JPS58126945A - Manufacture of rare earth cobalt magnet - Google Patents

Manufacture of rare earth cobalt magnet

Info

Publication number
JPS58126945A
JPS58126945A JP57008690A JP869082A JPS58126945A JP S58126945 A JPS58126945 A JP S58126945A JP 57008690 A JP57008690 A JP 57008690A JP 869082 A JP869082 A JP 869082A JP S58126945 A JPS58126945 A JP S58126945A
Authority
JP
Japan
Prior art keywords
rare earth
ingot
alloy
magnetic
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57008690A
Other languages
Japanese (ja)
Inventor
Itaru Okonogi
格 小此木
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57008690A priority Critical patent/JPS58126945A/en
Publication of JPS58126945A publication Critical patent/JPS58126945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve production efficiency in manufacturing titled magnet and stabilize magnetic characteristics by heat treating an alloy ingot containing rare earth metals and Co of specified composition, solution treating and homogenizing it as it is, and ageing for magnetic hardening. CONSTITUTION:An alloy of desired composition, for instance Sm (CO0.594Fe0.32 Cu0.07Zr0.016)7.9 is prepared by melting an ingot of R2Co17 group metallic compound in inert atmosphere. R represents one or more of rare earth elements including Sm and Y, Ce, and M represents combination of one or more of Ti, Zr, Hf etc., and 0.1<=X<=0.4, 0.01<=Y<=0.1, 0.001<=Z<=0.1, 6.5<=A<=8.8. The alloy ingot is heated to 1,100-1,200 deg.C in Ar gas atmosphere, kept at 700-900 deg.C for 2-50hr and cooled. The cooled ingot is crushed and mixed with organic binder. Then, it is formed in magnetic field and cured. Thus, a resin bound rare earth cobalt magnet of desired shape is manufactured cheaply and allowing mass production.

Description

【発明の詳細な説明】 本発明は希土類金属(以下Rと紀す)と00の金属間化
合物qivcco添加型R,003,系永久磁石の製造
方法に関するものである。R(Col−X−y−zFe
xOuyMsnA (ここでR: 8mj>よびC@を
中心とした希土類元素の1種又は2種以上の組み合わせ
、M : Ti e Zr tBf e Eii *ム
j * M Oe Or e V +Wの1種又は2種
以上の組み合わせα1≦×≦α49α01≦Y≦α1.
0.001≦Z≦α19&5≦A≦a8)であられせる
合金は残wiii束密度(Br)が高く、保磁力(!I
H(1、工10)が大きく、キュ1)一温度も高く特性
のすぐnた実用永久6石で゛ある。従来本系R1Co、
y型永久磁石は、溶解−鋳造一粉砕一粉末一磁場成形一
焼結一熱処理一着磁して製造さnて来た。%に重合金磁
石は、焼結−熱部理工i!によって、6気特性が決まる
。焼結Fi1100℃〜120’0℃の湛度範瑚で、A
re!!e等の不活性雰囲気中又は真空中で行なう。続
いて1000〜1150℃で同様雰囲気中で溶体化処理
上行ってson℃以下まで急冷し、次IC400℃〜9
00℃に加熱し時効処mt−行う。通常はこうし友方法
で磁気硬化させ保磁力を高める。しかし焼結法は、こう
し九祷雑な熱処理工程を経ないと、満足する磁気特性が
得らnず巨つバラツキを小さくすることはかなりむずか
しい。又大量生理する上で、設備も大量りとなジ易かつ
t0本発明の目的は、樹脂結合型礎石の改良に係るもの
である。すなわち、■合金インゴット状で熱処理を行い
、S気特性の安定化、ならびに高性能化t−はかるもの
で且つ大量生産性を容易に出来る。又磁気性能のバラツ
キについても極めて小さく出来る0 ■インゴットのまま溶体化均質処理してそのまま磁気硬
化のための時効処理を行うことによって、生産効率の同
上、磁気特性の安定化を得らnる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a permanent magnet of the type R,003, containing a rare earth metal (hereinafter referred to as R) and a 00 intermetallic compound qivcco. R(Col-X-y-zFe
xOuyMsnA (where R: 8mj> and one or a combination of two or more rare earth elements centered on C@, M: one or two of Tie Zr tBf e Eii *Muj * M Oe Or e V +W Combination of species or more α1≦×≦α49α01≦Y≦α1.
Alloys made with 0.001≦Z≦α19&5≦A≦a8) have a high residual flux density (Br) and a coercive force (!I
It is a practical permanent 6 stone with a large H (1, 10), a high temperature, and excellent characteristics. Conventional main system R1Co,
Y-type permanent magnets have been manufactured by melting, casting, pulverizing, powder, magnetic field forming, sintering, heat treatment, and magnetization. % of heavy alloy magnets are sintered-Neppo Riko i! The six ki characteristics are determined by this. In the sintering range of 1100℃~120'0℃, A
re! ! This is carried out in an inert atmosphere such as e.g. or in vacuum. Subsequently, solution treatment was performed at 1000 to 1150°C in the same atmosphere, followed by rapid cooling to below 50°C, followed by an IC treatment of 400°C to 9°C.
It is heated to 00°C and subjected to aging treatment mt-. Usually, it is magnetically hardened using the Koushitomo method to increase coercive force. However, with the sintering method, satisfactory magnetic properties cannot be obtained without undergoing such a complicated heat treatment process, and it is quite difficult to reduce large variations. In addition, in order to carry out large-scale menstruation, it is easy to use a large amount of equipment.The object of the present invention is to improve a resin-bonded foundation stone. That is, (1) heat treatment is performed in the form of an alloy ingot, which stabilizes the S gas properties and improves performance, and facilitates mass production. In addition, the variation in magnetic performance can be extremely reduced. 0. By subjecting the ingot to solution homogenization treatment and then subjecting it to an aging treatment for magnetic hardening, production efficiency and stabilization of magnetic properties can be achieved.

