JPS58128124A - Desorption of organic gas in carrier gas adsorbed by adsorbent - Google Patents

Desorption of organic gas in carrier gas adsorbed by adsorbent

Info

Publication number
JPS58128124A
JPS58128124A JP58004053A JP405383A JPS58128124A JP S58128124 A JPS58128124 A JP S58128124A JP 58004053 A JP58004053 A JP 58004053A JP 405383 A JP405383 A JP 405383A JP S58128124 A JPS58128124 A JP S58128124A
Authority
JP
Japan
Prior art keywords
gas
pressure
adsorbed
adsorbent
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58004053A
Other languages
Japanese (ja)
Inventor
エツケハルト・リヒタ−
カ−ル・クノ−プラオホ
ヴエルナ−・ケルベツヒヤ−
ロタ−・メレツヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bergwerksverband GmbH
Original Assignee
Bergwerksverband GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bergwerksverband GmbH filed Critical Bergwerksverband GmbH
Publication of JPS58128124A publication Critical patent/JPS58128124A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、特許請求の範囲第】項の序文に記載−された
、吸着剤によりキャリヤガスの中から[kされた有機カ
スを脱着する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for desorbing organic scum from a carrier gas by means of an adsorbent, as defined in the preamble of the claims.

吸着剤でキャリヤガスから吸着される有機ガスについて
先ず間*vcrxるのは溶剤であるか、吸着剤には比較
的よく吸着されるか、脱着はされにくい種類の有機化合
物も溶剤同様に間f!ivcなる。この楓のカスは、バ
ー メーニツヒ(H,Mentg)著 rLl、、ft
reinh≪ng  durch、Adsorp
−tion、Abso−rptiOn 1.Ind 0
xidation (吸着、吸収、酸化作用を利用する
空気の浄化)」(ライスバーテンのトイチェ ファツハ
シュリフテンフエアラーク社 (DLFaohschr
ifton−Verlag)刊行の第112頁、表1゜
29)K開示されている。本発明においで使用する有機
ガスなる概念は、有機物の蒸気を包含するものであると
理解されるへきである。又、吸着剤なる概念は、吸着剤
に関する技術分野1関係するあらゆる吸着剤、就中、活
性炭、ゼオライト及びこれらの同効物質を意味するもの
とする。
When it comes to organic gases adsorbed from a carrier gas by an adsorbent, it is the solvent that causes the first *vcrx, or organic compounds that are relatively well adsorbed to the adsorbent or are difficult to desorb also have a short time *vcrx as well as the solvent. ! It becomes ivc. This maple dregs is written by H. Mentg rLl,,ft
reinh≪ng durch, Adsorp
-tion, Abso-rptiOn 1. Ind 0
xidation (air purification using adsorption, absorption, and oxidation)
Ifton-Verlag), page 112, Table 1.29) K is disclosed. The term organic gas used in the present invention is understood to include vapors of organic substances. Furthermore, the term adsorbent is intended to mean all adsorbents related to the technical field 1 relating to adsorbents, in particular activated carbon, zeolites and their equivalent substances.

被吸着性溶剤を活性炭を用いて回収する場合、該溶剤を
吸着した活性炭を再生するには、これを化石燃料(石炭
等)を燃焼させた結果生ずる不活性の即ち吸着され難い
ガスを用い7加熱し、それによって脱着された溶剤を洗
い流すか、または、水蒸気を吹き付けて追い田し、次い
てこの再生の際に付随的に生ずる混合物即ち溶剤蒸気と
溶剤回収のために使用した上記不活性のガス又は水蒸気
から成る混合物を公知手法により液秋かつ再使用可能な
純度で分離すればよいことは知られている通りである。
When an adsorbable solvent is recovered using activated carbon, in order to regenerate the activated carbon that has adsorbed the solvent, an inert gas that is generated as a result of burning a fossil fuel (coal, etc.) is used to recover the adsorbed solvent. Either by heating and thereby washing away the desorbed solvent, or by blowing with steam, the mixture incidental to this regeneration, i.e. solvent vapor, and the above-mentioned inert material used for solvent recovery are removed. It is known that mixtures of gases or water vapor can be separated by known techniques to a purity that allows them to be used again.

上記再生操作は、加熱再生法とも称され−Cいるもので
、比較的多量の燃料を消費する。つます、溶剤たるトル
エンまたはベンジンで飽和した活性炭からこれらの溶剤
を追い出すためKは、回収溶剤]KtK対し8助の蒸気
か必要である。
The above regeneration operation is also called a heating regeneration method and consumes a relatively large amount of fuel. In order to expel these solvents from the activated carbon saturated with toluene or benzine, the amount of steam required is 8 times the recovery solvent (KtK).

