JPS58127388A - Formation of stepwise difference removing film - Google Patents

Formation of stepwise difference removing film

Info

Publication number
JPS58127388A
JPS58127388A JP57009364A JP936482A JPS58127388A JP S58127388 A JPS58127388 A JP S58127388A JP 57009364 A JP57009364 A JP 57009364A JP 936482 A JP936482 A JP 936482A JP S58127388 A JPS58127388 A JP S58127388A
Authority
JP
Japan
Prior art keywords
substrate
stepwise
glass
film
thereafter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57009364A
Other languages
Japanese (ja)
Inventor
Takeshi Ichibagase
一番ケ瀬 剛
Susumu Kakumoto
角本 進
Seizo Nakajima
中嶋 精三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP57009364A priority Critical patent/JPS58127388A/en
Publication of JPS58127388A publication Critical patent/JPS58127388A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To eliminate stepwise differences on a substrate and thus obtain a good element characteristic and photoconductive film characteristic by a method wherein, after evaporating a glass on the substrate having stepwise differences, it is heated in a pressure reduced atmosphere, then a glass flow is started, and thereafter it is immediately quenched. CONSTITUTION:On the Si substrate 13 whereon a scanning circuit constituting element having stepwise differences of 2mum is formed on the surface, a chalcogen glass film 12 constituted of 90 atom% of Se, and 10 atom% of As is evaporation-formed. Thereat, by the stepwise difference formed by the element on the substrate 13, stepwise differences are generated on the surface of the chalcogen glass film 12. A sample body is set up in a manufacturing device 1 and 2, and then the inside of the device is evacuated to 2X10<-6>Torr. Thereafter, an inactive gas e.g. Ar is introduced to 0.5Torr. Then, current is conducted to a heater 11, and thus the temperature is increased at the speed 4.4 deg.C/min. The chalcogenide glass film 12 on the sample body begins to soften at 90 deg.C, and, when at 100 deg.C or more, flows so that the stepwise difference is eliminated resulting in the mirror surface of the surface thereof. Immediately thereafter, the heater is switched off, and thus the Ar gas in a bell jar is exhausted to 2X10<-6>Torr.

Description

【発明の詳細な説明】 本発明は、段差を有する基板上に形成される素子や光導
電膜が、この段差のために特性が損われないよう−に、
この段差基板の表面に被着盗れる段差除去用のガラス被
膜を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to prevent the characteristics of elements and photoconductive films formed on a substrate having steps from being impaired due to the steps.
The present invention relates to a method for forming a glass film for removing steps that can be adhered to the surface of the step substrate.

従来、Si、Ge、化合物半導体などの半導体材料から
なる基板上に回路素子を形成すると、少なくとも5oo
oÅ以上の段差が形成される。前記回路素子を形成した
基板上に新たに別の回路素子を形成する場合、最初に形
成した回路素子の段差が、新たに形成する素子の電気的
特性に障害を辱える。
Conventionally, when circuit elements are formed on a substrate made of a semiconductor material such as Si, Ge, or a compound semiconductor,
A step difference of 0 Å or more is formed. When another circuit element is newly formed on the substrate on which the circuit element has been formed, the step difference in the first formed circuit element impairs the electrical characteristics of the newly formed element.

また、ガラス基板、Lに、吸光フィルタ薄膜を帯状に多
数形成して学管カラー用撮像管ターゲットとして使用す
る場合、ガラス基板上に最初に形成した吸光フィルタ薄
膜によって形成された段差が、その上に蒸着されて形成
される光導電膜の電気的特性に障害を与える。
In addition, when a large number of band-shaped light absorption filter thin films are formed on the glass substrate L and used as an image pickup tube target for a school tube color, the step formed by the light absorption filter thin film first formed on the glass substrate is This impairs the electrical properties of the photoconductive film formed by vapor deposition.

本発明による方法で段差除去膜を形成することにより、
基板」二の段差をな゛くし平坦な面を作るととがてきる
ので、段差によって生じる弊害を取り除き、良好な素子
特性と光導電膜特性を得ることができる。
By forming a step removal film using the method according to the present invention,
Since it is possible to eliminate the step difference between the two substrates and create a flat surface, it is possible to eliminate the adverse effects caused by the step difference and obtain good device characteristics and photoconductive film characteristics.

