JPS58127159A - Reference sample body for magnetic powder flaw detection - Google Patents

Reference sample body for magnetic powder flaw detection

Info

Publication number
JPS58127159A
JPS58127159A JP881382A JP881382A JPS58127159A JP S58127159 A JPS58127159 A JP S58127159A JP 881382 A JP881382 A JP 881382A JP 881382 A JP881382 A JP 881382A JP S58127159 A JPS58127159 A JP S58127159A
Authority
JP
Japan
Prior art keywords
sample
flaw
test
test piece
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP881382A
Other languages
Japanese (ja)
Inventor
Katsumi Matsumura
勝己 松村
Atsuhisa Takekoshi
竹腰 篤尚
Takao Yamane
山根 孝夫
Yoichi Ishizaka
石坂 陽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP881382A priority Critical patent/JPS58127159A/en
Publication of JPS58127159A publication Critical patent/JPS58127159A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/84Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields by applying magnetic powder or magnetic ink

Abstract

PURPOSE:To enable to perform a reliable and theoretically consistent accuracy test of a detecting force of a magnetic powder probing, by a method wherein a sample, in which a flaw, being of a similar type to that of a natural flaw to be probed, is processed, and which is of the same material as that of a sample product, is welded to a sample body. CONSTITUTION:A notch 12 is formed in a sample material 10, being of the magnetically same material as that of a sample product, the material is positioned between the nip formed by jigs 13 of a fatigue tester, and a crack 14 is produced to form a sample 16 in which a flaw 15 is produced to the same extent to that of a natural flaw. A JIS A type reference sample 6 is adhered thereto, and a grinding is made by the strength of a magnetic field which is strong enough for a magnetic powder pattern to appear on the sample 6 and so that a magnetic powder pattern appears on the flaw 15 also. The sample 6 is fitted in a sample body 11 for welding to form a reference sample body. Thus, the sample body is of the same material as that of a sample product, whereby there is neither any problem on a material, nor any problem on the adhesion gap of the reference sample 6. This enables to perform a reliable and theoretically consistent test of a detecting output of a magnetic powder probing.

Description

【発明の詳細な説明】 この発明は、磁粉探傷用の標準試験体に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a standard test piece for magnetic particle flaw detection.

従来、磁粉探傷における検出力の確性は、残留法の場合
、第1図に示すような方法で行なわれていた。即ち、試
験品IVC粘着チーf7等を用いてJIS 人形標準試
験片6を、人工疵のある面を試験品1の表面に密着する
ように貼着けた状態で、試験品Iを磁化する。この例で
は試験品1にケーブル3、電極2全通し電流を矢印方向
に流し磁束5を発生させる軸通電法の例を示しであるが
、磁化方法は検出したい疵と直角に近い方向に磁化でき
る方法であれば、プロット法、貫通磁束法等JIS G
 0565に示されている方法の倒れでもよい。そして
磁化後の試験品1に、適切な濃度で作られた磁粉液8を
流したときに1標準試験片6に人工疵パターンの磁粉模
様が観察されれば、検出力ありと判断している。この例
では湿式磁粉を用いているが、乾式磁粉が用いられる場
合もある。
Conventionally, the accuracy of detection power in magnetic particle flaw detection has been determined using the method shown in FIG. 1 in the case of the residual method. That is, the test article I is magnetized while the JIS doll standard test piece 6 is adhered to the surface of the test article 1 so that the side with the artificial flaw is in close contact with the surface of the test article 1 using a test article IVC adhesive tape f7 or the like. This example shows an example of the axial energization method in which the test item 1 is passed through the cable 3 and electrode 2 in the direction of the arrow to generate magnetic flux 5, but the magnetization method allows magnetization in a direction close to perpendicular to the flaw to be detected. If it is a method, JIS G plot method, penetrating magnetic flux method etc.
A variation of the method shown in 0565 may also be used. Then, when a magnetic powder liquid 8 made at an appropriate concentration is poured onto the test piece 1 after magnetization, if a magnetic particle pattern in the form of an artificial flaw pattern is observed on the standard test piece 6, it is determined that there is detection power. . Although wet magnetic powder is used in this example, dry magnetic powder may also be used.