次いで、活性炭を乾燥し冷却しなけれはならない。更に
、水溶性溶剤の場合には、その回avr経をのかかる蒸
留を行なう必要かある。また、200〜600℃の高温
不活性ガスを用いる加熱再生法(FIT Hアトソック
ス(AdsOX)決)の場合は・プロパンを燃焼させて
高温不活性ガスを発生させるのに溶剤1111に対し】
K4以上のプロパンを必要とする。
The activated carbon must then be dried and cooled. Furthermore, in the case of a water-soluble solvent, it may be necessary to carry out such distillation to reduce its avr concentration. In addition, in the case of the thermal regeneration method (FIT H Atsox (AdsOX)) using a high-temperature inert gas at 200 to 600°C, the solvent 1111 is used to burn propane and generate a high-temperature inert gas.
Requires K4 or higher propane.

また、圧力変化@漕法の領域においても、吸着されたカ
スは、吸着反応器内の全圧を下けれは脱着されると言う
ことが知られている。しかし、此処τ問題にしている有
機ガスは、通常、吸着剤の平衡等混線か吸着には有利で
、脱着には不利な形を持っているから(バー ユントゲ
ン(H−3untgsn)、□「粉塵浄化作用」、J9
76年rLIIFTj  誌第36巻第28]頁)、多
大の経費を惜しむことな(脱71IK必g!な真空伏動
をつくり出さないかきり、吸着剤には比較的多量の溶剤
が脱着されずに残留する0そのため、後読の吸着工程に
おける吸着量(追加@看量)が極度に小さい結果となる
。従ってかかる方法は、魅力のないものである〇 また、等混線を基礎とし1不活性カスfよる拘去によっ
て再生を行うと、稀釈度か高いため、不満足な結果に終
る。
It is also known that, even in the area of the pressure change @ column method, adsorbed scum will be desorbed if the total pressure in the adsorption reactor is lowered. However, the organic gas that is the subject of τ here usually has a shape that is advantageous for adsorption or disadvantageous for desorption, such as the equilibrium crosstalk of the adsorbent (H-3untgsn, □ "Dust dust"). "Purification effect", J9
1976 rLIIFTj, Vol. 36, p. 28), without sparing a great deal of expense (without creating the necessary vacuum decomposition, a relatively large amount of solvent is not desorbed to the adsorbent). As a result, the amount of adsorption (additional amount) in the post-reading adsorption step is extremely small.Therefore, such a method is unattractive.Also, based on isomixture, 1 inert If regeneration is performed by capture by dregs f, the result will be unsatisfactory because of the high degree of dilution.

而して本発明の技術的課題は、従来公知の再生方法に比
へて、エネルギーlにおいてより有利な吸着剤に吸着せ
しめたキャリヤカス中の有機カスを脱着する方法を提供
することにある。
SUMMARY OF THE INVENTION The technical object of the present invention is to provide a method for desorbing organic sludge in a carrier sludge adsorbed onto an adsorbent that is more advantageous in terms of energy l than conventional regeneration methods.

この方法は、エネルギー面のみならず、その実&に際し
、環境を汚染することのはとんとないものである。
This method pollutes the environment not only in terms of energy, but also in its implementation.

上記の技術的課題は、特許請求の範囲第1項に記載の基
本的特徴を有する方法匠よつT解決することかできゐ。
The above technical problem can be solved by a method engineer having the basic features set forth in claim 1.

本発明のその他の構成乃至態様は、特許請求の範囲第2
項以下の従属項の記載1基づい1実施することかできる
Other configurations or aspects of the present invention are described in Claim 2.
It may be carried out based on the statements in the dependent claims below.