第1図は本発明による段差除去膜を作製するだめの製造
装置の断面図である、基体1とペルジャー2とて本装置
の真空容器が形成されており、この容器は真空バルブ3
を介して排気系4に接続されている。容器の内部には、
段差除去膜6とその基板7からなる試料体の表面と同じ
条件下で段差除去膜6の温度検出を行うだめの基板8、
熱電対10.熱電対1oを基板8に固定するだめの固定
材9が、ヒータ11からの輻射熱を受けるだめの窓を有
する支持盤6により支持されている。
FIG. 1 is a sectional view of a device for manufacturing a container for producing a step removal membrane according to the present invention.
It is connected to the exhaust system 4 via. Inside the container,
a substrate 8 for detecting the temperature of the step removal film 6 under the same conditions as the surface of the sample body consisting of the step removal film 6 and its substrate 7;
Thermocouple 10. A fixing member 9 for fixing the thermocouple 1o to the substrate 8 is supported by a support plate 6 having a window for receiving radiant heat from the heater 11.

以下本発明による段差除去膜の製造方法について、実施
例に従って説明する。
The method for manufacturing a step removal film according to the present invention will be described below according to examples.

実施例1 第2図は試料体の模式図である。表面に21℃mの段差
を有する走査回路構成素子を形成したンリコン基板13
の上に、セレン90原子係と砒素10原子係からなるカ
ルコゲンガラス被膜12を蒸着形成する。このとき、基
板13上の素子によって形♀。
Example 1 FIG. 2 is a schematic diagram of a sample body. Non-contact substrate 13 on which a scanning circuit component having a step difference of 21° C.m is formed on the surface
A chalcogen glass film 12 consisting of 90 atoms of selenium and 10 atoms of arsenic is formed on the film by vapor deposition. At this time, the elements on the substrate 13 form a ♀.

成される段差のだめにカルケンガラス被膜12の表面に
段差が発生する。前記試料体を第1図で示した製造装置
内に設置し、装置内を2X10  torrまで排気す
る・そののち、不活性ガスたとえばアルゴンを0.5t
orrまで導入する。それからヒータ11に電流を通じ
、毎分4.4℃の速度で温度を高めて行く。試l料体上
のカルケンガラス被膜12は90℃で軟化し始め、10
0℃以上になると表面の段差がなくなるよう流動して、
その表面が鏡面゛となる。この直後ヒータ電源を切り、
ベルジャ内のアルゴンガスを2X10”−6torrま
で排気する。
A step is generated on the surface of the Calkene glass coating 12 due to the step formed. The sample body is placed in the manufacturing apparatus shown in Figure 1, and the inside of the apparatus is evacuated to 2X10 torr.Then, 0.5 tons of inert gas, such as argon, is introduced into the apparatus.
Introduce up to orr. Then, current is passed through the heater 11 to increase the temperature at a rate of 4.4° C. per minute. The Calkene glass coating 12 on the sample body begins to soften at 90°C, and
When the temperature exceeds 0℃, it flows so that there are no steps on the surface.
Its surface becomes a mirror surface. Immediately after this, turn off the heater power,
Evacuate the argon gas in the bell jar to 2×10”-6 torr.

第3図にこの実施例における真空度と温度の時間的変化
を示す。真空装置を一度2X10  torr壕で排気
したのちアルゴンを入れるのは、段差除去膜を酸化する
おそれのある残留ガス中の酸素などの活性ガスを除くた
めである。流動点以上の温度で長時間加熱を続けると気
泡状の空孔を生じるので、試料体は流動直後急速に冷却
しなければならない。このため、実施例では、図に示す
ように、加熱されたアルゴンガスを排気して基板の温度
を急速に下げるようにしている。この際アルゴンガスの
圧力が高いと、気体の対流により、ヒータ部の熱が試料
体に運ばれて基盤の温度が上昇し気泡状の空孔を生じる
。この空孔発生の防止や熱応答上 の迅速性1段差除去膜の酸化防争のかねあいからアルゴ
ンガスの圧力は10torr以下にして、主として熱輻
射を利用して加熱するのがより適切であった。壕だ、前
記気泡状の空孔の発生防止には、蒸着前に基板を十分に
洗浄し、次いで高真空中て脱ガスをしておくことも効果
がある。
FIG. 3 shows temporal changes in vacuum degree and temperature in this example. The reason why the vacuum device is once evacuated with a 2×10 torr trench and then argon is introduced is to remove active gas such as oxygen in the residual gas that may oxidize the step removal film. Since continued heating at a temperature above the pouring point for a long period of time will result in bubble-like pores, the sample must be rapidly cooled immediately after pouring. For this reason, in the embodiment, as shown in the figure, the heated argon gas is exhausted to rapidly lower the temperature of the substrate. At this time, if the pressure of the argon gas is high, the heat of the heater section is carried to the sample body by gas convection, increasing the temperature of the substrate and creating bubble-like pores. In order to prevent the generation of voids and to prevent oxidation of the single step removal film due to its rapid thermal response, it is more appropriate to keep the argon gas pressure at 10 torr or less and to heat mainly using thermal radiation. . It is also effective to thoroughly clean the substrate before vapor deposition and then degas it in a high vacuum to prevent the formation of the above-mentioned bubble-like pores.