本at具体的に詳述すnば、Rg 001?系金属間化
合物インゴットl不活性雰囲気下で溶製し所望組成の合
金tつくる。該合金インゴットのマクロ組織は主体的に
柱状晶である。次VCへrカラス雰囲気中で1100℃
〜1200℃に4時間〜50時間加熱し、引き続き70
0℃〜900℃のmWlで2〜50時間加熱保持し冷却
する工程よりなることを%俤とする。この際溶体化は、
鋳造組織の均質化のため、次に行わrt6時効処理に2
ける析出物の均−性會つくりだすため好壇しくは110
0℃〜1180℃で4時間〜24時間が望ましい。溶体
化からの冷却速ffl、2℃/分〜50℃/分で時効m
fK到達させることが望ましい。時効温蜜700℃以下
では析出硬化が不十分になり且つ900℃をこえると析
出物の粗大化を生じるため不適当である。時効後の冷却
速wjLはα1℃/分以下では、長時間管要すため工業
的に好ましくなく30℃/分以上でに、析出物の生成に
不十分である。このように本mは溶体化と時効を同一の
炉で同一工程で行えるので、■冷却に伴う、不均一な析
出物の発生防止を酎らnる、■工業生産性を改良出来る
、■再加熱による析出核発生のブレーキ力1なくなる1
等多大の効果會得らnる。こうして必要な熱処理を終え
たインゴットを粉砕し、有機   9物パインターと混
合し、磁場中成形、キュアー処理することで、所望形状
の磁石を安価に且つ大量生産出来る%III會有する。
If this book is specifically detailed, Rg 001? The intermetallic compound ingot is melted in an inert atmosphere to produce an alloy with a desired composition. The macrostructure of the alloy ingot is predominantly columnar. Next to VC r 1100℃ in glass atmosphere
Heat to ~1200°C for 4 to 50 hours, then continue to heat at 70°C.
It is assumed that the process consists of heating and holding at mWl of 0° C. to 900° C. for 2 to 50 hours and cooling. At this time, the solution treatment is
In order to homogenize the casting structure, the next step was rt6 aging treatment.
In order to create a uniformity of the precipitate, preferably 110
Preferably, the temperature is 0°C to 1180°C for 4 hours to 24 hours. Aging m at cooling rate ffl from solution treatment, 2°C/min to 50°C/min
It is desirable to reach fK. If the aging temperature is below 700°C, precipitation hardening will be insufficient, and if it exceeds 900°C, coarsening of the precipitates will occur, which is unsuitable. When the cooling rate wjL after aging is less than α1°C/min, it is industrially undesirable because the tube requires a long time, and when it is more than 30°C/min, it is insufficient for the formation of precipitates. In this way, solution treatment and aging can be performed in the same furnace and in the same process, so that it can: ■ Prevent the generation of non-uniform precipitates during cooling; ■ Improve industrial productivity; Braking force 1 for the generation of precipitation nuclei due to heating is eliminated 1
You will get a lot of effects. The ingot that has undergone the necessary heat treatment is crushed, mixed with organic 9-component pinter, molded in a magnetic field, and cured, thereby making it possible to mass-produce magnets of desired shapes at low cost.

