JPS58144450A - Preparation of high strength and high toughness sintered material having cast iron structure - Google Patents

Preparation of high strength and high toughness sintered material having cast iron structure

Info

Publication number
JPS58144450A
JPS58144450A JP2773482A JP2773482A JPS58144450A JP S58144450 A JPS58144450 A JP S58144450A JP 2773482 A JP2773482 A JP 2773482A JP 2773482 A JP2773482 A JP 2773482A JP S58144450 A JPS58144450 A JP S58144450A
Authority
JP
Japan
Prior art keywords
powder
cast iron
particle size
average particle
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2773482A
Other languages
Japanese (ja)
Other versions
JPS6237709B2 (en
Inventor
Yoshio Nishino
西野 良夫
Seiichi Kirigatani
桐ケ谷 清一
Toru Kono
河野 通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP2773482A priority Critical patent/JPS58144450A/en
Publication of JPS58144450A publication Critical patent/JPS58144450A/en
Publication of JPS6237709B2 publication Critical patent/JPS6237709B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To enable the preparation of a high strength and high toughness sintered material having a cast iron structure , by a powder metallurgical method wherein a specific amount of an Fe-Si powder and graphite powder are uniformly mixed in an iron powder and a resulting mixture is molded into a pressed powder body to be sintered in a reductive atmosphere. CONSTITUTION:To an iron powder usually used as the stock material for powder metallurgy, an Fe-Si powder with Si content of 15-75% and an average particle size of 1-10mum is added in an amount of 0.8-2.5% on the basis of Si content and, at the same time, a graphite powder with an average particle size of 20mum or less is added in an amount of 1-2% to carry out sufficient mixing. The resulting mixed powder is pressurized and molded in a mold under pressure of 4-6ton/cm<2> and the molded body is heated and sintered at 1,050-1,180 deg.C in a reductive atmosphere comprising, for example, an NH3 decomposition gas. By this method, a high strength and high toughness sintered material having a structure consisting of free graphite, a ferrite phase and a perlite phase, excellent in anti-wear property, cutting property and vibration absorbability and having the same characteristics as usual cast iron is obtained.

Description

【発明の詳細な説明】 この発明は、粉末冶金法によって、鋳鉄組織を有する高
強度高靭性焼結材料を製造する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-strength, high-toughness sintered material having a cast iron structure by a powder metallurgy method.

現在、耐摩耗性、被削性、振動吸収能等にすぐれた特性
を有する普通鋳鉄が、価格も安いということとも相まっ
て、機械部品として多方面に幅広い用途を有しているが
、鋳鉄のこのすぐれた特性は、主としてフェライト相お
よびパーライト相の素地中に均一に分散する遊離黒鉛に
よるものであることが知られている。例えば、鋳鉄製の
摺動材にあっては、遊離黒鉛が摺動面に固体潤滑材とし
て作用して°減摩効果を発揮するとともに、遊離黒鉛の
残留孔が油溜pとして保油に役立つものであり、また切
削加工時には、細かく分布した遊離黒鉛がチップブレー
カ−となって被剛性を向上させるという役割を担うもの
である。
Currently, ordinary cast iron has excellent properties such as wear resistance, machinability, and vibration absorption ability, and is also cheap and has a wide range of uses as machine parts. It is known that the excellent properties are mainly due to free graphite uniformly dispersed in the matrix of ferrite and pearlite phases. For example, in the case of sliding materials made of cast iron, free graphite acts as a solid lubricant on the sliding surface to reduce friction, and the remaining pores of free graphite serve as oil reservoirs for oil retention. Also, during cutting, the finely distributed free graphite acts as a chip breaker and plays the role of improving rigidity.

しかしながら、機械部品用材料として、この上うにすぐ
れた性質をもつ鋳鉄ではあるが、一方では、鋳物容量が
小さい場合は鋳込後の冷却速度が速いために白銑化し、
小物部品については鋳鉄本来の特性をもったものが得ら
れないという問題があった。
However, although cast iron has excellent properties as a material for machine parts, on the other hand, if the casting capacity is small, the cooling rate after casting is fast, so it becomes white.
There was a problem in that small parts could not have the characteristics inherent to cast iron.

また、鋳鉄部品の製造は鋳造法に頼らざるを得なかった
ために、粉末冶金法と比して量産性に劣るという本質的
な問題点をも抱えていた。
Furthermore, since the production of cast iron parts had to rely on the casting method, it also had the essential problem of being inferior in mass productivity compared to the powder metallurgy method.