この実施例によって作製した段差除去膜を切断し、その
断面を走査電子顕微鏡により観察したところ、基板上の
段差を望めることができ々かった。
When the step removal film produced in this example was cut and its cross section was observed using a scanning electron microscope, it was difficult to see the step on the substrate.

実施例2 第4図は、本発明による微小段差除去膜16を用いて基
板14の上に存在する271mの段差を取り除き、その
上にセレン、テルル、砒素を主成分とする光導電膜16
を蒸着したイメージセンサの模式断面図である。この実
施例の段差除去膜16はセレン−砒素ガラスを使用して
いるため、比抵抗が高く、基板140段差で生じる局部
的強電界を吸収する。したがって、光導電膜16をイメ
ージセンサ用光導電膜として使用しても、局部的強電界
によるブレークダウンカニ発生しない。また、膜16.
16はともにセレン合金を使用して形成されているため
、物理的整合性がよく、良好な電気特性を得ることがで
きる。
Embodiment 2 FIG. 4 shows that a 271 m step existing on a substrate 14 is removed using a microstep removal film 16 according to the present invention, and a photoconductive film 16 containing selenium, tellurium, and arsenic as main components is deposited thereon.
FIG. 2 is a schematic cross-sectional view of an image sensor on which . Since the step removal film 16 of this embodiment is made of selenium-arsenic glass, it has a high specific resistance and absorbs the local strong electric field generated by the step difference in the substrate 140. Therefore, even if the photoconductive film 16 is used as a photoconductive film for an image sensor, breakdown will not occur due to a localized strong electric field. Also, the membrane 16.
16 are both formed using a selenium alloy, so that they have good physical consistency and can obtain good electrical characteristics.

実施例3 第4図のガラス基板14上に吸光フィルタ膜を帯状に多
数形成したものを用い、その上に順次本発明による微小
段差除去膜15、セレンとテルル。
Example 3 A large number of band-shaped light absorption filter films are formed on the glass substrate 14 shown in FIG. 4, and on top of that, the fine step removal film 15 according to the present invention, selenium and tellurium are sequentially formed.

砒素を主成分とする光導電膜16を蒸着して、単管カラ
ー用撮像管ターゲットを作製する0こうして作製したタ
ーゲットは、段差除去膜を使用しない従来の単管カラー
ターゲ、/)に比べて、実施例2にも述べたように、ブ
レークダウンによる白傷発生を著しく減少させることが
できる。
A photoconductive film 16 containing arsenic as a main component is vapor-deposited to produce a single-tube color image pickup tube target.The thus prepared target has a higher level of performance compared to a conventional single-tube color target that does not use a step removal film. As described in Example 2, the occurrence of white spots due to breakdown can be significantly reduced.