以下本発明を実施例によって説明する。The present invention will be explained below with reference to Examples.

*:m例1 8n+ ((’O1+n*Feo−a*oua、oyZ
ro、on )、、なる合金30卸を高周波溶解炉にて
ft4Mシ、鉄錆型中に鋳造した。
*: m Example 1 8n+ (('O1+n*Feo-a*oua, oyZ
An alloy of 30 mm and 30 mm was cast in a high-frequency melting furnace into an iron rust mold.

合金インゴットのマクロ組織は、全体は柱状晶であった
。次に該合金1趣IArガスα41/1lkf流しなが
ら精密管状炉中で加熱、熱処理を行つ皮。
The macrostructure of the alloy ingot was columnar as a whole. Next, the alloy is heated and heat treated in a precision tubular furnace while flowing IAr gas α41/1 lkf.

第1図は従来法の例で溶体化CBF3Tと呼ぶ)と時効
(AGKと呼ぶ)12回に分けて行った熱処理パターン
を示す。92図に本発明法に係る熱処理パターンを示す
。従来法は熱処理炉t−2樵使用して行ったが本発明法
は、同一炉で処理した。
FIG. 1 shows an example of a conventional heat treatment pattern in which the heat treatment was carried out in 12 times (referred to as solution treatment CBF3T) and aging (referred to as AGK). FIG. 92 shows a heat treatment pattern according to the method of the present invention. In the conventional method, a heat treatment furnace T-2 was used, but in the method of the present invention, the same furnace was used.

なおIRt図BETgf(1150℃)からの冷却速1
1rt、%10℃/分”t’500℃1 テ、を冷tj
j。
Note that cooling rate 1 from IRt diagram BETgf (1150°C)
1rt, %10℃/min"t'500℃1 te, cool tj
j.

時効処理後の冷却速度に300℃まで2℃〜5℃/分で
処理した。300℃以下は、析出物の形成忙影譬はない
のでこn以下の温度は無視し7to熱処理し次インゴツ
)tスタンプミル、で粗粉砕し、次にボールミルで粒度
2μ〜50μに微粉砕しfclこうして作らnた微粉末
と一液性エボキシm脂t1、9 wt *加え混練し、
印加磁場18KOθを加えなから15x1oxt3%角
柱状サンプルに加圧成形した。成形体に145℃xt5
時間加熱キュアーした。こうしてつくらf友出石の緒特
性は第1表に示すように従来法に比べxHQ UK/x
Ho (角型性)t−高めら−rtbことが出来た。
The cooling rate after the aging treatment was 2°C to 5°C/min up to 300°C. At temperatures below 300°C, there is no possibility of precipitate formation, so temperatures below n are ignored and heat treated for 7 hours, then coarsely ground with a T-stamp mill, and then finely ground with a ball mill to a particle size of 2μ to 50μ. Add and knead the fcl fine powder thus prepared and one-component epoxy resin T1,9 wt.
A 15×1 oxt 3% prismatic sample was pressure molded without applying an applied magnetic field of 18 KOθ. 145℃xt5 for the molded body
Cured by heating for an hour. As shown in Table 1, the characteristics of the cord produced in this way are xHQ UK/x compared to the conventional method.
Ho (squareness) t-takara-rtb was able to be obtained.

本発明法の6気特性は、従来の焼結8mC0@と同第1
表 [” し − 「 [− − − ・1 水準の磁石tIs供出来るようになったことは、当業界
にとって極めて有益である。
The 6-air characteristics of the method of the present invention are the same as those of the conventional sintered 8mC0@
It is extremely beneficial to the industry that it is now possible to provide magnets of the 1 level.