本発明に係る問題の掃除ガスは、脱着条件下、即ち、吸
着量1ある場合とは反対に1圧力かきわめ1低く1つ温
度か比較的高い条件下では、従来利用されて来た水蒸気
の場合と同様に%吸着剤に吸着されるのは一部分である
と言う性責を持つ−(いる。従って吸着剤KI&看され
ている有機ガスと置換する。即ち、吸着されてしまった
掃去ガスは、脱着された有機ガスを成層反応器から排除
する作用を営まない。しかも脱着過程に関し、本発明に
おいて重要な意義を有するのは、脱着時の圧力か、吸着
時の圧力以下であると言う点である。この圧力差は、略
50憾乃至それ以上とすべきで・あり、通常減圧の度合
か大きければ大きいはど掃去カスが吸着剤によって@看
される量は少ない。減圧〜の程度が比較的少さけれは、
吸着剤における有機カスの吸着残留量は廟増し−(行(
結果になる。
The cleaning gas in question according to the present invention can be used under desorption conditions, i.e. under conditions of 1 pressure or very low and 1 temperature or relatively high conditions, as opposed to the case where there is an adsorption amount of 1. As in the case, only a portion of the adsorbent is adsorbed by the adsorbent. does not function to exclude the desorbed organic gas from the stratified reactor.Moreover, regarding the desorption process, what is important in the present invention is the pressure at the time of desorption or the pressure at or below the pressure at the time of adsorption. This pressure difference should be approximately 50°C or more, and normally the larger the degree of vacuum, the larger the amount of scavenged debris that is absorbed by the adsorbent. If the severity is relatively small,
The residual amount of organic residue adsorbed by the adsorbent increases - (row (
result.

本発明に係る方法にとって、吸着か加圧下で行なわれる
か、大気圧下で行tわれるか、また1減圧が脱着の開始
時に急激に起るか徐々に起るか、また、掃去ガスが一定
の流量で用いられるか不定の流量で用いられるかと言う
こと(才問題ではない。これらの因子乃至条件は、それ
ぞれの適用の場合に応じて容易に決定できるものであり
、特に脱着される有機ガスの稀釈度が限界値πあるか好
適値にあるかによって左右される。
For the process according to the invention, it depends on whether the adsorption is carried out under pressure or at atmospheric pressure, whether the vacuum occurs suddenly or gradually at the beginning of the desorption, and whether the scavenging gas is Whether a constant or variable flow rate is used (this is not a matter of wisdom; these factors or conditions can be easily determined for each application and are particularly important for the organic matter being desorbed). It depends on whether the degree of dilution of the gas is at the limit value π or at the preferred value.

ここで問題になっていゐ掃去ガスは、吸着剤に吸着され
ると、放出された吸着熱により一定の温度上昇を惹き起
す。この熱量は、何よりも先つ吸着された有機カスの脱
着に役立つ。脱着過程は吸着熱的であるからである。吸
着される掃去カスの種類と量によつ−(は1更に吸着剤
か加熱され、このことは有機カスの脱着速度を促進する
という意味1おいて良い形番を与える。
When the scavenging gas at issue here is adsorbed by an adsorbent, the released heat of adsorption causes a certain temperature rise. This amount of heat is primarily useful for desorption of adsorbed organic scum. This is because the desorption process is adsorption heat-based. Depending on the type and amount of scavenged debris to be adsorbed, the adsorbent may be further heated, which may facilitate the rate of desorption of organic debris.

本発明に関する特に有利な掃去カスとして、先に一酸化
炭素、二酸化炭素ならひにメタンを挙けたか、]分子当
り1個の炭素原子を有するその他の醸化炭素あるいは炭
化水素も掃去カスとして同様に好適である(もつとも、
複数個の炭素原子を有する種々の分子も、やはり脱着問
題と関係かあるかも知れない)。これらの場合、ある特
定の掃去ガスを用いるか否かの決定は、掃去ガスと脱着
された有機カスとを後で分離し得るか否か、並ひに、該
掃去ガスを脱着された1機カスから分離した後、それ以
上の処理を要せずそのまま大気中に放出し得るか否かに
よって左右される。而して、後者の問題につい−(は掃
去ガスとして二酸化炭素を用いるのが特に好都合である
といえる。
Although carbon monoxide, carbon dioxide, and methane were mentioned above as particularly advantageous scavenging gases in connection with the present invention, other carbon or hydrocarbons having one carbon atom per molecule may also be used as scavenging gases. (Although, it is also suitable as
Various molecules with multiple carbon atoms may also have implications for desorption problems). In these cases, the decision to use a particular scavenging gas depends on whether the scavenging gas and the desorbed organic debris can be later separated, as well as whether the scavenging gas can be separated from the desorbed organic debris. It depends on whether or not it can be released into the atmosphere without further treatment after being separated from the debris. Regarding the latter problem, it can be said that it is particularly advantageous to use carbon dioxide as the scavenging gas.