しかし、この方法には、次のような本質的な欠点がある
However, this method has the following essential drawbacks.

1)  人形標準試験片は本来、装置、磁粉、検査液の
性能及び連続法における試験品表面の有効磁場の強さ及
び方向、試験操作の適否を調べるものである。従って人
形標準試験片に磁粉模様が検出されたとしても、それは
磁場の強さ。
1) The doll standard test piece is originally used to check the performance of the device, magnetic powder, and test liquid, as well as the strength and direction of the effective magnetic field on the surface of the test piece in the continuous method, and the suitability of test operations. Therefore, even if a magnetic particle pattern is detected on the doll standard test piece, it is due to the strength of the magnetic field.

方向、磁粉液等の適否の判断にしかならず、試験品にあ
る疵の検出性を直接示すものではない。
It only determines the suitability of the direction, magnetic powder liquid, etc., and does not directly indicate the detectability of flaws in the test product.

2)残留法においては、人形標準試験片の磁粉模様は、
試験品の残留磁束密度に関係するが、試験品の材質、標
準試験片と試験面との接触状態及び試験品に生じた磁極
の影響を大きく受ける。従って安定した残留磁束密度の
判定は困難である。
2) In the residual method, the magnetic particle pattern of the doll standard test piece is
Although it is related to the residual magnetic flux density of the test item, it is greatly influenced by the material of the test item, the contact condition between the standard test piece and the test surface, and the magnetic poles generated in the test item. Therefore, it is difficult to determine a stable residual magnetic flux density.

そのため人形標準試験片の代わシに、自然疵のある品物
を試験体として用いる方法が最適であるが、この方法に
も次のような欠点がある。
Therefore, it is best to use an item with natural flaws as a test specimen instead of a standard doll test piece, but this method also has the following drawbacks.

1)試験体として使用するためには、疵検出仕様の下限
すなわち一番微小な自然疵が必要とされるが、このよう
な微小自然疵は常に発生するとは限らず、入手が非常に
困難である。
1) In order to be used as a test specimen, the lowest limit of the flaw detection specifications, that is, the smallest natural flaw is required, but such microscopic natural flaws do not always occur and are extremely difficult to obtain. be.

2)試験体に使えそうな微小自然疵が入手できたとして
も、その疵の大きさは外観から判らないだめ、疵を切断
して断面寸法を調べる必要があるが、切断すると試験体
として使えなくなる。
2) Even if you can obtain a small natural flaw that can be used as a test specimen, the size of the flaw cannot be determined from its appearance, so it is necessary to cut the flaw and examine its cross-sectional dimensions, but once cut, it can be used as a test specimen. It disappears.

また、放電加工やレーザ加工によシ人工疵を付けた品物
を試験体として使うことも考えられるが、これらの人工
疵は磁粉探傷の検出力確性用の疵としては大き過ぎると
ともに、表面に大キく開口しているので、残留磁気がな
くても、磁粉液が溜ってしまう欠点がある。
It is also possible to use items with artificial flaws created by electrical discharge machining or laser machining as test specimens, but these artificial flaws are too large to be used for detecting accuracy of magnetic particle testing, and also have large surface defects. Since the opening is wide, there is a drawback that magnetic powder liquid can accumulate even if there is no residual magnetism.

この発明は、上記のような欠点を解消できるようにした
磁粉探傷用の標準試験体を提供することを目的とするも
のである。
The object of the present invention is to provide a standard test piece for magnetic particle flaw detection that can eliminate the above-mentioned drawbacks.

この発明の標準試験体は、探傷すべき自然疵と同種の疵
を加工した試験品と同じ材質の試験片を、試験体本体に
溶接したものである。
The standard test body of the present invention is obtained by welding a test piece made of the same material as a test piece processed with flaws of the same type as natural flaws to be detected, to a test body main body.

