JPS58126955A - Sintered material having cast iron structure and its manufacture - Google Patents

Sintered material having cast iron structure and its manufacture

Info

Publication number
JPS58126955A
JPS58126955A JP863782A JP863782A JPS58126955A JP S58126955 A JPS58126955 A JP S58126955A JP 863782 A JP863782 A JP 863782A JP 863782 A JP863782 A JP 863782A JP S58126955 A JPS58126955 A JP S58126955A
Authority
JP
Japan
Prior art keywords
powder
cast iron
sintered material
particle size
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP863782A
Other languages
Japanese (ja)
Other versions
JPS6110546B2 (en
Inventor
Yoshio Nishino
西野 良夫
Toru Kono
河野 通
Seiichi Kirigatani
桐ケ谷 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP863782A priority Critical patent/JPS58126955A/en
Publication of JPS58126955A publication Critical patent/JPS58126955A/en
Publication of JPS6110546B2 publication Critical patent/JPS6110546B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively manufacture a sintered material having a cast iron structre by a relatively simple operation by molding a composition prepared by adding specified percentages of Si, C and P to Fe and by sintering the molded body under specified conditions. CONSTITUTION:A blended composition consisting of, by weight, 0.8-3.0% as Si of ferrosilicon powder contg. 15-75% Si and having 1-10mum average particle size, 1-5% graphite powder having <=20mum average particle size and 0.02-0.4% as P of Fe-P alloy powder contg. 0.3-28% P as powdered starting materials is uniformly mixed and molded by a conventional powder molding method. This molded body is sintered at 1,050-1,160 deg.C in a reducing atmosphere to obtain a sintered material having a cast iron structure consisting of free graphite, a ferrite phase and a pearlite phase.

Description

【発明の詳細な説明】 この発明は、粉末冶金法によって得られる鋳鉄組織を有
する焼結材料、及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sintered material having a cast iron structure obtained by a powder metallurgy method, and a method for producing the same.

現在、耐摩耗性、被削性、振動吸収能等にすぐれた特性
を有する普通鋳鉄が、価格も安いということとも相俟っ
て、機械部品として多方面に幅広い用途を有しているが
、鋳鉄のこのすぐれた特性は、主として均一にかつ多量
に分散した遊離黒鉛によるものであることが知られてい
る。例えば、鋳鉄製の摺動材にあっては、遊離黒鉛が摺
動面に固体潤滑材として作用して減摩効果を発揮すると
ともに、遊離黒鉛の残留孔が油溜シとして保油に役立つ
もので1)、また、切削加工時には細かく分布した遊離
黒鉛がチップブレーカ−となって被削性を向上させると
いう役割をも担っているのである。
At present, ordinary cast iron has excellent properties such as wear resistance, machinability, and vibration absorption ability, and is used in a wide variety of fields as a mechanical component due to its low price. It is known that this excellent property of cast iron is mainly due to the uniformly and abundantly dispersed free graphite. For example, in cast iron sliding materials, free graphite acts as a solid lubricant on the sliding surface to reduce friction, and the remaining pores of free graphite serve as oil reservoirs to retain oil. (1) Also, during cutting, the finely distributed free graphite acts as a chip breaker and plays the role of improving machinability.

また、鋳鉄部品の製造は鋳造法に頼らざるを得なかった
ために、粉末冶金法に比して量産性に劣るという本質的
な問題点をも抱えていた。
Furthermore, since the production of cast iron parts had to rely on the casting method, it also had the essential problem of being inferior in mass productivity compared to the powder metallurgy method.

これまでも、鋳鉄の有するすぐれた諸性質を備えるとと
もに、粉末冶金の量産性をも兼ね備えた焼結材料及びそ
の製造法に関する研究は種々試みられてきていたが、次
に示すような理由から成功するに至らなかったのである
。すなわち、(a)  鉄系合金に黒鉛を多量に(鋳鉄
なみに3重量%程度)添加し、焼結すると、セメンタイ
トが析出して基地が硬くなシ、機械的特性が低下し、焼
結温度を下げればセメンタイトの析出は防げるが強度が
得られない。
Until now, various attempts have been made to research sintered materials that have the excellent properties of cast iron and the mass productivity of powder metallurgy, and their manufacturing methods, but none have been successful for the following reasons. It was not possible to do so. That is, (a) when a large amount of graphite is added to an iron-based alloy (approximately 3% by weight, similar to cast iron) and sintered, cementite precipitates, the matrix becomes hard, the mechanical properties deteriorate, and the sintering temperature decreases. If the value is lowered, cementite precipitation can be prevented, but strength cannot be obtained.