実施例2 8 m (C6,H*−V Fev 0u6−6y Z
r641H)q、Hなる組成の合金IVの変化V=0.
28.α30+CL54+α40 4種類高同波溶解炉
で溶解、鋳造した。鋳造は金型に各1kIずつ鋳込んだ
。該インゴットのマクロ組織は主に柱状晶てあった。こ
こでは鉄(Fa)の量を高めて、xHaの変化並びに飽
和磁化(4π■θンの変化を調べ次。先ず熱処理は第3
図の熱処理パターンで処理し供試料とした。なお炉は同
一のもので、雰囲気rJArガスを(L2〜α41/−
流した状態で行つ友。合金インゴットは、粗粉砕し実施
例1と同一条件で6石に成形し、B−H測定機にて評価
した・ 従来法の熱処理では(1第1図と同じパターン)では例
えばV=α34のxHaに約4KOel、か得らnず高
鉄組放系は、永久研石に実用することにむずかしかった
力1本刀法によnば、約10 KOeのxHo會得ゐこ
とが出来た。不実施例のねらいは、間化合物の実用永久
S石組成範囲を拡大出来る効果を生じた。すなわち近年
高価なCOをより少くすることによって価格低減をt′
t9工業材料として実用し易くなったこと及び4πIa
t−高め高エネルギー積會有する樹脂結合磁石の実用化
を速めらyする効果も得らnた。第4図は不実施例にお
けるV(Fe)の変化と[(o 、 4πよりの相関を
示した。
Example 2 8 m (C6, H*-V Fev 0u6-6y Z
r641H) Change in alloy IV of composition q, H V=0.
28. α30+CL54+α40 4 types were melted and cast in a high-frequency melting furnace. For casting, 1 kI of each was poured into a mold. The macrostructure of the ingot was mainly columnar. Here, we increased the amount of iron (Fa) and investigated changes in xHa and saturation magnetization (4π ■ θ).
The sample was treated with the heat treatment pattern shown in the figure. The furnace is the same, and the atmosphere rJAr gas (L2~α41/-
A friend who goes in a state of flux. The alloy ingot was roughly crushed and formed into 6 stones under the same conditions as in Example 1, and evaluated using a B-H measuring machine. In the conventional heat treatment (same pattern as in Figure 1), for example, V = α34. It was possible to obtain xHo of about 4 KOel for xHa, and about 10 KOe for the high iron assembly system using the single force sword method, which was difficult to put into practical use with permanent sharpening stones. The aim of the non-examples was to have the effect of expanding the practical permanent S-stone composition range of intercalary compounds. In other words, the price can be reduced by reducing the amount of CO, which has become expensive in recent years.
t9 It has become easier to put it into practical use as an industrial material and 4πIa
The effect of accelerating the practical application of resin-bonded magnets having a high t-value and high energy accumulation was also obtained. FIG. 4 shows the correlation between the change in V(Fe) and [(o, 4π) in non-example.

実施例にも詳記したように、本発明方法は、樹脂結合磁
石の高性能化、ならびに工業生産性を高めたもので、当
業界にとって有益なものである。
As detailed in the Examples, the method of the present invention improves the performance of resin-bonded magnets and increases industrial productivity, and is beneficial to the industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・・・従来法の熱処理パターン(!l!緒例慣例
12図・・・本発明方法の熱処理パターン(実施例1 
) 第3図・・・実施例2に訃ける本発明法の熱処理パター
ン m4図・・・実施?112Vcオける、Fe(V)の変
化とXHo + 4π工8の相関 會そnぞn示した図。 以   上 出願人 株式会社諏訪精工舎 代理人 弁理士最上  務 / 第2図
Figure 1: Heat treatment pattern of conventional method (!l!Example Conventional Figure 12: Heat treatment pattern of the method of the present invention (Example 1)
) Figure 3...Heat treatment pattern m4 of the method of the present invention that fails in Example 2...Execution? A diagram showing the correlation between changes in Fe (V) and XHo + 4π at 112Vc. Applicant Suwa Seikosha Co., Ltd. Agent Mogami Patent Attorney / Figure 2

Claims (1)