これまでも、鋳鉄の有するすぐれた諸性質を備えるとと
もに、粉末冶金の量産性を兼ね備えた焼結材料およびそ
の製造方法に関する研究は種々試みられてきていたが、
次に示すよう々理由から成功するに至らなかったのであ
る。すなわち、(a)  鉄系焼結材料の製造に際して
、原料粉末として多量の黒鉛粉末を配合すると、焼結時
に素地にセメンタイトが析出して、これを硬化し、機械
的特性が低下するようにな9、一方焼結温度を下げれば
セメンタイトの析出は防止できるが、強度が得られない
こと。
Up until now, various attempts have been made to research sintered materials that have the excellent properties of cast iron and the mass productivity of powder metallurgy, and their manufacturing methods.
It was not successful for the following reasons. That is, (a) when producing iron-based sintered materials, if a large amount of graphite powder is blended as a raw material powder, cementite will precipitate on the base material during sintering, harden it, and deteriorate mechanical properties. 9. On the other hand, if the sintering temperature is lowered, cementite precipitation can be prevented, but strength cannot be obtained.

(b)  Siのような黒鉛化安定元素を添加して七メ
ンタイトの析出を防止する方法が考えられるが、一般的
にはSlをFe中に拡散固溶させるには約1.200℃
以上の高温加熱を必要とし、この加熱温度は通常の鉄系
焼結材料の焼結温度に比して著しく高い温度であシ、し
たがってこの加熱温度で焼結を行なった場合には製造コ
ストが高くなるばがシでなり、Slの酸化を防止するた
めに焼結雰囲気を厳しく制御する必要があること。
(b) A method to prevent the precipitation of heptamentite by adding a graphitization-stable element such as Si is considered, but generally the temperature is about 1.200°C to diffuse and form a solid solution of Sl in Fe.
This heating temperature is significantly higher than the sintering temperature of ordinary iron-based sintered materials, and therefore, manufacturing costs will increase if sintering is performed at this heating temperature. The sintering atmosphere must be strictly controlled to prevent oxidation of Sl.

そこで、本発明者等は、上述のよう々鋳鉄製造に際して
の問題点をふまえた上で、通常の鉄系焼結材料の製造条
件の下で、パーライト相およびフェライト相からなる素
地に遊離黒鉛が均一に分布した鋳鉄組織を有する焼結材
料を得べく研究を行々つた結果、 (1)鉄系焼結材料の製造に際して、原料粉末としてF
e−Si合金粉末を使用し、かつこのSi源たるFe−
Si合金粉末の粒度を特定範囲に調整すると、同じく原
料粉末として使用する鉄粉の表面に81成分が均一に分
布するようになり、この結果焼結時に81成分が酸化さ
れることな(Fe中に固溶してFeのα相を安定化させ
るとともに、Fe粒子間の拡散を早めるようになるので
、焼結が促進し、機械的性質が向上すること。
Therefore, the present inventors took into account the problems in producing cast iron as described above, and under the normal production conditions of iron-based sintered materials, free graphite was formed in a matrix consisting of a pearlite phase and a ferrite phase. As a result of conducting research to obtain a sintered material with a uniformly distributed cast iron structure, we found that (1) F as a raw material powder when manufacturing iron-based sintered materials;
e-Si alloy powder is used, and the Si source is Fe-
When the particle size of the Si alloy powder is adjusted to a specific range, the 81 component is evenly distributed on the surface of the iron powder that is also used as the raw material powder, and as a result, the 81 component is not oxidized during sintering (Fe In addition to stabilizing the alpha phase of Fe by forming a solid solution in it, it also accelerates the diffusion between Fe particles, promoting sintering and improving mechanical properties.