以下、この発明の一実施例を第2図〜第6図により説明
する。試験片には、上述のように極めて微細な疵を加工
する必要があるが、発明者等は材料の疲労試験で発生す
るクラックの幅が極めて小さいことに着目し、このクラ
ックを表面から研削して微小部分を残すことによシ疵を
加工するととにした。破壊力学の理論によれば、疲労ク
ラックの進展速度は次式で表わされる。
An embodiment of the present invention will be described below with reference to FIGS. 2 to 6. As mentioned above, it is necessary to create extremely fine scratches on the test piece, but the inventors focused on the fact that the width of the cracks that occur during material fatigue tests are extremely small, and developed a method to grind these cracks from the surface. The idea was to process the scratches by leaving a minute part. According to the theory of fracture mechanics, the growth rate of fatigue cracks is expressed by the following equation.

a −=cΔK”   、°、 a = F−’(N)  
・−−−−−−−−−(1)N ここで、aはクラック進展深さ、Nは応力くり返し回数
、C・nは材料による定数、Δには応力拡大係数のクラ
ック長atでの間の変化量であシ、疲労試験の方法、サ
ンプルの材質2寸法が決まれば、くり返し回数Nによっ
て、クラックの深さがコントロールできることを意味し
ている。第2図(、)は、帯板の3点曲げにより片側に
疲労クラ・ツクを発生させた様子を示したもので、クラ
ック長がaになったときのクラックの開口幅δは次式で
表わされる。
a −=cΔK”, °, a=F−′(N)
・---------(1)N where a is the crack growth depth, N is the number of stress repetitions, C・n is a constant depending on the material, and Δ is the stress intensity factor at the crack length at. This means that once the fatigue test method, sample material, and two dimensions are determined, the depth of the crack can be controlled by the number of repetitions N. Figure 2 (,) shows how fatigue cracks are generated on one side by three-point bending of a strip. When the crack length is a, the opening width δ of the crack is given by the following formula: expressed.

δ=±1土 ・V(ξ)     ・・・・・・・・・
・・・・・・(2)ここで、σo = 3 S P /
 2W2.ξ=a/WV中0.76−2.28ξ+3.
87ξ2−2.04ξ’+ 0.66 /(1−ξ)2
Eはヤング率(kP/調) このクラックを表面から研磨して行き、第2図(b)に
示す如く、a′だけ残しだときの、その点の開口幅δ′
が、残シのクラックの深さa′に比例するモデルを考え
たとき、δ′は次のとおシ、小さくすることができる。
δ=±1 soil ・V(ξ) ・・・・・・・・・
......(2) Here, σo = 3 S P /
2W2. ξ=a/WV 0.76-2.28ξ+3.
87ξ2-2.04ξ'+ 0.66 /(1-ξ)2
E is Young's modulus (kP/tone) This crack is polished from the surface, and when only a' remains, as shown in Figure 2 (b), the opening width at that point δ'
However, when considering a model in which δ' is proportional to the depth a' of the residual crack, δ' can be made smaller as follows.

a′ δl−−×δ     ・・・・・・・・・・・・・・
・・・・(3)具体的には第3図、第4図に示す方法で
試験片を作成した。図中10は、試験品と磁気的に同じ
材質(又は試験品の一部)の4012グレードの試験片
材で、その大きさは60刈70X25 rrsである。
a′ δl−−×δ・・・・・・・・・・・・・・・
(3) Specifically, test pieces were prepared by the method shown in FIGS. 3 and 4. In the figure, 10 is a 4012 grade test piece material that is magnetically the same as the test piece (or a part of the test piece), and its size is 60 cuts 70 x 25 rrs.

この試験材10の表面にトθ疵(例えば幅0.2 mm
 、深さ3I11++1程度)又は■ノツチ等の切欠き
12を加工し、応力集中を起こし易い状態にする。そし
て、切欠き12を加工した試験片材10を疲労試験機の
治具13,13に挾み、P=2000kgの荷重で約2
40万回くシ返し曲げを行ない、切欠き12の端部から
深さ3鰭り の疲労クラッチ14を発生させた。
The surface of this test material 10 has a θ flaw (for example, a width of 0.2 mm).
, a depth of about 3I11++1) or a notch 12, such as a notch, to create a state where stress concentration is likely to occur. Then, the test piece material 10 with the notch 12 processed was placed between the jigs 13, 13 of the fatigue tester, and a load of P=2000 kg was applied to
By repeating bending 400,000 times, a fatigue clutch 14 having a depth of 3 fins was generated from the end of the notch 12.