脱着が行なわれ、必要ならは吸着剤を再び成層温度まで
冷却した後、吸着器内を通過するキャリヤカスは、キャ
リヤガスからの有機ガスの吸着と関係しながら吸着剤に
対し本来の脱着段階において吸着剤に吸着された掃去カ
スの脱着を行う。この場合、掃去カスとして蒸気を使用
する場合の如き燃料消費の大きい脱着段階を必要としな
い。この際放出された掃去ガスは、その量と大気に対す
る有害性如何に応じて、キャリヤガスと一緒に大気中に
放出するか、あるいはキャリヤガスから除去するための
適当な後処理を行えはよい。
After desorption has taken place and, if necessary, the adsorbent has been cooled again to the stratification temperature, the carrier gas passing through the adsorber is adsorbed onto the adsorbent in the original desorption phase, in conjunction with the adsorption of organic gases from the carrier gas. Removes cleaning debris adsorbed by the agent. In this case, there is no need for a fuel-intensive desorption step, as is the case when steam is used as the scavenging residue. The scavenging gas released at this time may be released into the atmosphere together with the carrier gas, or may be subjected to appropriate post-treatment to be removed from the carrier gas, depending on its amount and its harmfulness to the atmosphere. .

従って、本発明に係る方法は、特に、キャリアガスの流
れを有機ガスから分離し、所望とあればその再生を行う
べく、吸着と脱着を交互に循環的に行なう方法として役
立つものである。
The method according to the invention is therefore particularly useful for cyclically alternating adsorption and desorption in order to separate a carrier gas stream from an organic gas and, if desired, to regenerate it.

特に、溶剤の回収に本発明方法を用いるさ、吸着段階を
略大気圧で行うことができ且つ脱着を略0.5バール以
下、特に0.1パール以下の圧力で行うことができる。
In particular, when using the method of the invention for solvent recovery, the adsorption step can be carried out at approximately atmospheric pressure and the desorption can be carried out at pressures of approximately less than 0.5 bar, in particular less than 0.1 bar.

更に本発明によれば、反応器から出る掃去ガスから脱着
された有機ガスを脱着時の圧力よりも高い圧力で除去す
ることもでき、かくすれば回収される有機ガスの濃縮化
のため特に有利である。この場合、前述の高い圧力レベ
ルでの分Mは、種々の公知方法、例えば、脱着された有
機ガスを濃縮する方法等によって行なえばよい。
Furthermore, according to the invention, it is also possible to remove the desorbed organic gases from the scavenging gas exiting the reactor at a pressure higher than the pressure during desorption, in particular for the purpose of concentrating the recovered organic gases. It's advantageous. In this case, the aforementioned high pressure level M may be carried out by various known methods, such as by concentrating the desorbed organic gas.

上記工、程は、吸着段階若しくけそれ以上の圧力レベル
で行うのが望ましい。その際、吸着圧が大気圧である場
合においては、脱着された有機ガスの回収は、略lOバ
ールまでの圧力で行なうことができる。
The above steps are preferably carried out at pressure levels at or above the adsorption stage. If the adsorption pressure is atmospheric pressure, recovery of the desorbed organic gas can be carried out at pressures up to approximately 10 bar.

更に、本発明においては、脱着された有機ガスを分離し
た後の掃去ガスの再利用には、このガスを大気中に放出
する必要もなく、また多少の損失層を無視すれば、その
工程に対してそれを継続的に新規補給する必要もないと
いう利点がある。更に又、掃去ガスから完全に分離され
なかった有機ガスは、再度吸着剤に吸着され、その後の
脱着段階で再度分離されるので大気中に放出されること
はない。
Furthermore, in the present invention, the reuse of the scavenging gas after separation of the desorbed organic gas does not require releasing this gas into the atmosphere, and ignoring some loss layer, the process It has the advantage that there is no need to continually replenish it. Furthermore, organic gases that are not completely separated from the scavenging gas are adsorbed onto the adsorbent again and separated again in a subsequent desorption step, so that they are not released into the atmosphere.

本発明の、その他の目的、特徴、効果およびその種々の
利用可能性は、添付図面に基づく以下の実施例の説明に
よって明らかになる筈である。以下、本発明を図面に示
す実施例に基づき具体的に説明する。
Other objects, features, effects, and various uses of the present invention will become apparent from the following description of embodiments based on the accompanying drawings. Hereinafter, the present invention will be specifically described based on embodiments shown in the drawings.

