JPS58126674A - Oxygen electrode for fuel cell and its manufacture - Google Patents

Oxygen electrode for fuel cell and its manufacture

Info

Publication number
JPS58126674A
JPS58126674A JP57008675A JP867582A JPS58126674A JP S58126674 A JPS58126674 A JP S58126674A JP 57008675 A JP57008675 A JP 57008675A JP 867582 A JP867582 A JP 867582A JP S58126674 A JPS58126674 A JP S58126674A
Authority
JP
Japan
Prior art keywords
cation exchange
exchange membrane
electrode
electrode active
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57008675A
Other languages
Japanese (ja)
Inventor
Yukio Miyaji
幸夫 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57008675A priority Critical patent/JPS58126674A/en
Publication of JPS58126674A publication Critical patent/JPS58126674A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a high performance oxygen electrode having large reactivity and generating large electric power per unit area by directly allowing to carry a positive active mass on a cation exchange membrane by means of vapor deposition or heat bonding. CONSTITUTION:A fine particle electrode active mass 11 which is formed on a cation exchange membrane by means of vapor deposition or heat bonding is half embeded into the cation exchange membrane, and this fine particle has a vacant space to pass easily air (oxygen) 13 to the surface of a cation. Since particles are contacted each other, an electrode active mass layer has conductivity so as to function as an electrode. The reaction takes place at the area (three phase reaction zone) where a positive active mass 11, a cation exchange membrane 10, and air 13 are in contact each other. Most of water produced by reaction passes the vacant space of the electrode active mass in a form of steam and is released to the air. Therefore, the reaction takes place continuously.

Description

【発明の詳細な説明】 本発明は燃料電池用酸素電極の構造、及びその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of an oxygen electrode for a fuel cell and a method for manufacturing the same.

従来の燃料電池のうち代表的なものとして、メタノール
・酸素(空気)燃料電池の構造を第1図ニ示す、アノー
ド溶液1は燃料であるメタノールの他、水、リン酸など
の成分から成る。メタノールは負荷電極2で電子、炭酸
ガス、水素イオンに分解される。このとき電子は負電極
2へ入り電流として外部へ取り出される。炭酸ガスはガ
ス出口3から外へ排出される。そして水素イオンは陽イ
オン交換[4を通りカソード溶液5中へ移動する、そし
て酸素電極6に於て水素イオン、酸素(空気中に存在す
る)、及び負電極2から移動してくる電子がカソード反
応し水を生成する0以上の反応によって負電極2から酸
素電極(正電極)6へ電子が移動し、これが燃料電池の
起電力となる駅である。
As a typical example of conventional fuel cells, the structure of a methanol/oxygen (air) fuel cell is shown in FIG. Methanol is decomposed into electrons, carbon dioxide gas, and hydrogen ions at the loaded electrode 2. At this time, electrons enter the negative electrode 2 and are taken out as a current. Carbon dioxide gas is discharged to the outside from the gas outlet 3. The hydrogen ions then move through the cation exchanger [4] into the cathode solution 5, and at the oxygen electrode 6, the hydrogen ions, oxygen (present in the air), and electrons moving from the negative electrode 2 are transferred to the cathode. Electrons move from the negative electrode 2 to the oxygen electrode (positive electrode) 6 by zero or more reactions that react and generate water, and this is the station where the electromotive force of the fuel cell is generated.

この際、カソード溶液5が生成した水で希釈されるため
、水素イオン濃度が減少する。従ってカソード反応の速
度が減少し電流密度の低下が起き、問題である。
At this time, since the cathode solution 5 is diluted with the generated water, the hydrogen ion concentration decreases. Therefore, the speed of the cathode reaction is reduced and the current density is reduced, which is a problem.

これに対する改善策として酸素電極と陽イオン交換膜を
圧着することにより、カソード溶液を用いることなくカ
ソード反応を行なわせる方法が提案されている。しかし
、その際用いられる酸素電極は酸素電極は正極活物質及
び撥水性の物質を用いることなく、陽イオン交換膜上へ
、正極活物質のみを直接担持できれば、反応性がより大
きくなり、それに従って大きな電流密度が得られると考
えられる。
As a solution to this problem, a method has been proposed in which a cathode reaction is carried out without using a cathode solution by press-bonding an oxygen electrode and a cation exchange membrane. However, if the oxygen electrode used in this case can directly support only the positive electrode active material on the cation exchange membrane without using the positive electrode active material or a water-repellent material, the reactivity will be higher; It is thought that a large current density can be obtained.

