JPS58128476A - Control for ranking engine - Google Patents

Control for ranking engine

Info

Publication number
JPS58128476A
JPS58128476A JP1233882A JP1233882A JPS58128476A JP S58128476 A JPS58128476 A JP S58128476A JP 1233882 A JP1233882 A JP 1233882A JP 1233882 A JP1233882 A JP 1233882A JP S58128476 A JPS58128476 A JP S58128476A
Authority
JP
Japan
Prior art keywords
working fluid
generator
amount
represented
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1233882A
Other languages
Japanese (ja)
Inventor
Hiroshi Uno
浩 宇野
Junichi Jiyakudo
雀堂 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1233882A priority Critical patent/JPS58128476A/en
Publication of JPS58128476A publication Critical patent/JPS58128476A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent extreme reduction of efficiency and occurrence of abnormal sounds by completing the heating of working liquid in the gas phase area without completing the heating in the gas-liquid mixing area even if a sun-beam amount to a heat collector-generator is reduced. CONSTITUTION:A standard pattern in the case of large sunbeam amount to a heat collector-generator 1 is represented by 10-11-12-13-10 in Moriel diagram of Rankine cycle 5. Overheating dgree in gas phase of heating process 11-12 in this case is represented by 14-12. When the sun beam amount is lowered, a control circuit 9 generates a control signal for reducing the rotational frequency of a working fluid pump 4 thereto so that detected temperature difference between temperature sensors A7, B8 have the same value as 14-12 and a circulating amount of the working fluid to the heat collector-generator 1 is reduced. Thus, since the cycle pattern of the working fluid is represented by 10-11b-12b-13b- 10, the degree of overheat is represented by 14b-12b so that the working fluid will be expanded from the complete gas phase area rather than gas-liquid mixing area.

Description

【発明の詳細な説明】 本発明は作動流体を直接、集熱器で加熱する方式のラン
キン式太陽熱利用冷凍装置等に利用するランキン機関の
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a Rankine engine used in a Rankine solar refrigeration system or the like in which a working fluid is directly heated by a heat collector.

従来のランキン式太陽熱利用装置を第1図、第2ページ 2図にもとづいて説明する。集熱器と発生器を兼用した
集熱発生器1.膨張機2.凝縮器31作作動体ポンプ4
とでランキンサイクル6を構成している。そして、作動
流体ポンプ4により循環する作動流体が集熱発生器1で
加熱され、高圧高温の蒸気となり膨張機2において出力
を発生し、この出力で冷凍サイクル6(負荷ともいう)
を駆動し冷凍運転を行なっている。そして、膨張機2を
出た蒸気は凝縮器3で凝縮され作動流体ポンプ4で再び
集熱発生器1に送られる。この場合のランキンサイクル
6のモリエル線図を第2図に示す。
A conventional Rankine type solar heat utilization device will be explained based on FIG. 1 and FIG. 2 on page 2. Heat collection generator that serves as both a heat collector and a generator 1. Expander 2. Condenser 31 Operating body pump 4
These constitute Rankine cycle 6. Then, the working fluid circulated by the working fluid pump 4 is heated by the heat collection generator 1 and becomes high-pressure and high-temperature steam, which generates an output in the expander 2. This output generates output in the refrigeration cycle 6 (also called load).
is used to perform refrigeration operation. Then, the steam exiting the expander 2 is condensed in a condenser 3 and sent to the heat collecting generator 1 again by a working fluid pump 4. A Mollier diagram of Rankine cycle 6 in this case is shown in FIG.

10−11−12−13−10は日射量が多い場合の正
常な運転パターンを示している。10−11は加圧行程
、 11−12は加熱行程、12−13は膨張行程、1
3−10は凝縮行程である。
10-11-12-13-10 shows a normal driving pattern when the amount of solar radiation is high. 10-11 is a pressure stroke, 11-12 is a heating stroke, 12-13 is an expansion stroke, 1
3-10 is a condensation process.