(b)  Siのような黒鉛化安定元素を添加してセメ
ンタイトの析出を防ぐ方法が考えられるが、SlをFe
中に拡散固溶させる条件は、約1200℃以上の加熱を
要するなど、通常の鉄系焼結材料の焼結温度に比しては
るかに高い温度が要求されることから製造コストが高く
なるうえ、焼結雰囲気を厳しくコントロールしないと8
1を酸化させてしまう恐れがある。
(b) It is possible to prevent the precipitation of cementite by adding graphitization-stable elements such as Si, but
The conditions for dispersion into solid solution require heating to approximately 1,200°C or higher, which is much higher than the sintering temperature of ordinary iron-based sintered materials, which increases manufacturing costs. 8, unless the sintering atmosphere is strictly controlled.
1 may be oxidized.

そこで本発明者等は、上述のような観点から、通常の鉄
系焼結材料の製造条件の下で、ノ(−ライト相、及びフ
ェライト相からなる基地に遊離黒鉛が分散した鋳鉄組織
を有する材料を粉末冶金法によって得べく研究を行なっ
た結果、鉄系焼結原料中のSl源たるフェロシリコン粉
末の粒度な特定の範囲に調整するとともに、C及びS1
原料の組成範囲を適当に選択することによってその目的
を達成できることを見出し、先に特願昭56−1164
69号(以下先行発明という)として、15〜75%(
以下チは重量%とする)の81を含有し、かつ平 奪均
粒径が1〜10μmのフェロシリコン粉末をSl量で0
.8〜2.5%と、平均粒径20μm以下の黒鉛粉末の
2〜5%と、鉄粉とからなる配合組成を有する原料粉末
を均一に混合し、通常の粉末成形方法で成形した後、還
元性雰囲気中にて所定温度で焼結することからなる、焼
結材料の製造方法を提案した。
Therefore, from the above-mentioned viewpoint, the present inventors have developed a cast iron structure in which free graphite is dispersed in a matrix consisting of a ferrite phase and a ferrite phase under normal production conditions for iron-based sintered materials. As a result of conducting research to obtain the material by powder metallurgy, the particle size of ferrosilicon powder, which is the Sl source in the iron-based sintering raw material, was adjusted to a specific range, and C and S1
He discovered that the purpose could be achieved by appropriately selecting the composition range of the raw materials, and first filed a patent application in 1164-1983.
No. 69 (hereinafter referred to as prior invention), 15 to 75% (
Ferrosilicon powder containing 81 of
.. 8 to 2.5%, 2 to 5% of graphite powder with an average particle size of 20 μm or less, and iron powder are mixed uniformly, and after molding using a normal powder molding method, We proposed a method for producing sintered materials, which consists of sintering at a predetermined temperature in a reducing atmosphere.

しかしながら、昨今のこの種材料に対する要求にはさら
に厳しいものがあシ、本発明者等も、前記先行発明によ
って得られる鋳鉄組織を有する焼結材料よりもよシ強度
及び耐摩耗性にすぐれ、さらに加工性の面から考えて被
剛性も良好な鋳鉄組織の焼結材料、並びにその確実で高
能率的な製造法を見出すべく、さらに研究を重ねたとこ
ろ、先行発明に使用するのとほぼ同じ組成の原料中に、
特定量のPを添加して焼結を行なうと、添加されたP成
分によってもたらされる作用、すなわち基地を強化し焼
結を促進させるという作用によって焼結材料自体の強度
及び耐摩耗性が一段と向上するにもかかわらず、その被
剛性が何ら損なわれることがないとの知見を得るに至っ
たのである。
However, the recent demands for this type of material are even more stringent, and the present inventors have also found that it has superior strength and wear resistance than the sintered material having a cast iron structure obtained by the prior invention, and In order to find a sintered material with a cast iron structure that has good rigidity in terms of workability, and a reliable and highly efficient manufacturing method, we conducted further research and found that the composition was almost the same as that used in the prior invention. In the raw materials of
When sintering is performed with the addition of a specific amount of P, the strength and wear resistance of the sintered material itself further improves due to the action brought about by the added P component, that is, the action of strengthening the base and promoting sintering. Despite this, we have come to the conclusion that the rigidity is not impaired in any way.