本発明は、蒸着または熱圧着の方法により、正極活物質
を陽イオン交換膜上べ直接担持させることを特徴とする
The present invention is characterized in that the positive electrode active material is directly supported on the cation exchange membrane by vapor deposition or thermocompression bonding.

以下本発明O実施例を示す。Examples of the present invention will be shown below.

第2図は本発明に於ける電極構造を示す。10は陽イオ
ン交換膜であり、実施例に於てはすフイオン(チェl2
社の登鋒商標)を用いた。この理由はナフィオンが耐熱
性、耐酸化性に優れており、本発明に於ける製造方法の
ような比較的高温に於ける処理に対して適しているから
である。11は正極活物質の層で、特許請求の範1fj
12項の製造方法によるものは白金O蒸着膜であり、特
許請求の範囲第3項記載の製造方法によるものは白金黒
の微粒子である。#I3図は92図を更に模式的に拡大
して表わした図である。蒸着または熱圧着いづれの方法
でも、それによって作られる構造は基本的に同じと考え
られる。即ち微粒子状の電極活物質11′は陽イオン交
換膜へ半ば埋め込まれており、それら微粒子は空隙を持
ち空気(WI素)を容易に陽イオン表面まで通過させる
。また微粒子同志の接触があるため電極活物質の層とし
ても導電性e有し電極としての役割も十分果たすことが
できる。反応は正極活物質11′ 、陽イオン交換膜、
及び空気の3者が互いに接している領域(いわゆる三相
反応帯)付近で起こる。またこの反応により生成する水
は大部分が水蒸気の形で電極活物質問の空隙を通って空
気中へ放出されるため、反応が極めて円滑に行なわれる
FIG. 2 shows the electrode structure in the present invention. 10 is a cation exchange membrane, and in the example, cation exchange membrane (Chel2
The company's registered trademark) was used. The reason for this is that Nafion has excellent heat resistance and oxidation resistance, and is suitable for processing at relatively high temperatures as in the production method of the present invention. 11 is a layer of positive electrode active material, and claim 1fj
The product manufactured by the manufacturing method described in claim 12 is a platinum O vapor deposited film, and the product manufactured by the manufacturing method described in claim 3 is platinum black fine particles. Figure #I3 is a schematic enlarged view of Figure 92. The structure produced by either vapor deposition or thermocompression bonding is considered to be basically the same. That is, the particulate electrode active material 11' is partially embedded in the cation exchange membrane, and these particulates have voids that allow air (WI element) to easily pass through to the cation surface. Furthermore, since the fine particles are in contact with each other, the layer of the electrode active material has conductivity e and can sufficiently fulfill the role of an electrode. The reaction is carried out using the positive electrode active material 11', the cation exchange membrane,
This occurs near the region where the three components of air and air are in contact with each other (the so-called three-phase reaction zone). Furthermore, most of the water produced by this reaction is released into the air through the gaps in the electrode active material in the form of water vapor, so that the reaction is carried out extremely smoothly.

次に特許請求の範囲第2項記載の燃料電池用酸素電極の
製造方法について述べる。
Next, a method for manufacturing an oxygen electrode for a fuel cell according to claim 2 will be described.