佇機ガスから分離されるべきキャリアガスは、管路(1
)から、ガス供給弁(2)を経て吸着剤(3)の充填し
である反応器(4)に至り、該反応器(4)から、ガス
排出弁(5)及び管路(6)を通って、浄化された状態
で放出される。吸着されるべき有機ガスが吸着剤に所望
の最大値まで吸着されると(通常反応器出口の手前で)
、管路(1)のガス供給弁(2)及び管路(6)のガス
排出弁(5)は直ちに閉鎖され、キャリアガスの流れは
それによって中断されるか、或いは反応器(4)と並列
的に交互に作動し、すでに脱着の完了している吸着器に
導かれる。
The carrier gas to be separated from the box gas is passed through the pipe (1
) through a gas supply valve (2) to a reactor (4) filled with adsorbent (3), and from the reactor (4) a gas discharge valve (5) and a pipe (6). It is released in a purified state. Once the organic gas to be adsorbed has been adsorbed on the adsorbent to the desired maximum (usually before the reactor outlet)
, the gas supply valve (2) of line (1) and the gas discharge valve (5) of line (6) are immediately closed and the flow of carrier gas is thereby interrupted or They operate alternately in parallel and are guided to adsorbers where desorption has already been completed.

吸着時の圧力が(例外的に)周囲圧力より高い場合にV
i、反応器(4)は、該反応器とガス排出弁(5)との
中間で分岐している管路(6a)の弁(5a)を操作し
て減圧されるが、この時逃げるのは、通常浄化されたキ
ャリアガスだけである。
V when the pressure during adsorption is (exceptionally) higher than the ambient pressure.
i. The reactor (4) is depressurized by operating the valve (5a) of the pipe line (6a) which branches off between the reactor and the gas discharge valve (5), but at this time, the pressure of the reactor (4) is reduced. is usually just a purified carrier gas.

反応器(4)内の圧力を、(吸着方向とは向流で)脱着
時の圧力まで下げるには、管路(7)に接続した真空ポ
ンプ(9)を使用し、弁(8)を操作して行なう0この
ポンプの出口側では、管路(7)を介して吸引されたガ
ス混合物が処理される。これと同時に、脱着方向では、
以下で詳述する如く、掃去ガスか反応器(4)内を脱着
時の圧力で流通する。吸引されたガス混合物全体は、管
路αOを介して、例えは凝縮器の如きガス分離装置(川
に達する。脱着されたガスは、この装置(Illから管
路(12)を介して液状で排除され、またこの装置(1
1)から、前記分離過程の際残留している掃去ガスは、
管路1131を経て排出される。この管路113)は、
新鮮な掃去ガスを導入する管路(I4)に接続されてい
る。該管路(141は、向流掃去の場合は、圧力調整弁
(15+を介して反応器(4)に接続される。新鮮な即
ち補給用の掃去ガスは、減圧弁(17j及び弁118)
を備えたガス管路西を堰って管路−141へ導かれる。
To reduce the pressure in the reactor (4) to the desorption pressure (in countercurrent to the adsorption direction), use a vacuum pump (9) connected to the line (7) and close the valve (8). On the outlet side of this pump, the gas mixture sucked in via the line (7) is processed. At the same time, in the attachment and detachment direction,
As detailed below, a scavenging gas is passed through the reactor (4) at the desorption pressure. The entire aspirated gas mixture reaches a gas separation device (river), for example a condenser, via line αO. The desorbed gas is transferred from this device (Ill) in liquid form via line (12). This device (1
From 1), the scavenging gas remaining during the separation process is
It is discharged via conduit 1131. This conduit 113) is
It is connected to a line (I4) introducing fresh scavenging gas. Said line (141) is connected to the reactor (4) via a pressure regulating valve (15+) in the case of countercurrent scavenging. Fresh or make-up scavenging gas is supplied via a pressure reducing valve (17j and 118)
The gas pipe is dammed on the west side and is led to pipe 141.

掃去ガス及び脱着相の初期に発生するキャリアガスに、
過剰な鼠が生ずるようなことがあれば、これらの余剰量
のガスは、弁(19)を介し管路ZO)から排出される
In the scavenging gas and the carrier gas generated at the beginning of the desorption phase,
If an excess of gas occurs, these excess amounts of gas are discharged from the line ZO) via the valve (19).