したがって、この発明は上記知見にもとづいてなされた
もので、焼結材料を、Si:0.8〜S3.0%。
Therefore, this invention was made based on the above findings, and the sintered material contains Si: 0.8 to 3.0%.

C:1〜5%、  P : 0.02〜0.4%、 F
e及び不可避不純物:残シからなる組成で構成するとと
もに、その組織を、遊離黒鉛、フェライト相、及びパー
ライト相からなる鋳鉄組織とすることによって、強度及
び耐摩耗性に特にすぐれるとともに、被剛性や振動吸収
能等にもすぐれた特性を付与せしめたことに特徴を有す
るものでsb、さらには、15〜75%の81を含有し
、かつ平均粒径が1〜10μmのフェロシリコン粉末:
siiで0.8〜3.0%と、平均粒径20μm以下の
黒鉛粉末:1〜5%と、0.3〜28%のPを含有する
Fe−P合金粉末:P量で0.02〜0.40 %と、
残シが鉄粉とからなる配合組成を有する原料粉末を均一
に混合し、通常の粉末成形方法で成形した後、還元性雰
囲気中で、1050〜1160℃の温度範囲にて焼結す
ることによって、遊離黒鉛、フェライト相、及びパーラ
イトからなる鋳鉄組織を有する焼結材料を製造し得るよ
うにしたことに特徴を有するものである。
C: 1-5%, P: 0.02-0.4%, F
e and unavoidable impurities: By making the structure a cast iron structure consisting of free graphite, a ferrite phase, and a pearlite phase, it has particularly excellent strength and wear resistance, and has excellent resistance to stiffness. Ferrosilicon powder containing 15 to 75% of 81 and having an average particle size of 1 to 10 μm:
Fe-P alloy powder containing 0.8 to 3.0% sii, graphite powder with an average particle size of 20 μm or less: 1 to 5%, and 0.3 to 28% P: 0.02 in P amount ~0.40%,
By uniformly mixing raw material powders having a composition in which the remainder is iron powder, molding using a normal powder molding method, and then sintering in a reducing atmosphere at a temperature range of 1050 to 1160°C. The present invention is characterized in that it is possible to produce a sintered material having a cast iron structure consisting of free graphite, a ferrite phase, and pearlite.

すなわち、上記のような焼結によって鋳鉄組織を有する
材料が得られるのは、鉄系焼結′原料中のSi源たるフ
ェロシリコン粉末の粒度を特定の範囲に調整すると、焼
結原料鉄粉粒子表層に81成分が均一に分布し、該S1
が焼結時に酸化することなくFe中に固溶してFeのα
相を安定化させると共に、Fe粒子間の拡散を早め、し
たがって、焼結が促進されるという事実や、C及びS1
原料の組成範囲を適当に選択することにより、約105
0℃の加熱温度でγ相となったFe粒子がCの固溶限を
増し、そして、C粉末の粒度を特定値以下に規制するこ
とにより、CがFe籾粒中容易に拡散するようになり、
ついでFe中に固溶したこれら周辺の微細なCが、冷却
過程で81の黒鉛化促進作用によって空孔や未固溶の黒
鉛を核として析出し、最終的には、遊離黒鉛のまわりに
81−フェライト相があり、さらにその外側にパーライ
ト相のある、いわゆる鋳鉄組織が得られるという技術的
理由によるものである。
In other words, the reason why a material having a cast iron structure can be obtained by sintering as described above is that when the particle size of ferrosilicon powder, which is the Si source in the iron-based sintering raw material, is adjusted to a specific range, the sintering raw material iron powder particles 81 components are uniformly distributed on the surface layer, and the S1
is dissolved in Fe without oxidizing during sintering, and the α of Fe is
The fact that C and S1 stabilize the phase and accelerate the diffusion between Fe particles, thus promoting sintering.
By appropriately selecting the composition range of the raw materials, approximately 105
Fe particles that have become γ phase at a heating temperature of 0°C increase the solid solubility limit of C, and by regulating the particle size of C powder below a specific value, C can be easily diffused into Fe rice grains. Become,
Then, during the cooling process, the fine C around these dissolved in Fe precipitates with voids and undissolved graphite as nuclei due to the graphitization promoting effect of 81, and finally, 81 forms around the free graphite. - This is due to the technical reason that a so-called cast iron structure with a ferrite phase and a pearlite phase on the outside is obtained.