j14wJは本製造方法の実施例で用いた真空蒸着装置
の断面を示したものである。所望の大きさに切ったすフ
イオン膜15を試料台16の上へ置く、白金(1!極活
物質)の線をタングステン線とより合わせたもの17を
ヒーター・ホルダー18へ取り付けた上でガラス鐘20
を台21の上へかぶせる。そして排気口22に連ないだ
真空ポンプ及び油拡散ポンプでガラス値内を真空に引く
。この状態でヒーター電源24によってタングステン線
17に電流を5Å以上流すと発熱し、白金線も加熱され
蒸発し、白金粒子がナフィオン膜へ蒸着される。蒸着が
終わった時点でリーク弁25を開きガラス鐘内を常圧に
もどし、ナフィオン膜を取り出す。以上が本製造方法の
工程である。
j14wJ shows a cross section of a vacuum evaporation apparatus used in an example of this manufacturing method. Place the sulfur ion membrane 15 cut to the desired size on the sample stage 16, attach the platinum (1! polar active material) wire twisted with the tungsten wire 17 to the heater holder 18, and place it on the sample stand 16. bell 20
Place it on top of the stand 21. Then, the inside of the glass is evacuated using a vacuum pump and an oil diffusion pump connected to the exhaust port 22. In this state, when a current of 5 Å or more is passed through the tungsten wire 17 by the heater power supply 24, heat is generated, the platinum wire is also heated and evaporated, and platinum particles are deposited on the Nafion film. When the vapor deposition is completed, the leak valve 25 is opened to return the inside of the glass bell to normal pressure, and the Nafion film is taken out. The above are the steps of this manufacturing method.

この製造方法によって゛作られた酸素電極の特徴はナフ
ィオン膜全体に渡って均質な白金の蒸着膜が得られ、白
金粒子の粒径も1μ講以下と極めて細かいことにある。
The oxygen electrode produced by this manufacturing method is characterized by the fact that a homogeneous platinum vapor deposited film is obtained over the entire Nafion membrane, and the platinum particles are extremely fine, with a particle size of 1 μm or less.

従ってその電極特性も膜全面に渡って均一であり、三相
反応帯が密に存在するため極めて大きな電流密度が得ら
れ良好である。
Therefore, the electrode properties are uniform over the entire surface of the membrane, and the three-phase reaction zone is densely present, so that an extremely large current density can be obtained.

次に特許請求の範囲第5項記載の燃料電池用酸素電極の
製造方法について述べる。
Next, a method for manufacturing an oxygen electrode for a fuel cell according to claim 5 will be described.

ナフィオン膜は加熱して温度を上げて行くと除々に軟化
し、次第に可塑性を持つようになる0本発明では、この
性質を利用してナフィオン膜へ電極活智質を担持させる
ものである。本実施例では所望の大きさに切ったナフィ
オン膜25の上へ電極活物質として白金黒粉末(粒径的
10μs)を載せ等速度で回転するローラー27と22
の間にはさみ、約40陽/−の圧力を掛けながら圧延し
て行く。この際、ローラー27は発熱機構な持つものを
用いすフイオン膜を200℃付近に加熱しながらこの作
業を行う。するとナフィオン膜0熱可塑性により白金黒
がその中へ半ば埋もれ酸素電極28としてローラー外部
へ送り出されて来る。
As the Nafion membrane is heated and the temperature is raised, it gradually softens and gradually becomes plastic. In the present invention, this property is utilized to make the Nafion membrane carry an electrode active material. In this example, platinum black powder (10 μs in particle size) is placed as an electrode active material on a Nafion membrane 25 cut into a desired size, and rollers 27 and 22 rotate at a constant speed.
It is sandwiched in between and rolled while applying a pressure of about 40 positive/-. At this time, the roller 27 uses a heat generating mechanism and performs this work while heating the ion membrane to around 200°C. Then, due to the thermoplastic nature of the Nafion membrane, platinum black is half-buried therein and is sent out to the outside of the roller as an oxygen electrode 28.

ローラーの圧力、加熱温度、及び回転速度は任意に変え
られるが白金黒粉末がナフィオン膜中へ埋まる程度の条
件で十分である。
The pressure, heating temperature, and rotation speed of the roller can be changed arbitrarily, but it is sufficient that the platinum black powder is buried in the Nafion membrane.

白金黒はその表面が非常にポーラスなため、その表面積
は粒径に比較して極めて大きく、従って活性点も多く存
在している。このため蒸着で得られる白金粒子よりも大
きな粒径の白金黒粉末を用いても、その電極性能は極め
て高く、大きな電流密度が得られる。しかも粉末粒子が
すフイオン膜へ比較的深く食い込んでいるため機械的に
も極めて強いという利点がある。またこの製造方法は酸
素電極を連続的に安定して製造できるため、工業化を考
えた場合、極めて有利な製造方法である。
Since platinum black has a very porous surface, its surface area is extremely large compared to its particle size, and therefore there are many active sites. Therefore, even if platinum black powder with a larger particle size than platinum particles obtained by vapor deposition is used, its electrode performance is extremely high and a large current density can be obtained. Moreover, since the powder particles penetrate relatively deeply into the sulfur ion membrane, it has the advantage of being extremely mechanically strong. Furthermore, since this manufacturing method allows oxygen electrodes to be manufactured continuously and stably, it is an extremely advantageous manufacturing method when considering industrialization.