ノ 次に、疲労クラッチ14を発生させた試験片材10の表
面を3m研削して、切欠き12を除去し、表面に疲労ク
ララ蚤14を露出させて、自然疵と同種の疵15を加工
した試験片16を得る。この場合、第4図に示す如(、
JISA形標準試験片6 (A 1−15150 )を
表面に貼着け、簡単にするため、連続法(例えばハンド
マグナ等)を適用し、標準試験片6に磁粉模様が表われ
る程度の磁場の強さで、疵15の磁粉模様が表われるよ
うに更に研磨して、小さな開口部の疵15を残す。この
疵15はほとんど目視不可能であシ、断面写真からその
大きさを求めたところ、幅0.5μ、深さ0.2+mn
であった。この大きさは破壊力学の理論にもとづく上記
の(1)。
Next, the surface of the test piece material 10 where the fatigue clutch 14 was generated was ground by 3 m to remove the notch 12, expose the fatigue crack fleas 14 on the surface, and process the same type of flaw 15 as the natural flaw. A test piece 16 is obtained. In this case, as shown in Figure 4 (,
A JISA type standard test piece 6 (A 1-15150) is attached to the surface, and for simplicity, a continuous method (e.g., hand magnet) is applied to apply a magnetic field strength to the extent that a magnetic particle pattern appears on the standard test piece 6. Then, polishing is further performed so that the magnetic particle pattern of the flaw 15 appears, leaving a small opening flaw 15. This flaw 15 is almost invisible, and its size was determined from a cross-sectional photograph: width 0.5μ, depth 0.2+mm.
Met. This size is based on the theory of fracture mechanics (1) above.

(2)及び(3)式と良く一致している。即ち(2)式
に試験片材10の上述の大きさ及び荷重Pの条件を入れ
、a = 3 runとおくと = 7.2 X 10″″3(m+n)となり、クラッ
クの残存長さ0.22mmを(3)式に代入すると δ’= 0.22/3.OX 7.2 = 0.53 
(μ)となる。
It is in good agreement with equations (2) and (3). That is, if we insert the above-mentioned size and load P conditions of the test piece material 10 into equation (2) and set a = 3 runs, then = 7.2 x 10''''3 (m + n), and the remaining length of the crack is 0. Substituting .22mm into equation (3) gives δ' = 0.22/3. OX7.2 = 0.53
(μ).

上記と同様にして、標準試験片の各種(A1−7750
 、 Al−15150、A2−7150 、 A2−
15150等)に対応した疵15を加工した試験片16
を作成する。なお必要により、標準試験片6に磁粉模様
が表われる磁場の強さの2倍、3倍あるいは1/2 、
1/3の磁場の強さで疵15に磁粉模様が表われる標準
片16を作ることができる。
In the same manner as above, various standard test pieces (A1-7750
, Al-15150, A2-7150, A2-
15150 etc.) Test piece 16 processed with flaws 15
Create. If necessary, the strength of the magnetic field at which the magnetic particle pattern appears on the standard test piece 6 is twice, three times, or half,
A standard piece 16 in which a magnetic particle pattern appears on the flaw 15 can be made with 1/3 the strength of the magnetic field.

そして、第5図に示す如く、試験品と同じ試験体本体1
1に試験片16を嵌込む穴17をあけ、上記により作成
した試験片16を第6図に示す如く溶接し、溶接ビード
部を研削して、標準試験体を得る。この場合疵15は試
験品の検出仕様疵の方向に合せることは言うまでもない
As shown in FIG.
A hole 17 into which the test piece 16 is inserted is made in the test piece 1, and the test piece 16 prepared above is welded as shown in FIG. 6, and the weld bead is ground to obtain a standard test piece. In this case, it goes without saying that the flaw 15 should be aligned with the direction of the flaw in the detection specification of the test article.