なお、上記焼結材料の製造に使用する鉄粉としては、粉
末冶金用原料として通常使われているものが好適であシ
、粉末の成形には通常の条件、例えば4〜6ton/c
!を程度の成形圧力が適用され、また焼結の際の還元性
雰囲気としては、例えばアンモニア分解ガスが好適であ
る。さらに、原料中に添加するFe−P合金粉末も、均
一な混合が可能であればどのような粒度のものでも採用
できる。
The iron powder used in the production of the sintered material is preferably one that is normally used as a raw material for powder metallurgy, and the powder is formed under normal conditions, for example 4 to 6 tons/c
! A molding pressure of about 100 ml is applied, and a suitable reducing atmosphere during sintering is, for example, ammonia decomposition gas. Furthermore, the Fe--P alloy powder added to the raw material may have any particle size as long as uniform mixing is possible.

ついで、この発明の焼結材料、並びにその製造方法にお
いて、焼結材料の成分組成範囲、フェロシリコン粉末中
の81含有量、フェロシリコン粉末の配合量、黒鉛粉末
の配合量、Fe−P合金中のP含有量、Fe−P合金粉
末の配合量、フェロシリコン粉末及び黒鉛粉末の平均粒
径、及び焼結温度を上記の通シに限定した理由を説明す
る。
Next, in the sintered material of the present invention and the manufacturing method thereof, the composition range of the sintered material, the 81 content in the ferrosilicon powder, the blending amount of the ferrosilicon powder, the blending amount of the graphite powder, and the blending amount of the Fe-P alloy. The reason why the P content, the blending amount of the Fe-P alloy powder, the average particle diameter of the ferrosilicon powder and the graphite powder, and the sintering temperature were limited to the above-mentioned values will be explained.

■ 焼結材料のSi含有量 Si成分には1、焼結材料の強度を向上させ、被剛性を
改良する作用があるが、その含有量が0.8 %未満で
は前記作用に所望の効果が得られず、一方3.0俤を越
えると逆に強度低下をきたすことから、その含有量を0
.8〜3.0%と限定した。
■Si content of sintered material The Si component has the effect of increasing the strength and stiffness of the sintered material, but if its content is less than 0.8%, the desired effect will not be achieved. On the other hand, if it exceeds 3.0 yen, the strength will decrease, so the content should be reduced to 0.
.. It was limited to 8-3.0%.

■ 焼結材料のC含有量 C成分の含有量が1俤未満では鋳鉄に匹適する摺動特性
を持たせることができず、一方5%を越えて含有させる
と均一な配合が困難となり、また強度低下も著しくなる
ことから、その含有量を1〜5%と限定した。
■C content of sintered material If the content of C component is less than 1 yen, it will not be possible to provide sliding properties comparable to cast iron, while if the content exceeds 5%, it will be difficult to achieve a uniform blend, and Since the strength decreases significantly, the content was limited to 1 to 5%.

■ 焼結材料のP含有量 P成分には、焼結材料の基地を強化し、焼結を促進させ
ることによって強度及び耐摩耗性を向上させる作用があ
るが、その含有量が0.02%未満では前記作用に所望
の効果が得られず、一方0.40チを越えて含有させる
と基地が硬化して被剛性が悪くなることから、その含有
量を0.02〜0.40チと限定した。
■ P content of sintered material The P component has the effect of strengthening the base of the sintered material and promoting sintering, thereby improving strength and wear resistance. If the content is less than 0.40 inch, the desired effect cannot be obtained; on the other hand, if the content exceeds 0.40 inch, the base will harden and the rigidity will deteriorate. Limited.

■ 原料の7エロシリコン粉末中の81含有量焼結金属
中へのSl源としてのフェロシリコン粉末中の81含有
量が15チ未満では、7エロシリコン粉末が軟かくなっ
て粉砕するのが難しく、一方75チを越えるとフェロシ
リコン粉末としての量、スナわち添加81量に規制され
てフェロシリコン粉末の配合総量が少なくなシ、鉄粉表
面への十分なまぶし被覆ができなくなることから、その
含有量を15〜75%と限定した。
■ 81 content in the raw material 7Erosilicon powder If the 81 content in the ferrosilicon powder as a source of Sl in the sintered metal is less than 15%, the 7Erosilicon powder becomes soft and difficult to grind. On the other hand, if the amount exceeds 75 cm, the amount as ferrosilicon powder is regulated to 81%, and the total amount of ferrosilicon powder blended is small, and the iron powder surface cannot be sufficiently coated. Its content was limited to 15-75%.