(2)原料粉末中のCおよびS1含有量を適当に選択し
、かつ黒鉛粉末の粒径な特定値以下にすると、CがFe
粒子中に容易に拡散固溶するようになり、しかもFe中
に固溶したこれら周辺のCは冷却過程で81の黒鉛化促
進作用によって空孔や未固溶の黒鉛を核として析出し、
最終的には、遊離黒鉛のまわシに81−フェライト相が
あり、さらにその外側にパーライト相がある、いわゆる
鋳鉄組織となり、かつこの鋳鉄組織は相対的に遊離黒鉛
の量が少ないので高強度および高靭性をもつこと。
(2) If the C and S1 contents in the raw material powder are appropriately selected and the particle size of graphite powder is below a certain value, C becomes Fe.
The C around these particles becomes easily diffused and dissolved in the Fe particles, and in the cooling process, due to the graphitization promoting effect of 81, the carbon precipitates out of the vacancies and undissolved graphite as nuclei.
The final result is a so-called cast iron structure in which there is an 81-ferrite phase around the free graphite and a pearlite phase on the outside, and this cast iron structure has a relatively small amount of free graphite, so it has high strength and Must have high toughness.

以上(1)および(2)に示される知見を得たのである
The findings shown in (1) and (2) above were obtained.

この発明は、上記知見にもとづいてなされたものであっ
て、15〜75チの81を含有し、かつ平均粒径が1〜
lOμmのFe−Si合金粉末:S1量で08〜2.5
%、平均粒径が20μm以下の黒鉛粉末:1〜2%未満
、鉄粉:残シからなる配合組成(以上重量%)を有する
原料粉末を、均一に混合5− し、通常の粉末成形条件にて圧粉体に成形した後、との
圧粉体を還元性雰囲気中、1050〜]180℃の温度
範囲内の所定温度で焼結することによって、遊離黒鉛、
フェライト相、およびパーライト相からなる鋳鉄組織を
有する高強度高靭性焼結材料を製造する方法に特徴を有
するものである。
This invention was made based on the above findings, and contains 81 of 15 to 75 inches and has an average particle size of 1 to 75.
1Oμm Fe-Si alloy powder: 08 to 2.5 in S1 amount
%, graphite powder with an average particle size of 20 μm or less: less than 1 to 2%, iron powder: remainder. After forming the green compact into a compact at
The present invention is characterized by a method for manufacturing a high-strength, high-toughness sintered material having a cast iron structure consisting of a ferrite phase and a pearlite phase.

々お、この発明の焼結材料の製造に際して、原料粉末と
しての鉄粉は、粉末冶金用原料として通常使用されてい
るものでよく、また圧粉体の成形圧力も通常の4〜6 
ton/cn程度でよく、さらに還元性雰囲気としては
、例えばアンモニア分解ガスの適用が好適である。
Furthermore, in producing the sintered material of the present invention, the iron powder used as the raw material powder may be one that is normally used as a raw material for powder metallurgy, and the compacting pressure of the green compact is also within the usual range of 4 to 6.
It may be about ton/cn, and as the reducing atmosphere, for example, ammonia decomposition gas is suitable.

つぎに、この発明の焼結材料の製造法において、製造条
件を上記の通りに限定した理由を説明する。
Next, the reason why the manufacturing conditions are limited as described above in the method for manufacturing a sintered material of the present invention will be explained.

(a)  Fe−Si合金粉末中の81含有量Si含有
量が15%未満では、Fe−Si合金粉末が軟かすぎて
粉砕が困難になり、一方75チを越えたS1含有量にす
ると、相対的にFe−Si合金粉末の配合総量が少なく
なりすぎ、鉄粉表面への均一なまぶし被覆が困難になる
ことから、そのSi含有量 6− を15〜75%と定めた。
(a) 81 content in Fe-Si alloy powder When the Si content is less than 15%, the Fe-Si alloy powder becomes too soft and difficult to grind, while when the S1 content exceeds 75%, Since the total amount of Fe-Si alloy powder blended is relatively too small and it becomes difficult to uniformly coat the surface of the iron powder, the Si content 6- was set at 15 to 75%.

(b)  Fe−Si合金粉末の配合量Fe−Si合金
粉末は、焼結材料中へ81を含有させて強度の向上と被
剛性の改良をはかるために配合されるが、その配合量が
Sl量で08%未満では所望の強度および被剛性を確保
することができず、一方同じ(Si量で25%を越えて
配合すると、焼結材料に強度低下が現われるようになる
ことから、その配合量をSl量で08〜25チと定めた
(b) Blending amount of Fe-Si alloy powder Fe-Si alloy powder is blended in order to improve the strength and stiffness by incorporating 81 into the sintered material. If the Si content is less than 0.8%, the desired strength and stiffness cannot be achieved, while if the Si content exceeds 25%, the strength will decrease in the sintered material. The amount was determined to be 08 to 25 inches in terms of Sl amount.