実施例 内径52闘、内側長さ45絹の円筒状管から成る吸着器
(反応器)に成層剤として活性炭ss、syを充填した
。この活性炭のかさ密度は420釉/扉、比表面積は約
1150ηI+/yであった1111 (プルナクアー(B ru n a u e r ) 
、エンメント(Icnmett )、及びテラー(Te
1ler )の定めた測S=による)。この吸着器に温
度23℃、絶対11−1.旧バールで、蒸気状溶剤に対
し一定割合の空気を送り込んだ。この実施例で使用した
2種の溶剤即ちトリクロルエチレン(0,HOI、 )
ないしトルエン((!6H50H3)の供給された空気
中における入口濃度は、下記のとうりであった。ニ トリクロル呈チレン: 0.128 g/ 1トルエン
:      0.086g/l吸着剤に対する空気含
有溶剤の吸着は、吸着器の出口における溶剤の濃度がそ
れぞれc!Hc13は0.004 g / 1 % 0
6kbQHsは0.002g/1以上に上昇するまで行
なった。これは、ガス容積でみるト、トリクロルエチレ
ン149.21、l−ルエン104、81である。次い
で、真空ポンプにより下記の表に示した圧力PDになる
まで排気を行なった。この時、吸着器の入口のガス供給
弁は閉鎖しておき、脱着の場合のガスの流れ方向が吸着
(溶剤の除去)の場合の流れ方向と反対方向(向流)と
なるようにした。圧力が下記の表に示す数値PDに達す
ると、吸着器入口の供給弁(圧力調整弁)を開き、掃去
ガス(例えばメタンあるいは二酸化炭素、次表参照)を
吸着器に流した0掃夫を行なうための掃去ガスの容積並
びに該掃去によって脱着される溶剤の層は、同じく下記
の表に示しである。パ 脱着条件 C!HOI3  空気 80 28 1υOo、20H
,502816,911,8 302316,51a、2 Co250 23 17−3 13.930 40 1
2.3 15.2 80 23 15.2 14.9 06H5CH8co250 24 13.2 3.13
0 24 12.4 3.4 比較実施例 吸着器に上記実施例の場合♂同じ条件で活性炭を充填し
た。従来技術に基つき水蒸気を用いて圧力1.05、バ
ール、温度112℃で、14.5yの02HOI3を脱
着したところ、(1!2HCI31 Kg当り約8、9
00 K、T (キロジュール)を必要とした(熱損失
は全く起らない)。水蒸気と溶剤の混合物は、引続き次
の分離段階で熱の回収は行なわず焼却した。
EXAMPLE An adsorbent (reactor) consisting of a cylindrical tube made of silk with an inner diameter of 52 mm and an inner length of 45 mm was filled with activated carbon ss, sy as a stratification agent. The bulk density of this activated carbon was 420 glaze/door, and the specific surface area was about 1150 ηI+/y1111
, Icnmett, and Te.
(according to the measurement S= determined by 1ler). This adsorber has a temperature of 23°C and an absolute temperature of 11-1. In the old crowbar, a certain proportion of air was pumped into the vaporous solvent. The two solvents used in this example are trichlorethylene (0, HOI, )
The inlet concentration of toluene ((!6H50H3) in the supplied air was as follows: nitrichlorotyrene: 0.128 g/1 toluene: 0.086 g/l of air-containing solvent to adsorbent. For adsorption, the concentration of the solvent at the outlet of the adsorber is respectively c!Hc13 0.004 g / 1% 0
6kbQHs was carried out until it rose to 0.002g/1 or more. This is 149.21 of trichlorethylene and 104.81 of l-luene in terms of gas volume. Next, evacuation was performed using a vacuum pump until the pressure PD reached the pressure shown in the table below. At this time, the gas supply valve at the inlet of the adsorber was closed so that the flow direction of gas during desorption was opposite (countercurrent) to the flow direction during adsorption (removal of solvent). When the pressure reaches the value PD shown in the table below, the supply valve (pressure regulating valve) at the adsorber inlet is opened and the scavenger gas (e.g. methane or carbon dioxide, see table below) is flowed into the adsorber. The volume of the scavenging gas for effecting this as well as the layer of solvent desorbed by said scavenging are also given in the table below. Conditions for attaching and detaching C! HOI3 Air 80 28 1υOo, 20H
,502816,911,8 302316,51a,2 Co250 23 17-3 13.930 40 1
2.3 15.2 80 23 15.2 14.9 06H5CH8co250 24 13.2 3.13
0 24 12.4 3.4 Comparative Example An adsorber was filled with activated carbon under the same conditions as in the above example. When 14.5y of 02HOI3 was desorbed using water vapor at a pressure of 1.05 bar and a temperature of 112°C based on the conventional technology, it was found that (about 8.9 y/kg of 1!2HCI31)
00 K, T (kilojoules) were required (no heat loss occurs). The mixture of steam and solvent was subsequently incinerated without heat recovery in the next separation step.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明に係る方法を実施するための装置を原理
図として示したものである。 (2)・・・ガス供給弁  (3)・・・吸着剤  (
4)・・・反応器(5)・・・ガス排出弁  (9)・
・・真空ポンプ  (11)・・・ガス分離装置(凝縮
器)  05ノ・・・圧力調整弁(17)・・・減圧弁 出願人    ベルツク1ルクスフエアノシト グーエ
ムベ−/N−代理人 弁理士 樋 口 豊 治 ほか2名 7面の浄S(内容に変更なしン 手続補正書(自発・方式) %式% 事件の表示 昭和58年特許願第4058 号 発明の名称 吸着剤に吸着せしめたキャリヤガス中の有機力°スを脱
看する方法 補正をする者 氏名  ベルフグエルクスクエア/<ント ゲーエムベ
ーノ・−代表者 グイルヘルムプラント及び同エルンス
ト コールマン化  理  人  〒540 補正の内容 ■出願人の代表音名に記載した訂正願書、■委任状及び
その訳文各1通、■訂正図面を舷許添付して提出する。
The drawing shows, in principle, an apparatus for carrying out the method according to the invention. (2)...Gas supply valve (3)...Adsorbent (
4) Reactor (5) Gas discharge valve (9)
...Vacuum pump (11) ...Gas separation device (condenser) 05 No. ...Pressure regulating valve (17) ...Pressure reducing valve Applicant Belzk 1 Luxpheanosito Gumbh/N- Agent Patent attorney Toyoharu Higuchi and 2 others 7 pages of J-S (no change in content) Procedural amendment (voluntary/method) % formula % Display of the case 1982 Patent Application No. 4058 Name of the invention Carrier adsorbed on an adsorbent Name of the person making the amendment: Belfuge Erg Square/<nt Gmbeno Representative Guilhelm Plant and Ernst Coleman 540 Contents of the amendment ■Representative of the applicant Submit the correction application written in the pitch name, one copy each of the power of attorney and its translation, and the correction drawing attached to the ship's license.