こうして得られた標準試験体は、試験品と同じ材質の標
準片16を、本体11に溶接したものであるので、従来
法のような材質の問題もなく、また標準試験片6の接着
隙間の問題もなく、残留法による検出力の確性試験を理
論的にも正しく行なうことができる。また、試験片16
は小形であるので加工容易であり、また検出力を確認し
だい試験品の位置に組込むことができる。
The standard specimen thus obtained is one in which the standard specimen 16 made of the same material as the test specimen is welded to the main body 11, so there is no problem with the material as in the conventional method, and the adhesive gap between the standard specimen 6 is There is no problem, and the accuracy test of the detection power by the residual method can be performed theoretically correctly. In addition, test piece 16
Since it is small, it is easy to process, and it can be installed at the position of the test item as soon as the detection power is confirmed.

更に必要な検出感度を有する試験片16を作成すること
ができる。なおこの標準試験体は連続法の場合にも適用
することができる。
Furthermore, a test piece 16 having the necessary detection sensitivity can be created. Note that this standard test specimen can also be applied to the continuous method.

次に、他の実施例を第7図〜第9図により説明する。こ
れは試験片16に設ける疵のみが、前記実施例と異なる
もので、試験片16の材質及び試験体本体1ノへの溶接
等は前記実施例の場合と同じである。即ち試験片材に、
第7図に示す如く、表面からの距離りに表面と平行に直
径dの疵15としてのドリルホール18を長さlで加工
して、試験片16としたものである。
Next, another embodiment will be described with reference to FIGS. 7 to 9. This differs from the previous example only in the flaws provided on the test piece 16, and the material of the test piece 16 and the welding to the test piece main body 1 are the same as in the previous example. That is, for the test piece material,
As shown in FIG. 7, a test piece 16 was prepared by drilling a drill hole 18 as a flaw 15 with a diameter d and a length l parallel to the surface at a distance from the surface.

この場合ドリルホール18の直径d及び表面からの距離
りを変えることにより、さまざまな寸法の表面疵、内面
疵の代用疵とすることができる。例えば直径d1.om
、長さl 20 mm 、表面から中心までの距離h1
.omのドリルホール18をあけて疵15を加工した試
験片16は、連続法において、JIS A 1−151
50の標準試験片に磁粉模様が瑛われる磁場とほぼ同じ
強さの磁場で磁粉模様が現われた。なお、この実施例の
ようにドリルホール18により疵15を作るのは、前記
実施例のように試験片材10に疲労クラック14を発生
させてから研削して疵15を加工する場合に比べ、加工
が比常に容易である。
In this case, by changing the diameter d of the drill hole 18 and the distance from the surface, it is possible to substitute flaws for surface flaws and internal flaws of various sizes. For example, the diameter d1. om
, length l 20 mm, distance h1 from surface to center
.. The test piece 16 in which the drill hole 18 of OM was drilled and the flaw 15 was processed passed JIS A 1-151 in the continuous method.
The magnetic particle pattern appeared in a magnetic field of approximately the same strength as the magnetic field that produced the magnetic particle pattern on the 50 standard test pieces. Note that creating the flaws 15 using the drill holes 18 as in this embodiment is compared to forming the flaws 15 by generating fatigue cracks 14 in the test piece material 10 and then grinding them as in the previous embodiments. Processing is relatively easy.

次に、上述の2種の試験片16と、JIS A形標準試
験片の中、最も一般的に使用されているA I −15
150との検出力を同一磁化力に対する磁粉模様の表わ
れ方で比較した結果を次表に示す。
Next, we will introduce the above two types of test pieces 16 and A I-15, which is the most commonly used of the JIS A type standard test pieces.
The following table shows the results of comparing the detection power with No. 150 in terms of how the magnetic particle pattern appears for the same magnetizing force.

注 ○磁粉模様が明瞭 △  〃  が不明瞭 ×  〃  が不明 この結果から、一般的に使用されているJISA 1−
15150標準試験片で磁粉模様が表われた場合でも、
極めて微細な欠陥の例としての幅0.5μ、深さ0.2
211III+程度の表面疵及び深さが0.5順以上の
ところにある欠陥の検出ができない場合があシ、欠陥の
検出には限界があることが明らかになった。従って、こ
の発明の標準試験体を使用することにより、よりシビア
な検出力の確性を行なうことができる。
Note ○ Magnetic particle pattern is clear △ 〃 is unclear × 〃 is unknown From this result, the commonly used JISA 1-
Even if a magnetic particle pattern appears on the 15150 standard test piece,
Width 0.5μ and depth 0.2 as an example of extremely fine defects
It has become clear that there is a limit to the detection of defects, as it may not be possible to detect surface flaws of the order of 211III+ and defects located at a depth of 0.5 or more. Therefore, by using the standard test specimen of the present invention, more severe detection power can be determined.