■ 原料のFe−P合金粉末中のP含有量Pの含有量が
0.3〜28チ程度のFe−P合金が、市場で入手でき
る一般的なものであるうえ、Pの含有量が0.3%未満
では粉末添加量を多くすることが必要となって成分調整
が困難となるのに対して、その含有量が28%を越えた
組成のものは、製造が極端に難しくなることから、その
含有量を03〜28%と限定した。
■ P content in raw material Fe-P alloy powder Fe-P alloys with a P content of about 0.3 to 28 inches are commonly available on the market, and in addition, Fe-P alloys with a P content of about 0. If the content is less than 3%, it will be necessary to increase the amount of powder added, making it difficult to adjust the composition, whereas if the content exceeds 28%, it will be extremely difficult to manufacture. , its content was limited to 03-28%.

■ 原料への、フェロシリコン粉末、黒鉛粉末。■ Ferrosilicon powder and graphite powder as raw materials.

及びFe−P合金粉末の配合量 焼結の際に、配合原料各々間の相対的な目減りがほとん
どないので、前記所定の成分組成の焼結材料が得られる
ように、その配合量を、フェロシリコン粉末:S1量で
0.8〜3.0%、黒鉛粉末:1〜5%、Fe−P合金
粉末:P量で0.02〜0.40%と限定した。
and Fe-P alloy powder blending amount During sintering, there is almost no relative loss between the blended raw materials, so the blending amount is adjusted so that a sintered material with the predetermined component composition can be obtained. Silicon powder: S1 amount was limited to 0.8 to 3.0%, graphite powder: 1 to 5%, Fe-P alloy powder: P amount was limited to 0.02 to 0.40%.

■ フェロシリコン粉末の粒径 配合するフェロシリコン粉末の平均粒径が1μm未満で
は、この粉末原料の酸化が早まって取扱いが困難となシ
、一方その平均粒径が1−0μmを越えると鉄粉粒子へ
の拡散が遅くなってα相の形成が遅れ、機械的特性が低
下するようになることから、その平均粒径な1〜10μ
mと限定した。
■ Particle size of ferrosilicon powder If the average particle size of the ferrosilicon powder to be blended is less than 1 μm, the powder raw material will oxidize too quickly and be difficult to handle.On the other hand, if the average particle size exceeds 1-0 μm, iron powder The average particle size of 1 to 10μ slows down the diffusion into particles, delays the formation of α phase, and reduces mechanical properties.
It was limited to m.

■ 黒鉛粉末の粒径 配合する黒鉛粉末の平均粒径が2oμmを越えると比表
面積が小さくなって鉄粉粒子内への拡散が遅くなること
から、その平均粒径な20μm以下と限定した。好まし
くは、この平均粒径が15μm以下が最適である。
(2) Particle size of graphite powder If the average particle size of the graphite powder to be blended exceeds 20 μm, the specific surface area becomes small and diffusion into the iron powder particles becomes slow, so the average particle size was limited to 20 μm or less. Preferably, this average particle diameter is optimally 15 μm or less.

■ 焼結温度 焼結温度が1050℃未満では、slの多くが未拡散で
残るので得られた焼結材料に十分な強度が期待できず、
一方1160’cを越えると組成によっては液相が出始
めて焼結材料の変形が起きることから、その温度を10
50〜1160℃と限定した。
■ Sintering temperature If the sintering temperature is less than 1050°C, most of the sl remains undiffused, so the resulting sintered material cannot be expected to have sufficient strength.
On the other hand, if the temperature exceeds 1160'C, a liquid phase may begin to appear depending on the composition and deformation of the sintered material may occur.
The temperature was limited to 50-1160°C.

つぎに、この発明を実施例にょシ比較例と対比しながら
説明する。
Next, the present invention will be explained in comparison with Examples and Comparative Examples.

