattern recognition device 16, and based on this, pattern recognition is executed by an appropriate method such as a pattern matching method or a feature extraction method.

移動体11の位置がテープ2から大輪にずれ、このため
標識の一部が、イメージセンサ14の視野からはみ出し
た場合、誤認識をさけるためパターン認識を禁止する。
When the position of the moving body 11 deviates from the tape 2 to a large circle, and therefore a part of the sign protrudes from the field of view of the image sensor 14, pattern recognition is prohibited to avoid erroneous recognition.

この禁止信号は位置検出回wI17からの差分信号が所
定極性の所定値以上となったときにパターン認識装置1
6円で作成される゛。
This prohibition signal is sent to the pattern recognition device 1 when the difference signal from the position detection circuit wI17 exceeds a predetermined value of a predetermined polarity.
It is created for 6 yen.

なお、イメージ七ンt14がテープ2の儂と標識の像の
双方を読取っている場合には、受倫セル領域が複数存在
することになるが、急激な経路変更は無いとして直前の
テープ8の像を基準として変化の少ない方の儂をテープ
2の儂であると識別することができる。なお、右折、左
折等の急激な経路変更の有無をパターン認識装置16に
照合した上で新たな経路を推定する構成とすることもで
きる。
In addition, if the image 7 t14 reads both the image of the tape 2 and the image of the sign, there will be multiple Jirin cell areas, but assuming that there is no sudden route change, the image of the previous tape 8 will be read. Using the image as a reference, the one with the least change can be identified as the one on tape 2. Note that a new route may be estimated after checking the pattern recognition device 16 to see if there is a sudden route change such as a right turn or left turn.

上述の実施例では標識を経路設定用テープ8から離れた
位置に設置し九が、標識をテープ2上に設置する構成と
することもできる。この場合テープ8會1黒”信号に二
値化すると標識を1白”信号に二値化する必要があシ、
テープ位置検出部17の処理において標識を含むテープ
2の領域が1白”領域で切断される不都合があるが、直
前の二値データからテープ2を結倫中であると推定され
るセルの近傍においては“黒”領域で囲まれた1白”領
域をテープ位置検出部17では1黒”領域に反転させる
ことによυ、上記不都合を解消することができる。
In the above-described embodiment, the marker is installed at a position apart from the route setting tape 8, but the marker can also be installed on the tape 2. In this case, if the tape is binarized into 8 rounds and 1 black signal, it is necessary to binarize the sign into 1 white signal.
Although there is an inconvenience that the area of tape 2 including the marker is cut by a 1 white area in the processing of the tape position detection unit 17, it is inconvenient that the area of tape 2 containing the marker is cut in a 1 white area. In this case, the above-mentioned disadvantage can be solved by inverting a 1-white area surrounded by a ``black'' area into a 1-black area in the tape position detection section 17.

上記実施例では移動経路設定用にテープを使用し九が、
光の反射率が床面と異なるものであれば、ローブ、針金
、床面に描いた塗装勢任意の長尺体でよい。
In the above embodiment, a tape is used to set the moving route.
As long as the reflectance of light is different from that of the floor, it may be a robe, wire, or any long object painted on the floor.

以上詳細に説明し丸ように、本発明は移動経路を指定す
る長尺体を光学的読取装置で読取り、この読取った長尺
体の像が視野内の所定の位置に存在するように移動体の
移動方向を制御する構成であるから、従来方式のように
感度の差あるいは経年変化によって定常誤差が生ずるこ
とがなく、制御精度が極めて向上する。また背景光の影
響を受けないので極めて安定な制御が可能になる。また
本発明は移動経路に沿って設置した標識を光学的に読取
ってパターン認識し、この認識結果に応じて所定の制御
動作を行う構成であるから、比較的簡単な構成によシか
つ走行距離に対する累積誤差を伴うことなく、きめ細い
制御動作を行うことができる。
As described in detail above, the present invention reads an elongated object that specifies a moving route using an optical reader, and scans the elongated object so that the read image of the elongated object exists at a predetermined position within the field of view. Since it is configured to control the moving direction of the sensor, there is no steady-state error caused by sensitivity differences or aging, unlike in conventional systems, and control accuracy is greatly improved. Furthermore, since it is not affected by background light, extremely stable control is possible. Furthermore, the present invention is configured to optically read signs installed along the travel route to perform pattern recognition, and perform predetermined control operations according to the recognition results. Fine control operations can be performed without accumulating errors.