【特許請求の範囲】 RCCo1−x−y−xハx OuyMz )A(ここ
でR: 8mおよびY + Oe t−中心とした希土
類元素の1種又は2種以上の組み合わせ、M:Ti。 ZrtHfe81+AJ*Mo+Or+V+ W01種
又Fi2種以上の組み合わせα1≦×≦114.αo1
≦Y≦α1rlOD1≦Z:l;111  &5≦A≦
a8 )’t’表ゎさn、6組底の合金インボッ)l熱
処理、粉砕、バインダーの混合、礒鳩中成形、キュアー
する樹脂結合希土類;パルト磁石の製造方法において1
000℃へ1200℃の溶体化均質処理後直ちに冷却過
程で700℃〜?OOCの一度で時効処理し磁気硬化さ
せゐことt%書とする希土類コバルト磁石の製造方法。
[Claims] RCCo1-x-y-xhaxOuyMz)A (where R: one or more combinations of rare earth elements centered on 8m and Y + Oe t-, M: Ti. ZrtHfe81+AJ *Mo+Or+V+ Combination of W01 type or Fi2 or more α1≦×≦114.αo1
≦Y≦α1rlOD1≦Z:l;111 &5≦A≦
a8) 't' table size n, 6 sets of alloy ingots) heat treatment, crushing, mixing binder, molding during molding, curing resin bonded rare earth; 1 in the manufacturing method of Pulte magnets
000℃ to 700℃ in the cooling process immediately after solution homogenization treatment at 1200℃? A method for producing rare earth cobalt magnets that undergoes aging treatment and magnetic hardening at one time after OOC.
JP57008690A 1982-01-22 1982-01-22 Manufacture of rare earth cobalt magnet Pending JPS58126945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008690A JPS58126945A (en) 1982-01-22 1982-01-22 Manufacture of rare earth cobalt magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008690A JPS58126945A (en) 1982-01-22 1982-01-22 Manufacture of rare earth cobalt magnet

Publications (1)

Publication Number Publication Date
JPS58126945A true JPS58126945A (en) 1983-07-28

Family

ID=11699910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008690A Pending JPS58126945A (en) 1982-01-22 1982-01-22 Manufacture of rare earth cobalt magnet

Country Status (1)

Country Link
JP (1) JPS58126945A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128502A (en) * 1979-03-23 1980-10-04 Tdk Corp Permanent magnet material and its manufacture
JPS57120642A (en) * 1981-01-16 1982-07-27 Seiko Epson Corp Manufacture of permanent magnet alloy of rare earth metal and cobalt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128502A (en) * 1979-03-23 1980-10-04 Tdk Corp Permanent magnet material and its manufacture
JPS57120642A (en) * 1981-01-16 1982-07-27 Seiko Epson Corp Manufacture of permanent magnet alloy of rare earth metal and cobalt

Similar Documents

Publication Publication Date Title
US4131495A (en) Permanent-magnet alloy
JPS58126945A (en) Manufacture of rare earth cobalt magnet
JPS60257107A (en) Manufacture of permanent magnet powder and permanent magnet
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH04143221A (en) Production of permanent magnet
JPS62122106A (en) Sintered permanent magnet
JPS5830107A (en) Manufacture of permanent magnet
JPS6353202A (en) Production of rare earth element-iron type plastic magnetic material
JPS60255941A (en) Manufacture of rare earth element-transition metal element-semimetal alloy magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPS63216307A (en) Alloy powder for magnet
JPS61270316A (en) Production of raw material powder for resin bonded permanent alloy
JPS62208609A (en) Resin-bonded permanent magnet and manufacture of its magnetic powder
JPS63179045A (en) Permanent-magnet material
JPS59153873A (en) Heat treatment of permanent magnet material
JPH04176805A (en) Production of rare earth element-cobalt bonded magnet powder
JPH0544161B2 (en)
JPS5874005A (en) Permanent magnet
JPH04246103A (en) Production of r2co17 type bond magnet powder
JPS5877546A (en) Permanent magnet and its manufacture
JPS61214505A (en) Manufacture of resin bonded permanent magnet
JPH05251221A (en) Manufacture of powder for rare earth sintered magnet
KR20040036962A (en) COMPOSITION AND FABRICATION OF Pr-Fe-B TYPE MAGNET POWDER
JPH01291407A (en) Manufacture of rare earth permanent magnet
JPH0757910A (en) Production of anisotropic magnetic powder and anisotropic bond magnet