実施例 それぞれ第1表に示される原料粉末を用意し、これら原
料粉末を第1表に示される配合組成に配合し、混合して
から4 ton/iの圧力で圧粉体に成形し、ついでこ
れらの圧粉体をアンモニア分解衣ス雰囲気中、同じく第
1表に示される温度で焼結することによって実質的に配
合組成と同一の成分組成をもち、かつ、いずれもlom
mXlo11X50韮の寸法を有する本発明焼結材料1
〜17及び比較焼結材料1〜5を製造し、さらに、溶製
したFe12の従来の鋳鉄も用意した。
For each example, the raw material powders shown in Table 1 were prepared, these raw material powders were blended into the composition shown in Table 1, mixed, and then molded into a green compact at a pressure of 4 ton/i. By sintering these green compacts in an ammonia decomposition bath atmosphere at the temperatures shown in Table 1, they have substantially the same composition as the blended composition, and both have lo
Sintered material 1 of the invention with dimensions of mXlo11X50
-17 and Comparative Sintered Materials 1-5 were produced, as well as molten Fe12 conventional cast iron.

そしてこれら材料のそれぞれについて、引張強さ、摩擦
摩耗特性、及び被剛性を測定し、その結果も併せて第1
表に示した。
The tensile strength, friction and wear characteristics, and rigidity of each of these materials were measured, and the results were also included in the first
Shown in the table.

なお、摩擦摩耗特性は、ビンオンディスク型試験機にて
、上記の各種焼結材料および溶製の従来鋳鉄より形成し
たピンを使用し、かつ845Cの吟 Crメッキ材で作ったディスクを用い、速度:1m 7
1M、 、荷重: 6 kgf/dの条件で試験シフ、
−試験iの比摩耗量を測定することによって評価し、被
剛性能は、5.5龍厚の試料を直径3.2朋φのキリで
貫通するに要する時間で示したものであシ、キリの材質
二高速度鋼9回転数:、400rpm、押付カニ5kl
i!fという条件下で測定したものである。
The friction and wear characteristics were measured using a bottle-on-disk type tester using pins made from the various sintered materials and conventional cast iron mentioned above, and disks made from 845C Cr-plated material. Speed: 1m 7
1M, load: 6 kgf/d test shift,
- Evaluation was made by measuring the specific wear amount of test i, and the rigidity resistance was expressed as the time required to penetrate a sample with a diameter of 3.2 mm φ through a sample with a thickness of 5.5 mm. Awl material: 2 High-speed steel 9 Rotation speed: 400 rpm, pressing crab 5kl
i! It was measured under the condition of f.

第1表に示される結果から、本発明焼結材料1〜17は
、Pを含有しない比較焼結材料1〜5に比して、被剛性
がほとんど同等の状態で、強度及び耐摩耗性が一段と改
善されていることが明らかであり、また本発明焼結材料
1〜17のもつ特性は、溶製の従来鋳鉄に比して、被剛
性はほぼ同等であるが、強度及び耐摩耗性については著
しくすぐれているものである。
From the results shown in Table 1, it can be seen that the sintered materials 1 to 17 of the present invention have almost the same stiffness and have higher strength and wear resistance than the comparative sintered materials 1 to 5 that do not contain P. It is clear that the sintered materials 1 to 17 of the present invention have substantially the same rigidity as conventional molten cast iron, but have poor strength and wear resistance. is significantly superior.

上述のように、この発明によれば、比較的簡単な操作で
、鋳鉄組織を有する焼結材料をコスト安く製造すること
ができるので、鋳鉄と同等の緒特性を有する機械部品は
勿論のこと、小物で複雑な形状の機械部品をも能率良く
量産できるなど工業上有用な効果がもたらされるのであ
る。
As described above, according to the present invention, a sintered material having a cast iron structure can be manufactured at a low cost with relatively simple operations, so it is possible to manufacture not only mechanical parts having mechanical properties equivalent to those of cast iron, but also machine parts having the same properties as cast iron. This brings about industrially useful effects, such as the ability to efficiently mass-produce small mechanical parts with complex shapes.