日射量が低下すると1o−11t −12a −13a
−10のパターンに変わる。これは作動流体ポンプ4の
回転数が一定である為、作動流体の循環量も一定となシ
、入力熱量が減少すれば前記のパターンを示すことにな
る。
When the amount of solar radiation decreases, 1o-11t -12a -13a
-Changes to 10 patterns. This is because the rotation speed of the working fluid pump 4 is constant, so the circulating amount of the working fluid is also constant, and if the input heat amount decreases, the above pattern will be exhibited.

3ページ この場合、111L−12mの加熱行程で十分、気相域
まで作動流体を加熱されず、気体+液体の混合域で加熱
が終了し、膨張効率が極端に低下する問題が発生する。
Page 3 In this case, the heating stroke of 111L-12m is sufficient, but the working fluid is not heated to the gas phase region, and the heating ends in the gas + liquid mixing region, causing a problem that the expansion efficiency is extremely reduced.

また膨張機2自体も異常音が発生し、寿命の点からも問
題であった。
Further, the expander 2 itself also generated abnormal noise, which was also a problem in terms of its lifespan.

本発明はこのような従来の問題点を除去するもので、気
液混合域で加熱が終了し、膨張効率の低下及び異常音の
発生を防ぐことを目的とするものである。この目的を達
成するために本発明は、集熱発生器の出口に温度検出器
ム、途中に温度検出器Bを設け、この両検出器の温度差
が設定過熱度になるように作動流体ポンプを制御する制
御回路を設けたものである。したがって、日射量が低下
しても、たえず温度検出器ム、Bの検出による過熱度が
たえず一定になるように、制御回路が作動流体ポンプを
制御し作動流体の循環量を変えるので、気相域から膨張
し、極端な効率の低下とか異常音の発生を防止できる。
The present invention is intended to eliminate such conventional problems, and aims to prevent the heating from ending in the gas-liquid mixing area, thereby preventing a decrease in expansion efficiency and the generation of abnormal noise. In order to achieve this object, the present invention provides a temperature detector M at the outlet of the heat collecting generator and a temperature detector B in the middle, and a working fluid pump so that the temperature difference between the two detectors becomes a set superheat degree. A control circuit is provided to control the Therefore, even if the amount of solar radiation decreases, the control circuit controls the working fluid pump and changes the circulating amount of the working fluid so that the degree of superheat detected by the temperature detectors M and B remains constant. It is possible to prevent the air from expanding beyond the range, resulting in an extreme drop in efficiency or the generation of abnormal noise.

以下に太陽熱利用冷凍装置に採用した本発明の一実施例
を第3図、第4図を用いて説明する。なお、上記従来例
と同一部分には第1図、第2図と向一番号を付して説明
を略し、異なる部分を中心に説明する。
An embodiment of the present invention adopted in a solar thermal refrigeration system will be described below with reference to FIGS. 3 and 4. Note that the same parts as those in the conventional example described above are given the same numbers as in FIGS. 1 and 2, and the explanation thereof will be omitted, and the explanation will focus on the different parts.

第3図において、7は温度検出器ムであり、集熱発生器
1の出口に設置される。8は温度検出器Bであり、集熱
発生器1のあらかじめ設定された通路途中に設置される
。9は制御回路であり、温度検出器B8の検出温度を基
準にして前記温度検出器ム7の検知温度との差を入力と
して任意の設定過熱度を得るように集熱発生器1への作
動流体の循環量となるよう作動流体ポンプ4の制御を出
力とする。
In FIG. 3, reference numeral 7 denotes a temperature detector, which is installed at the outlet of the heat collecting generator 1. Reference numeral 8 denotes a temperature detector B, which is installed in the middle of a preset passage of the heat collecting generator 1. Reference numeral 9 denotes a control circuit, which operates the heat collection generator 1 to obtain an arbitrary preset degree of superheat by inputting the difference between the temperature detected by the temperature detector B8 and the temperature detected by the temperature detector B8 as a reference. The output is the control of the working fluid pump 4 so that the amount of fluid circulated is maintained.

次に上記構成による作用を第4図も加えて説明する。第
4図において10−11−12−13.−10は集熱発
生器1への日射量が多い場合の標準的パターンである。
Next, the operation of the above structure will be explained with reference to FIG. 4. 10-11-12-13 in FIG. -10 is a standard pattern when the amount of solar radiation to the heat collection generator 1 is large.