(C)  黒鉛粉末の配合量 その配合量が1%未満では、焼結材料素地中に所定量の
遊離黒鉛が存在した鋳鉄組織を得ることができず、この
結果被剛性が低下したものとなシ、一方2%以上配合す
ると、強度および靭性に劣化傾向が現われるようになる
ことから、その配合量を1〜2チ未満と限定した。
(C) Amount of graphite powder blended If the blended amount is less than 1%, it will not be possible to obtain a cast iron structure in which a predetermined amount of free graphite exists in the sintered material matrix, and as a result, the stiffness will be reduced. On the other hand, if more than 2% is added, the strength and toughness tend to deteriorate, so the amount added is limited to less than 1 to 2.

(d)  Fe−Si合金粉末の平均粒径その平均粒径
が1μm未満では、酸化し易くなって取扱いが困難とな
シ、一方その平均粒径が10μmを越えると鉄粉への拡
散が遅くなってα相の形成が遅れ、機械的特性が低下す
るようになることから、その平均粒径な1〜10μmと
定めた。
(d) Average particle size of Fe-Si alloy powder If the average particle size is less than 1 μm, it will be easily oxidized and difficult to handle. On the other hand, if the average particle size exceeds 10 μm, diffusion into iron powder will be slow. As a result, the formation of the α phase is delayed and the mechanical properties are deteriorated, so the average particle size is set at 1 to 10 μm.

(e)  黒鉛粉末の平均粒径 その平均粒径が20μmを越えると比表面積が小さくな
って鉄粉への拡散が遅くなることから、その平均粒径な
20μm以下と定めた。なお、好ましくは15μm以下
の平均粒径とするのがよい。
(e) Average particle size of graphite powder If the average particle size exceeds 20 μm, the specific surface area becomes small and diffusion into the iron powder becomes slow, so the average particle size was determined to be 20 μm or less. Note that the average particle size is preferably 15 μm or less.

(f)  焼結温度 焼結温度が1050℃未満では、得られた焼結材料に十
分な強度が期待できず、一方1180℃を越えた焼結温
度にすると、液相が出始めて焼結材料に変形が起きるよ
うになることから、その温度を1050〜1180℃と
定めた。
(f) Sintering temperature If the sintering temperature is less than 1050°C, the resulting sintered material cannot be expected to have sufficient strength. On the other hand, if the sintering temperature exceeds 1180°C, a liquid phase will begin to appear and the sintered material will deteriorate. The temperature was set at 1050 to 1180°C since deformation occurs.

つぎに、この発明の方法を実施例によシ比較例と対比し
ながら説明する。
Next, the method of the present invention will be explained by comparing examples and comparative examples.

実施例 原料粉末として、それぞれ平均粒径:2μm。Example As raw material powder, average particle size: 2 μm.

同10μm、同18μm、および同30μmを有する黒
鉛粉末、それぞれ平均粒径:1.2μm、同22μm、
同9.8pm、および同12.4μmを有し、かつSi
含有量がいずれも16%のFe−Si合金粉末、平均粒
径:2μmを有し、Si含有量が74係のFe−Si合
金粉末、平均粒径:2.2μmを有し、S1含有量が7
9%のFe−Si合金粉末、および粒度: −100m
eshの還元鉄粉を用意し、これら原料粉末を第1表に
示される配合組成に配合し、混合し、4 ton/cr
Iの圧力で圧粉体に成形した後、アンモニア分解ガス雰
囲気中、それぞれ第1表に示される温度で焼結すること
によって、実質的に配合組成と同一の最終成分組成をも
ち、かつ10m11L×loHzx5ogの寸法をもっ
た本発明焼結材料1〜7および比較焼結材料1〜8をそ
れぞれ製造した。なお、比較焼結材料1〜8は、製造条
件のうちのいずれかの条件(第1表に※印を付したもの
)がこの発明の範囲から外れた条件で製造されたもので
ある。
Graphite powder having average particle diameters of 10 μm, 18 μm, and 30 μm, respectively, average particle diameters: 1.2 μm, 22 μm,
9.8 pm and 12.4 μm, and Si
Fe-Si alloy powder with a content of 16%, average particle size: 2 μm, Fe-Si alloy powder with Si content of 74%, average particle size: 2.2 μm, S1 content is 7
9% Fe-Si alloy powder, and particle size: -100m
esh reduced iron powder was prepared, and these raw material powders were blended into the composition shown in Table 1, mixed, and 4 ton/cr
After molding into a green compact at a pressure of I, the powder is sintered in an ammonia decomposition gas atmosphere at the temperatures shown in Table 1. Inventive sintered materials 1 to 7 and comparative sintered materials 1 to 8 with dimensions of lo Hz x 5 og were produced, respectively. Note that Comparative Sintered Materials 1 to 8 were manufactured under conditions in which any of the manufacturing conditions (those marked with * in Table 1) were outside the scope of the present invention.