319−319-

Claims (2)

【特許請求の範囲】[Claims] (1)  Si : 0.8〜30チ、C:1〜5%、 P:0.02〜0.40%、 Fe及び不可避不純物:残シ、 (以上重量%)からなる組成を有するとともに、遊離黒
鉛、フェライト相、及びパーライト相からなる鋳鉄組織
を有することを特徴とする焼結材料。
(1) Si: 0.8 to 30%, C: 1 to 5%, P: 0.02 to 0.40%, Fe and unavoidable impurities: balance (weight%), and A sintered material characterized by having a cast iron structure consisting of free graphite, a ferrite phase, and a pearlite phase.
(2)15〜75%の81を含有し、かつ平均粒径が1
〜10μmのフェロシリコン粉末:81量で0、8〜3
.0チ、 平均粒径20μm以下の黒鉛粉末:1〜5%、03〜2
8チのPを含有するFe−P合金粉末:P量でo、 0
2〜0.4%、 鉄粉:残シ、 (以上重量%)からなる配合組成を有する原料粉末を均
一に混合し、通常の粉末成形方法で成形した後、還元性
雰囲気中で1050〜1160℃の温度範囲にて焼結す
ることを特徴とする、遊離黒鉛、フェライト相、及びパ
ーライト相からなる鋳鉄組織を有する焼結材料の製造法
(2) Contains 15-75% of 81 and has an average particle size of 1
~10 μm ferrosilicon powder: 0,8-3 with 81 amount
.. 0chi, graphite powder with average particle size of 20μm or less: 1-5%, 03-2
Fe-P alloy powder containing 8 P: O in P amount, 0
After uniformly mixing raw material powders having a compounding composition of 2 to 0.4%, iron powder: balance (more than 1% by weight) and molding using a normal powder molding method, the mixture is heated to 1050 to 1160% in a reducing atmosphere. A method for producing a sintered material having a cast iron structure consisting of free graphite, a ferrite phase, and a pearlite phase, the method comprising sintering at a temperature range of °C.
JP863782A 1982-01-22 1982-01-22 Sintered material having cast iron structure and its manufacture Granted JPS58126955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP863782A JPS58126955A (en) 1982-01-22 1982-01-22 Sintered material having cast iron structure and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP863782A JPS58126955A (en) 1982-01-22 1982-01-22 Sintered material having cast iron structure and its manufacture

Publications (2)

Publication Number Publication Date
JPS58126955A true JPS58126955A (en) 1983-07-28
JPS6110546B2 JPS6110546B2 (en) 1986-03-29

Family

ID=11698458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP863782A Granted JPS58126955A (en) 1982-01-22 1982-01-22 Sintered material having cast iron structure and its manufacture

Country Status (1)

Country Link
JP (1) JPS58126955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom

Also Published As

Publication number Publication date
JPS6110546B2 (en) 1986-03-29

Similar Documents

Publication Publication Date Title
TWI325896B (en) Iron-based powder combination
JP2001081501A (en) Powder mixture for powder metallurgy, ferrous sintered compact, and manufacturing method therefor
JPH03120336A (en) Manufacture of synchronizer hub
JPH11501700A (en) Stainless steel powder and products manufactured by powder metallurgy from the powder
US3782930A (en) Graphite-containing ferrous-titanium carbide composition
JPH0610103A (en) Vane material excellent in wear resistance and sliding property
JP6515955B2 (en) Method of manufacturing mixed powder for powder metallurgy and iron-based sintered body
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
JPS5819403A (en) Manufacture of sintered material having cast iron structure
JPS58126955A (en) Sintered material having cast iron structure and its manufacture
JP2005330573A (en) Alloy steel powder for powder metallurgy
US5551995A (en) Spheroidal graphite cast iron for crank shafts and a crank shaft manufactured from such cast iron
JP4121383B2 (en) Iron-base metal bond excellent in dimensional accuracy, strength and sliding characteristics and method for manufacturing the same
JPS58126959A (en) Sintered material having cast iron structure and its manufacture
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
US4130422A (en) Copper-base alloy for liquid phase sintering of ferrous powders
JPS58126958A (en) Sintered material having cast iron structure and its manufacture
CN111041334A (en) Rare earth silicon-nitrogen-titanium alloy and preparation method and application thereof
JPS58144450A (en) Preparation of high strength and high toughness sintered material having cast iron structure
JP3658465B2 (en) Iron-based sintered sliding member and manufacturing method thereof
JP3336949B2 (en) Synchronizer ring made of iron-based sintered alloy
JPH09310159A (en) High strength sintered steel and its production
JP3392228B2 (en) Alloy steel powder for powder metallurgy
JPS5819722B2 (en) koumitsudoshiyouketsukou no seizouhouhou
JPS63286552A (en) High-phosphorus cast-iron brake shoe for vehicle