この場合の加熱行程11−12で気相域における過熱度
は14−12で示される。
In this case, the degree of superheating in the gas phase region in the heating step 11-12 is shown as 14-12.

次に日射量が低下すると、温度検出器ム7と温度検出器
B8の検出温度差が14−12と同じ値に5ページ なるように、制御回路9は作動流体ポンプ4に作動流体
の集熱発生器1への循環量を減らすように回転数減少の
制御信号を発する。そのため1作動流体のサイクルパタ
ーンは10−11 b −12b−131)−10にな
る。そして、過熱度は14b−12bとなり、完全な気
相域より膨張することになる。
Next, when the amount of solar radiation decreases, the control circuit 9 causes the working fluid pump 4 to collect the heat of the working fluid so that the detected temperature difference between the temperature sensor M7 and the temperature sensor B8 becomes the same value as 14-12. A control signal to reduce the rotational speed is issued to reduce the amount of circulation to the generator 1. Therefore, the cycle pattern for one working fluid is 10-11 b-12b-131)-10. Then, the degree of superheat becomes 14b-12b, and the gas expands from the complete gas phase region.

このように過熱度を一定になるように作動流体ポンプ4
を制御し、作動流体の集熱発生器1への循環量を変える
制御回路を設けたことにより気液混合域より膨張するこ
ともなく、異常音も発生しない。
In this way, the working fluid pump 4 is operated so that the degree of superheat is constant.
By providing a control circuit that controls the amount of working fluid and changes the amount of circulation of the working fluid to the heat collection generator 1, there is no expansion beyond the gas-liquid mixing area and no abnormal noise is generated.

以上のように本発明装置によれば集熱発生器の出口とそ
の通路途中に温度検出器ムとBを設け、この両検出器の
検出温度差が設定過熱度になるように、作動流体ポンプ
を制御して1作動流体の集熱発生器への循環量を変える
ように出力を発する制御回路を設けたので、集熱発生器
への日射量が低下しても、気液混合域で加熱が終了する
ことなく、完全に気相域で加熱が終了させられ、極端な
6t゛−ジ 効率低下とか異常音の発生を防ぐという効果が得られる
As described above, according to the device of the present invention, the temperature detectors M and B are provided at the outlet of the heat collecting generator and in the middle of the passage, and the working fluid pump Since we have installed a control circuit that outputs an output to control the amount of working fluid and change the amount of circulation to the heat generator, even if the amount of solar radiation to the heat generator decreases, heating will continue in the gas-liquid mixing area. Heating is completely completed in the gas phase region without the heating being completed, and the effect of preventing an extreme drop in 6-stage efficiency and generation of abnormal noise can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のランキン式太陽熱利用冷凍装置のシステ
ム図%’!2図は同装置のモリエル線図、第3図は本発
明装置の一実施例を採用したランキン式太陽熱利用冷凍
装置のシステム図、第4図は同装置のモリエル線図であ
る。 1・・・・・・集熱発生器、2・・・・・・膨張機、3
・・・・・・凝縮器、4・・・・・・作動流体ポンプ、
6・川・・ランキンサイクル、6・・・・・・冷凍サイ
クル(負荷)、7・・印・温度検出器ム、8・・・・・
・温度検出器B、9・・・・・・制御回路。 代理人の氏名 弁理士 中 尾 畝 男 ほか1名第2
図 14rllI −エンクルヒ0−
Figure 1 is a system diagram of a conventional Rankine type solar thermal refrigeration system%'! FIG. 2 is a Mollier diagram of the same device, FIG. 3 is a system diagram of a Rankine solar refrigeration device employing an embodiment of the device of the present invention, and FIG. 4 is a Mollier diagram of the same device. 1... Heat collection generator, 2... Expander, 3
...Condenser, 4...Working fluid pump,
6. River: Rankine cycle, 6: Refrigeration cycle (load), 7: Temperature detector, 8...
・Temperature detector B, 9... Control circuit. Name of agent: Patent attorney Uneo Nakao and 1 other person 2nd
Figure 14rllI-Enkluhi0-