Claims (1)

【特許請求の範囲】 1、一部吸着されるガス(掃去ガス)を用いて反応器内
の成層剤層を掃去することによって、キャリヤガスの中
から吸着された有機ガスを脱着する方法において、掃去
ガスとして1分子あたり炭素原子1個を有する酸化炭素
または炭化水素を、吸着時の圧力以下の圧力(脱着圧)
で用いることを特徴とする吸着剤に吸着せしめたキャリ
ヤガス中の有機ガスを脱着する方法。 2、吸着された掃去ガスを、新らしい吸着段階において
、キャリヤガスによって排除すみことを特徴とする特許
請求の範囲第1項に記載の方法・ 3、脱着された有機ガスを、反応器から出る掃去ガスか
ら、脱着圧よりも高い圧力下に、分離することを特徴と
する特許請求の範囲第1項又は第2項に記載の方法。 4、脱着された有機カスを分離した後の掃去ガスを再使
用することを特徴とする特許請求情】項、第2項又は第
δxj4VC記載の方法0
[Claims] 1. A method of desorbing the organic gas adsorbed from the carrier gas by scavenging the stratifying agent layer in the reactor using a partially adsorbed gas (scavenging gas) , carbon oxide or hydrocarbon having one carbon atom per molecule is used as a scavenging gas at a pressure lower than the pressure at the time of adsorption (desorption pressure).
A method for desorbing an organic gas in a carrier gas adsorbed on an adsorbent, characterized in that it is used in a carrier gas. 2. The method according to claim 1, characterized in that the adsorbed scavenging gas is eliminated by a carrier gas in a new adsorption step; 3. The desorbed organic gas is removed from the reactor. 3. A method as claimed in claim 1, characterized in that the exiting scavenging gas is separated at a pressure higher than the desorption pressure. 4. Method 0 according to claim 2 or δxj4VC, characterized in that the scavenging gas after separating the desorbed organic residue is reused.
JP58004053A 1982-01-14 1983-01-12 Desorption of organic gas in carrier gas adsorbed by adsorbent Pending JPS58128124A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823200910 DE3200910A1 (en) 1982-01-14 1982-01-14 Process for desorbing organic gases adsorbed on adsorbents from a carrier gas
DE32009100 1982-01-14

Publications (1)

Publication Number Publication Date
JPS58128124A true JPS58128124A (en) 1983-07-30