さらに本発明は、経路設定用情報と動作指定用情報の双
方を共通の光学的読取装置で読取る構成であるから、構
成が簡易かつ安価になるという利点がある。・
Furthermore, the present invention has a configuration in which both the route setting information and the operation designation information are read by a common optical reading device, so there is an advantage that the configuration is simple and inexpensive.・

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来方式を説明するためのブロック図
及び平面図、第3図は本発明の一実施例の構成のブロッ
ク図、第4図、95図は第3図示の構成の動作を説明す
る概念図である。 l・・・床面、8・・・テープ、7・・・モータ制御回
路、8L、8R・・・車輪駆動用モータ、11・・・移
動体、■・・・標識を描いたテープ、14・・・イメー
ジセンサ、15・・・二値化回路、16・・・パターン
認識装置、17・・・テープ位置検出部。 第1図 第2図 第3図 第4図
1 and 2 are block diagrams and plan views for explaining the conventional system, FIG. 3 is a block diagram of a configuration of an embodiment of the present invention, and FIGS. 4 and 95 are a block diagram of the configuration shown in the third figure. It is a conceptual diagram explaining operation. l... Floor surface, 8... Tape, 7... Motor control circuit, 8L, 8R... Wheel drive motor, 11... Moving object, ■... Tape with a sign drawn on it, 14 ... Image sensor, 15 ... Binarization circuit, 16 ... Pattern recognition device, 17 ... Tape position detection section. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 床面に設置した長尺体によシ移動体に対する所定の移動
経路を指定し、該移動体が前記長尺体との位置関係を光
学的に検出し該検出結果に基づいて移動動作の制御を行
なう移動体制御システムにおいて、 前記移動体の所定の動作を指定する標識を前記所定の移
動経路に沿って設置し、 前記移動体に、前記長尺体及び標識を光学的に読取る共
通の光学的読取装置、該読取られ九長尺体の前記光学的
読取装置の視野内における位置を検出する位置検出回路
、前記読−取られた標識を認識するパターン認識装置、
ならびに、前記位置検出回路の検出結果に基づいて前記
長尺体が前記光学的読取装置の視野内の所定の位置に存
在するように前記移動体の移動方向を制御すると共に前
記パターン認識された標識の内容に基づいて所定の制御
動作を行なう制御回路を備えたことを特徴とする移動体
制御システム。
[Scope of Claims] A predetermined movement path for a movable body is specified by a long body installed on the floor, and the movable body optically detects the positional relationship with the long body and uses the detection result. In the mobile object control system, a sign specifying a predetermined movement of the mobile object is installed along the predetermined movement route, and the elongated object and the sign are optically attached to the mobile object. a common optical reading device that reads the sign; a position detection circuit that detects the position of the read long body within the field of view of the optical reading device; a pattern recognition device that recognizes the read mark;
and controlling the moving direction of the moving body so that the elongated body exists at a predetermined position within the field of view of the optical reading device based on the detection result of the position detection circuit, and the pattern-recognized mark. 1. A mobile object control system comprising: a control circuit that performs a predetermined control operation based on the contents of the mobile object control system.
JP57013097A 1982-01-29 1982-01-29 Controlling system of moving body Pending JPS58129609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57013097A JPS58129609A (en) 1982-01-29 1982-01-29 Controlling system of moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57013097A JPS58129609A (en) 1982-01-29 1982-01-29 Controlling system of moving body

Publications (1)

Publication Number Publication Date
JPS58129609A true JPS58129609A (en) 1983-08-02

Family

ID=11823642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57013097A Pending JPS58129609A (en) 1982-01-29 1982-01-29 Controlling system of moving body

Country Status (1)

Country Link
JP (1) JPS58129609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263316A (en) * 1986-06-04 1987-03-20 Murata Mach Ltd Unmanned vehicle guiding device
JPS62260209A (en) * 1986-05-07 1987-11-12 Murata Mach Ltd Collision preventing device for unmanned carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260209A (en) * 1986-05-07 1987-11-12 Murata Mach Ltd Collision preventing device for unmanned carrier
JPS6263316A (en) * 1986-06-04 1987-03-20 Murata Mach Ltd Unmanned vehicle guiding device

Similar Documents

Publication Publication Date Title
US4013893A (en) Optical bar code scanning device
CN202795056U (en) AGV (automatic guided vehicle) infrared light electric guide device
CN102147259A (en) Ring array magnetic guidance device and method for identifying guidance magnetic label thereof
CN104679006B (en) Automatic tracking recognition indicating system and indicating method thereof
JPS58129609A (en) Controlling system of moving body
JPS58129610A (en) Controlling system of moving body
JPS60175117A (en) Device for correcting posture of unmanned carrying car
JP2000123288A (en) Running support road system
JPS61118815A (en) Optical track guiding path
JPS62887A (en) Detecting device for state of road surface
JPH0738965Y2 (en) Unmanned vehicle system
CN113424125A (en) Mobile robot, control system for mobile robot, and control method for mobile robot
JP2955049B2 (en) Toll collection system
JPH0480405B2 (en)
SU1242919A1 (en) Vehicle control system
JPH0435923Y2 (en)
JPH07239954A (en) Charge collecting and receiving system
SU746608A1 (en) Photoelectric readout device
JPS61221910A (en) Method for guiding unmanned traveling object and detector for ac power supply
RU2018902C1 (en) Vehicle control system
JP2921192B2 (en) Automated guided vehicle light guidance system
RU714905C (en) Light-beam orienting device
JPS60256811A (en) Control equipment for optical guide type traveling truck
JPH0374402B2 (en)
SU1762156A1 (en) Sampler