Claims (1)

【特許請求の範囲】 太陽熱等を集熱する発生器を兼ねた集熱発生器。 膨張機、凝縮器2作動流体ポンプよりなるランキンサイ
クルと、前記ランキンサイクルにて駆動される負荷と、
前記集熱発生器の出口部に設置し、作動流体の温度を検
出する温度検出器ムと、前記集熱発生器の途中位置に設
置され、作動流体の温度を検出する温度検出器Bと、前
記温度検出器Bの検出温度を基準にして、前記温度検出
器ムの検出温度との差を過熱度とし、任意の設定過熱度
を得るように作動流体ポンプを制御する制御回路とで構
成されたランキン機関の制御装置。
[Claims] A heat collection generator that also serves as a heat generator that collects solar heat, etc. a Rankine cycle consisting of an expander and a condenser 2 working fluid pump; a load driven by the Rankine cycle;
A temperature detector B is installed at the outlet of the heat collection generator and detects the temperature of the working fluid; a temperature sensor B is installed in the middle of the heat collection generator and detects the temperature of the working fluid; The control circuit includes a control circuit that uses the temperature detected by the temperature detector B as a reference and the difference between the temperature detected by the temperature detector B and the temperature detected by the temperature detector B as the degree of superheat, and controls the working fluid pump to obtain an arbitrary set degree of superheat. Control device for the Rankine engine.
JP1233882A 1982-01-27 1982-01-27 Control for ranking engine Pending JPS58128476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233882A JPS58128476A (en) 1982-01-27 1982-01-27 Control for ranking engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233882A JPS58128476A (en) 1982-01-27 1982-01-27 Control for ranking engine

Publications (1)

Publication Number Publication Date
JPS58128476A true JPS58128476A (en) 1983-08-01

Family

ID=11802504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233882A Pending JPS58128476A (en) 1982-01-27 1982-01-27 Control for ranking engine

Country Status (1)

Country Link
JP (1) JPS58128476A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110252797A1 (en) * 2009-06-29 2011-10-20 Mitsubishi Heavy Industries, Ltd. Gas turbine plant, heat receiver, power generating device, and sunlight collecting system associated with solar thermal electric generation system
US10060418B2 (en) 2011-11-25 2018-08-28 Mitsubishi Heavy Industries, Ltd. Solar heat receiver and solar heat power generation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110252797A1 (en) * 2009-06-29 2011-10-20 Mitsubishi Heavy Industries, Ltd. Gas turbine plant, heat receiver, power generating device, and sunlight collecting system associated with solar thermal electric generation system
US10060418B2 (en) 2011-11-25 2018-08-28 Mitsubishi Heavy Industries, Ltd. Solar heat receiver and solar heat power generation device

Similar Documents

Publication Publication Date Title
JP3065253B2 (en) Thermodynamic power generator using three-component working fluid
EP0168494B1 (en) Utilization of thermal energy
US4292809A (en) Procedure for converting low-grade thermal energy into mechanical energy in a turbine for further utilization and plant for implementing the procedure
JPS61125547A (en) Heat pump type boiler device
JPS61149507A (en) Heat recovery device
JPS58128476A (en) Control for ranking engine
JPS6125990B2 (en)
JPH0445739B2 (en)
JP2546868B2 (en) Cogeneration binary power generator
JPH11280412A (en) Combined cycle power generation plant
JPS61237804A (en) Power system
JP4451721B2 (en) Power generator
JPS6239662B2 (en)
JPS6157446B2 (en)
JPH0754211B2 (en) Co-generation system using absorption heat pump cycle
JP2740802B2 (en) Evaporator with preheater
Varma et al. Comparative study on steam flash, organic flash and Kalina for enhanced power generation from waste heat recovery.
JPS58128475A (en) Control for rankine engine
JPH0681611A (en) Heat pipe generating set
JP2766375B2 (en) Control method of bypass damper for combined cycle power plant
JPS603489A (en) Power generation device
CN114738067A (en) Double-working medium combined cycle power device
JP2005240577A (en) Power generator
KR100314185B1 (en) Operating method of absorption system
JPH0345206B2 (en)