この発明の標準試験体は上記のようなもので、探傷すべ
き自然疵と同種の疵を加工した試験品と同じ材質の試験
片を、試験体本体に溶接した構成により、理論的にも矛
盾のない磁粉探傷の検出力の確性試験を確実に行なうこ
とができる。
The standard test specimen of this invention is as described above, and it has a structure in which a test piece made of the same material as the test product processed with the same type of natural flaw as the natural flaw to be detected is welded to the test specimen body, which is theoretically contradictory. It is possible to reliably test the detection power of magnetic particle flaw detection without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は、従来の検出力確性試験の
手順を示す説明図、第2図(、)は疲労クラックの発生
メカニズムの説明図、第2図(b)は第2図(、)のク
ラック部の拡大説明図、第3図乃至第6図はこの発明の
標準試験体の一実施例を示すもので、第3図は試験片材
に疲労クラックを発生させる状況を示す斜視図、第4図
は試験片の疲労クラックの調整状況を示す斜視図、第5
図は試験体本体の斜視図、第6図は標準試験体の縦断面
、第7図乃至第9図は他の実施例を示すもので第7図は
試験片の斜視図、第8図及び第9図は上記実施例の第5
図及び第6図に対応する図である。 ノド・・試験体本体、15・・・疵、16・・・試験片
出願人代理人  弁理士 鈴 江 武 彦第4図 第5図 第6図 1 第7図 1只 第8図 第9図
Figures 1 (a) and (b) are explanatory diagrams showing the procedure of a conventional detection power accuracy test, Figure 2 (,) is an explanatory diagram of the fatigue crack generation mechanism, and Figure 2 (b) is an explanatory diagram showing the procedure of a conventional detection power accuracy test. The enlarged explanatory views of the cracked portion in Figures (,) and Figures 3 to 6 show an example of the standard test specimen of this invention, and Figure 3 shows the situation in which fatigue cracks occur in the test piece material. Fig. 4 is a perspective view showing the adjustment status of fatigue cracks in the test piece;
The figure is a perspective view of the test specimen body, FIG. 6 is a longitudinal section of a standard test specimen, and FIGS. 7 to 9 show other embodiments. FIG. 9 shows the fifth example of the above embodiment.
FIG. 6 is a diagram corresponding to FIG. Throat...Test body, 15...Flaws, 16...Test piece applicant's representative Patent attorney Takehiko Suzue Figure 4 Figure 5 Figure 6 Figure 1 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 探傷すべき自然疵と同種の疵を加工した試験品と同じ材
質の試験片を、試験体本体に溶接してなる磁粉探傷用標
準試験体。
A standard test piece for magnetic particle flaw detection, made by welding a test piece made of the same material as the test piece with the same type of natural flaw to be detected to the test piece body.
JP881382A 1982-01-25 1982-01-25 Reference sample body for magnetic powder flaw detection Pending JPS58127159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP881382A JPS58127159A (en) 1982-01-25 1982-01-25 Reference sample body for magnetic powder flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP881382A JPS58127159A (en) 1982-01-25 1982-01-25 Reference sample body for magnetic powder flaw detection

Publications (1)

Publication Number Publication Date
JPS58127159A true JPS58127159A (en) 1983-07-28

Family

ID=11703254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP881382A Pending JPS58127159A (en) 1982-01-25 1982-01-25 Reference sample body for magnetic powder flaw detection

Country Status (1)