ついで、この結果得られた本発明焼結材料1〜7および
比較焼結材料1〜8.並びに比較の目的で別途用意した
従来鋳鉄(溶解法により製造されたFe12)について
、引張強さおよび衝撃値を 9− 測定するとともに、摩擦摩耗試験および被削試験を行な
った。
Next, the resulting sintered materials 1 to 7 of the present invention and comparative sintered materials 1 to 8. Furthermore, for the purpose of comparison, conventional cast iron (Fe12 manufactured by the melting method) was prepared separately, and its tensile strength and impact value were measured, and a friction and wear test and a cutting test were conducted.

なお、摩擦摩耗試験は、ビンオンディスク型試験機を使
用し、上記各種焼結材料よシ成形したピンを使用し、か
つ545C’のCrメッキ材で作ったディスクを用い、
速度: 1 m1sec、荷重: 4kgf/dの条件
で行ない、摩擦係数と比摩耗量を測定した。
The friction and wear test was conducted using a bottle-on-disk type testing machine, using pins molded from the various sintered materials mentioned above, and a disk made from 545C' Cr-plated material.
The friction coefficient and specific wear amount were measured at a speed of 1 ml sec and a load of 4 kgf/d.

また、被削試験は、板厚: 5.5 mmの上記各種焼
結材料を直径: 3.2 gφの高速度鋼製キリを用い
、回転数: 400rpm、押付カニ5kgfの条件で
貫通させ、その貫通時間を測定した。これらの測定結果
を第1表に合せて示した。
In addition, in the machining test, the above various sintered materials with a plate thickness of 5.5 mm were penetrated using a high-speed steel awl with a diameter of 3.2 gφ at a rotation speed of 400 rpm and a pressing force of 5 kgf. The penetration time was measured. These measurement results are also shown in Table 1.

第1表に示される結果から、本発明焼結材料1〜7は、
いずれも従来鋳鉄と同等のすぐれた摩擦摩耗特性および
被削性を有するばかりでなく、従来鋳鉄に比して一段と
高い強度および靭性をもつことが明らかである。これに
対して、比較焼結材料1〜8に見られるように、製造条
件がこの発明の範囲から外れると、強度、靭性、摩擦摩
耗特性。
From the results shown in Table 1, the sintered materials 1 to 7 of the present invention are
It is clear that all of these not only have excellent friction and wear characteristics and machinability equivalent to conventional cast iron, but also have much higher strength and toughness than conventional cast iron. In contrast, as seen in Comparative Sintered Materials 1-8, when the manufacturing conditions fall outside the scope of this invention, the strength, toughness, and friction and wear properties deteriorate.

11− および被削性のうちの少なくともいずれかの特性が劣っ
たものになることが明らかである。
It is clear that at least one of the characteristics of 11- and machinability becomes inferior.

なお、本発明焼結材料2の顕微鏡による組織写真(倍率
: 500倍)を第1図に示したが、図示される通シフ
エライト相とパーライト相の素地中に遊離黒鉛が分布し
た鋳鉄組織をもつことが明らかである。
A microscopic microscopic photograph (magnification: 500x) of the sintered material 2 of the present invention is shown in Fig. 1, which shows that the sintered material 2 has a cast iron structure in which free graphite is distributed in the matrix of the toshiferite phase and pearlite phase. That is clear.