以ヒ述べたように、本発明の方法は、段差を有する基板
上にガラスを蒸着してから減圧雰囲気中で加熱し、ガラ
スの流動開始後、ただちに急冷することを特徴としてお
り、基板表面の段差をガラス被膜で除去できるので、基
板上に種々の要素を積層するなどの際における段差によ
る障害を著しく低減させることができ、薄膜を幾層にも
重ねて回路素子を形成する場合などに、非常に効果的で
ある。
As described below, the method of the present invention is characterized by depositing glass on a substrate having steps, heating it in a reduced pressure atmosphere, and rapidly cooling it immediately after the glass begins to flow. Since steps can be removed with a glass coating, it is possible to significantly reduce the problems caused by steps when stacking various elements on a substrate, and when forming circuit elements by stacking many thin films. Very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するだめの製造装置の一例
を示す断面図、第2図は表面に段差を有する基板上にガ
ラスを蒸着した状・態の模式断面図、第3図は本発明の
方法の一実施例における真空度と温度の時間的変化を示
す図、第4図は本発明による段差除去膜を用いて基板上
の段差を取り除いたのち、セレン、テルル、砒素を主成
分とする光導電膜を作製した場合の模式断面図である。 1・・・・・真空容器基板、2・・・・・・ベルジャ、
3・・・・・・真空バルブ、4・・・・排気系、5・・
・・・支持盤、6・・・・・・段差除去膜、7・・・・
・・基板、8・・・温度検出用基板、9・・・・・熱電
対固定材、1o・・・・・熱電対、11・・・・・加熱
用ヒータ。
Fig. 1 is a cross-sectional view showing an example of a device manufacturing apparatus for carrying out the method of the present invention, Fig. 2 is a schematic cross-sectional view of a state in which glass is deposited on a substrate having steps on the surface, and Fig. 3 is Figure 4 is a diagram showing temporal changes in vacuum degree and temperature in an embodiment of the method of the present invention. FIG. 2 is a schematic cross-sectional view of a photoconductive film prepared as a component. 1... Vacuum container board, 2... Belljar,
3... Vacuum valve, 4... Exhaust system, 5...
...Support plate, 6...Step removal membrane, 7...
... Substrate, 8 ... Temperature detection board, 9 ... Thermocouple fixing material, 1o ... Thermocouple, 11 ... Heater for heating.

Claims (2)

【特許請求の範囲】[Claims] (1)段差を有する基板上にガラスを蒸着したのち、減
圧雰囲気中で加熱し、前記ガラスの流動開始後。 段 ただちに15冷することを特徴とする棉差除去膜の形成
方法。
(1) After glass is deposited on a substrate having steps, it is heated in a reduced pressure atmosphere and the glass starts to flow. A method for forming a cotton shaving removal film characterized by immediately cooling the step for 15 minutes.
(2)  ガラスとしてカルコゲンガラスを使用し、加
熱時の雰囲気を不活性雰血気としてなることを特徴とす
る特許請求の範囲第1項に記載の段差除去膜の形成方法
(2) The method for forming a step removal film according to claim 1, characterized in that chalcogen glass is used as the glass, and the atmosphere during heating is an inert atmosphere.
JP57009364A 1982-01-22 1982-01-22 Formation of stepwise difference removing film Pending JPS58127388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57009364A JPS58127388A (en) 1982-01-22 1982-01-22 Formation of stepwise difference removing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57009364A JPS58127388A (en) 1982-01-22 1982-01-22 Formation of stepwise difference removing film

Publications (1)

Publication Number Publication Date
JPS58127388A true JPS58127388A (en) 1983-07-29

Family

ID=11718419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57009364A Pending JPS58127388A (en) 1982-01-22 1982-01-22 Formation of stepwise difference removing film

Country Status (1)

Country Link
JP (1) JPS58127388A (en)

Similar Documents

Publication Publication Date Title
JPS6392012A (en) Laminated article and manufacture of the same
FR2803854A1 (en) Improving optical separation of needle-like phosphor layers formed on substrate comprises controlling vaporization so that phosphor layer is deposited on substrate in reduced thickness
GB1602386A (en) Method of manufacturing semiconductor devices
JPS6223450B2 (en)
JPS5884111A (en) Improved plasma deposition for silicon
JPS58127388A (en) Formation of stepwise difference removing film
JPS605233B2 (en) Method for manufacturing high melting point compound thin film
US4214018A (en) Method for making adherent pinhole free aluminum films on pyroelectric and/or piezoelectric substrates
JP2666572B2 (en) Method for forming polycrystalline silicon film
US4167806A (en) Method of fabrication of an amorphous semiconductor device on a substrate
JPH05171412A (en) Production of material for vapor-depositing silicon monoxide
JPH03769B2 (en)
JPS5940525A (en) Growth of film
JP2985472B2 (en) Method of forming silicon film
US4883562A (en) Method of making a photosensor
JPH0417668A (en) Vapor deposition method
JPH0786379A (en) Semiconductor manufacturing suscepter
SU1191878A1 (en) Method of manufatcuring electrophotographic medium
JPH07201857A (en) Method for manufacturing al series thin film
JPS58110047A (en) Manufacture of semiconductor device
JP3205666B2 (en) Method for synthesizing CeO2 epitaxial single crystal thin film on Si single crystal substrate
Yonehara et al. Annealing behavior of spin density in UHV evaporated amorphous silicon
JPH04287314A (en) Hydrogenated amorphous silicon laminated body and its manufacture
Barkai et al. The epitaxial growth of germanium films onto NaCl/mica substrates
JPH0673536A (en) Formation of transparent and stable coating film