Country Link
JP (1) JPS58127159A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231004A2 (en) * 1986-01-28 1987-08-05 Tiede Gmbh + Co Rissprüfanlagen Method for the self-monitoring of an opto-electronic crack detection device, particularly by the magnetic-powder method
CN103293218A (en) * 2013-06-18 2013-09-11 南车戚墅堰机车车辆工艺研究所有限公司 Method for calibrating sensitivity of testing system for magnetic particles on inner wall of annular member of deep hole
JP2014092527A (en) * 2012-11-07 2014-05-19 Ihi Inspection & Instrumentation Co Ltd Test piece for eddy current flaw detection, eddy current flaw detection method using the same, and method of manufacturing the same
CN105353028A (en) * 2015-10-22 2016-02-24 合肥工业大学 Manufacturing method of test block having surface artificial crack defect used for magnetic particle testing
KR20210020596A (en) * 2019-08-16 2021-02-24 한국항공우주산업 주식회사 Defect specimen production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231004A2 (en) * 1986-01-28 1987-08-05 Tiede Gmbh + Co Rissprüfanlagen Method for the self-monitoring of an opto-electronic crack detection device, particularly by the magnetic-powder method
JP2014092527A (en) * 2012-11-07 2014-05-19 Ihi Inspection & Instrumentation Co Ltd Test piece for eddy current flaw detection, eddy current flaw detection method using the same, and method of manufacturing the same
CN103293218A (en) * 2013-06-18 2013-09-11 南车戚墅堰机车车辆工艺研究所有限公司 Method for calibrating sensitivity of testing system for magnetic particles on inner wall of annular member of deep hole
CN105353028A (en) * 2015-10-22 2016-02-24 合肥工业大学 Manufacturing method of test block having surface artificial crack defect used for magnetic particle testing
KR20210020596A (en) * 2019-08-16 2021-02-24 한국항공우주산업 주식회사 Defect specimen production method

Similar Documents

Publication Publication Date Title
US4528856A (en) Eddy current stress-strain gauge
US4629984A (en) Ferromagnetic eddy current probe apparatus
Jagadish et al. Influence of uniaxial elastic stress on power spectrum and pulse height distribution of surface Barkhausen noise in pipeline steel
JPS58127159A (en) Reference sample body for magnetic powder flaw detection
EP1408329A3 (en) Method for nondestructively evaluating aged deterioration of ferromagnetic construction materials
Jagadish et al. The effect of stress and magnetic field orientation on surface Barkhausen noise in pipeline steel
WO2007141428A1 (en) Non-destructive control device and method for determining the presence of magnetic material in materials which are non-magnetic or exhibit magnetic anisotropy, either crystalline, or of the metallurgical structure, form or stress
Dhar et al. Effects of magnetic flux density and tensile stress on the magnetic Barkhausen noise in pipeline steel
US3345564A (en) Method for non-destructive detection and observation of defects of ferromagnetic steels utilizing an aqueous ferromagnetic solution
Crouch et al. In-line stress measurement by the continuous Barkhausen method
Zadvorkin et al. Detecting plastic strain localization zones in steel products by the results of magnetic measurements
RU2273848C1 (en) Universal control sample for fault detection
RU2245541C1 (en) Control sample for magnetic flaw detection
Augustyniak et al. Progress in Post Weld Residual Stress Evaluation Using Barkhausen Effect Meter with a Novel Rotating Magnetic Field Probe
JP2001281227A (en) Setting method for particle-size condition of magnetic particles used for wet fluorescent magnetic-particle flaw detection and fluorescent magnetic particles used for it
RU2189583C2 (en) Pyroelectromagnetic method of nondestructive test
SU1467488A1 (en) Adjustment specimen with simulator of subsurface defect for magnetic flaw detection
MCCLURE A new means of crack detection using Barkhausen effect type measurements[Ph. D. Thesis]
Stuecker et al. Method and apparatus for measuring and precisely locating internal tensile stresses in hardened regions of components by measuring coercive field strength and Barkhausen noise amplitude: US Patent No. 4,881,030 (14 Nov. 1989)
JPS6276453A (en) Carburization measuring probe
MELGUI et al. Dependence of the gradient of residual magnetic field intensity on the dimensions of the inspection piece and on the mode of its magnetization
JPS626153A (en) Carburization measuring probe
JP2006010665A (en) Eddy current flaw detecting method and eddy current flaw detecting probe for realizing deep penetration of eddy current
Hashimoto et al. Research on Development of a Non-destructive Crack Inspection System by Using Magnetic Properties
JPH02186260A (en) Detection of flaw