Family

ID=6153037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58004053A Pending JPS58128124A (en) 1982-01-14 1983-01-12 Desorption of organic gas in carrier gas adsorbed by adsorbent

Country Status (2)

Country Link
JP (1) JPS58128124A (en)
DE (1) DE3200910A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312218A (en) * 1989-06-08 1991-01-21 Kobe Steel Ltd Method and apparatus for solvent recovery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4119149A1 (en) * 1991-03-22 1992-11-05 Hak Anlagenbau Gmbh Fuer Verfa Gas purged desorption for solids heated by electromagnetic radiation - partic. IR, UV, microwave, and low frequency energy in removal of volatilisable organics
SE9102384L (en) * 1991-08-19 1993-02-20 Ventilatorverken Ab PROCEDURE FOR REGENERATION OF AN ADSORBENT
US5415682A (en) * 1993-11-12 1995-05-16 Uop Process for the removal of volatile organic compounds from a fluid stream
US5503658A (en) * 1993-11-12 1996-04-02 Uop Process for the removal of volatile organic compounds from a fluid stream
US5512082A (en) * 1993-11-12 1996-04-30 Uop Process for the removal of volatile organic compounds from a fluid stream

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044176A (en) * 1973-08-23 1975-04-21
JPS5257083A (en) * 1975-11-07 1977-05-11 Hitachi Ltd Recovering apparatus of organic solvent in exhaust gas containing orga nic solvent
JPS5318504A (en) * 1976-08-05 1978-02-20 Shin Etsu Chem Co Ltd Recovery of halogenated hydrocarbons
JPS5567315A (en) * 1978-08-21 1980-05-21 Air Prod & Chem Separation of multiple component gas mixture by means of pressure oscillation adsorption

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE600086C (en) * 1927-01-12 1934-07-13 Carbo Norit Union Verwaltungs Process for the recovery of gases or steams contained in adsorbents and regeneration of the adsorbents

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044176A (en) * 1973-08-23 1975-04-21
JPS5257083A (en) * 1975-11-07 1977-05-11 Hitachi Ltd Recovering apparatus of organic solvent in exhaust gas containing orga nic solvent
JPS5318504A (en) * 1976-08-05 1978-02-20 Shin Etsu Chem Co Ltd Recovery of halogenated hydrocarbons
JPS5567315A (en) * 1978-08-21 1980-05-21 Air Prod & Chem Separation of multiple component gas mixture by means of pressure oscillation adsorption

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312218A (en) * 1989-06-08 1991-01-21 Kobe Steel Ltd Method and apparatus for solvent recovery

Also Published As

Publication number Publication date
DE3200910A1 (en) 1983-07-21
DE3200910C2 (en) 1988-03-24

Similar Documents

Publication Publication Date Title
US3594983A (en) Gas-treating process and system
US7025803B2 (en) Methane recovery process
Grande et al. Electric swing adsorption as emerging CO2 capture technique
CA1202576A (en) Process for separating carbonic acid gas from methane- rich gas
US4203734A (en) Method and apparatus for the selective adsorption of vaporous or gaseous impurities from other gases
CN102805987B (en) Secondary-adsorption organic waste gas recovering method
CN102083512A (en) Carbon dioxide recovery
EP0603178A4 (en)
US20050109207A1 (en) Method and apparatus for the recovery of volatile organic compounds and concentration thereof
US3905783A (en) Method of purifying an air or gas flow of vaporous or gaseous impurities adsorbable in filters
JPS58128124A (en) Desorption of organic gas in carrier gas adsorbed by adsorbent
US5312477A (en) Adsorption/regeneration process
JP4548891B2 (en) Organic solvent recovery method
JP2004243279A (en) Method and device for cleaning gas containing organic contaminant
JP3282676B2 (en) Recovery method for solvents, etc.
JPH0634897B2 (en) Adsorption and desorption method with activated carbon
JPS59116115A (en) Method for recovering carbon monoxide
JP2012254421A (en) Siloxane removal method and methane recovery method
JPH039392B2 (en)
JPH06104174B2 (en) Method for adsorption separation of easily adsorbed components from mixed gas
US11931723B2 (en) Method for solvent recovery and activated carbon regeneration
EP0512943B1 (en) Recovery of condensable organic compounds from inert streams laden therewith
JPH0410368B2 (en)
CA1071118A (en) Method and apparatus for the selective adsorption of vaporous or gaseous impurities from other gases
JP2572294B2 (en) Solvent recovery processing method