上述のように、この発明によれば、比較的簡単な操作で
、鋳鉄組織を有する高強度高靭性焼結材料をコスト安く
製造することができ、したがって鋳鉄のもつ特性が要求
される機械部品は勿論のこと、小物で複雑な形状の機械
部品の量産が可能となるなど工業上有用な効果がもたら
されるのである。
As described above, according to the present invention, a high-strength, high-toughness sintered material having a cast iron structure can be manufactured at a low cost with relatively simple operations, and therefore mechanical parts that require the characteristics of cast iron can be manufactured. Of course, it brings about industrially useful effects such as making it possible to mass produce small mechanical parts with complex shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明焼結材料の顕微鏡による組織写真であ
る。 出願人  三菱金属株式会社 代理人  富  1) 和 夫 12−
FIG. 1 is a microscopic photograph of the structure of the sintered material of the present invention. Applicant Mitsubishi Metals Co., Ltd. Agent Tomi 1) Kazuo 12-

Claims (1)

【特許請求の範囲】 15〜75%の81を含有し、かつ平均粒径が1〜10
μmのFe−8i合金粉末=Sl量で0.8〜2.5チ
、 平均粒径が20μm以下の黒鉛粉末:1〜2%未満、 鉄粉:残り、 からなる配合組成(以上重量%)を有する原料粉末を均
一に混合し、通常の粉末成形条件にて圧粉体に成形した
後、この圧粉体を還元性雰囲気中、1050〜1180
℃の温度範囲内の所定温度で焼結することを特徴とする
遊離黒鉛、フェライト相、およびパーライト相からなる
鋳鉄組織を有する高強度高靭性焼結材料の製造法。
[Claims] Contains 15 to 75% of 81 and has an average particle size of 1 to 10
μm Fe-8i alloy powder = Sl amount of 0.8 to 2.5 μm, graphite powder with an average particle size of 20 μm or less: 1 to less than 2%, iron powder: the remainder, and a blending composition consisting of the following (weight %) After uniformly mixing raw material powders having a
A method for producing a high-strength, high-toughness sintered material having a cast iron structure consisting of free graphite, a ferrite phase, and a pearlite phase, characterized by sintering at a predetermined temperature within the temperature range of °C.
JP2773482A 1982-02-23 1982-02-23 Preparation of high strength and high toughness sintered material having cast iron structure Granted JPS58144450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2773482A JPS58144450A (en) 1982-02-23 1982-02-23 Preparation of high strength and high toughness sintered material having cast iron structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2773482A JPS58144450A (en) 1982-02-23 1982-02-23 Preparation of high strength and high toughness sintered material having cast iron structure

Publications (2)

Publication Number Publication Date
JPS58144450A true JPS58144450A (en) 1983-08-27
JPS6237709B2 JPS6237709B2 (en) 1987-08-13

Family

ID=12229249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2773482A Granted JPS58144450A (en) 1982-02-23 1982-02-23 Preparation of high strength and high toughness sintered material having cast iron structure

Country Status (1)

Country Link
JP (1) JPS58144450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom

Also Published As

Publication number Publication date
JPS6237709B2 (en) 1987-08-13

Similar Documents

Publication Publication Date Title
US5872322A (en) Liquid phase sintered powder metal articles
US5462577A (en) Water-atomized iron powder and method
KR20020018169A (en) Iron-based sintered powder metal body, manufacturing method thereof and manufacturing method of iron-based sintered component with high strength and high density
JP4185653B2 (en) Iron-graphite composite powder and sintered body thereof
US3782930A (en) Graphite-containing ferrous-titanium carbide composition
CN114015942B (en) Nonmagnetic balance block, preparation method thereof and compressor
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
US4430295A (en) Articles produced from iron powder compacts containing hypereutectic copper phosphide powder
JPS6140028B2 (en)
US2284638A (en) Metallurgy of ferrous metals
US4130422A (en) Copper-base alloy for liquid phase sintering of ferrous powders
JPS58144450A (en) Preparation of high strength and high toughness sintered material having cast iron structure
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JP3658465B2 (en) Iron-based sintered sliding member and manufacturing method thereof
JPS58126959A (en) Sintered material having cast iron structure and its manufacture
US6652618B1 (en) Iron based mixed power high strength sintered parts
JPS58126955A (en) Sintered material having cast iron structure and its manufacture
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JPS58126958A (en) Sintered material having cast iron structure and its manufacture
CA2549175C (en) Methods of preparing high density powder metallurgy parts by iron based infiltration
JPH1072648A (en) High strength ferrous sintered alloy excellent in wear resistance and its production
JP2000282103A (en) Iron-base powder mixture for high strength sintered parts
JPH0561339B2 (en)
JPH11302804A (en) Synchronizer ring made of iron-base sintered alloy
JPH1072647A (en) High strength ferrous sintered alloy excellent in wear resistance and its production