図6は本発明によって作製された酸素電極を用いて実際
にメタノール・空気燃料電池に組んだものの断面を示し
たものである。この本発明を利用した燃料電池は従来の
ものと比較してカソード溶液が不要なため電池槽の大き
さが小型化されている。この特性は小型燃料電池の携帯
性の向上及び大型燃料電池発電所に於ける敷地の削減な
どに有用であり、本発明に於ける1つの特徴である。
FIG. 6 shows a cross section of a methanol/air fuel cell actually assembled using the oxygen electrode produced according to the present invention. Compared to conventional fuel cells, the fuel cell using the present invention does not require a cathode solution, so the size of the battery cell is reduced. This characteristic is useful for improving the portability of small fuel cells and reducing the space required for large fuel cell power plants, and is one of the features of the present invention.

動作条件は次の通りである。燃料としてメタノールを用
い、これに水及びリン酸を重量比で各成分が2:1:1
と成るように調整し、アノード溶液32とした。負極5
4には白金を担持させた炭素板を用いた。そして本発明
の正極のすフイオン膜面55をγノード溶液側に、電極
活物質が担持された面35′を空気側にして固定した。
The operating conditions are as follows. Methanol is used as fuel, and water and phosphoric acid are added to it in a weight ratio of 2:1:1.
Anode solution 32 was prepared as follows. Negative electrode 5
In No. 4, a carbon plate on which platinum was supported was used. Then, the positive electrode of the present invention was fixed with the ion membrane surface 55 facing the γ node solution and the surface 35' carrying the electrode active material facing the air.

リード線36は電極活物質担持面55′に金ペーストを
用いて固定した。
The lead wire 36 was fixed to the electrode active material supporting surface 55' using gold paste.

室温付近に於てこの電池を動作させた時、端子電圧r:
L6v、電流密度40愼ム/−と極めて高い値が得られ
、この電力は燃料を補給する限り72時間以上経過して
もほとんど低化しなかった。また特許請求の範囲第2項
及び同第3項の方法のいづれによって作製した電極もほ
ぼ同じ性能を示した。以上の結果は本発明が単に独創的
なだけでなく、その構造が電池反応を行うのに非常に適
していることを証明するものである。即ち電極活物質が
陽イオン交換膜へ直接担持されているため陽イオン交換
膜を通って来た水素イオンは三相反応帯で直ちにカソー
ド反応に利用され、極めて高い効率な示す。更に撥水性
物質が必要でないため、単位面積当り反応に関与できる
三相反応帯は極めて広い0以上により本発明による酸素
電極は単位面積当り非常に大きな電力を発生することが
可能と成ったと考えられる。また撥水性を物質を用いて
いないため、三相反応帯と外気(#1素源である大気)
との距離は電極活物質の粒径程度しかなく極めて近接し
ている。従って大気中の酸素が三相反応帯へ容易に供給
されるばかりでなく、三相反応帯で生成された水も水蒸
気として速やかに電池外へ放出されるため、従来問題と
成゛っていた、水による水素イオンの希釈、及び水滴に
よる三相反応帯と外気との隔離なども解決することがで
きた。
When this battery is operated near room temperature, the terminal voltage r:
Very high values of L6v and current density of 40 m/- were obtained, and this power hardly decreased even after 72 hours or more as long as fuel was supplied. Further, electrodes produced by either of the methods described in claim 2 and claim 3 exhibited substantially the same performance. The above results prove that the present invention is not only unique, but also that its structure is very suitable for conducting battery reactions. That is, since the electrode active material is directly supported on the cation exchange membrane, the hydrogen ions that have passed through the cation exchange membrane are immediately utilized for the cathode reaction in the three-phase reaction zone, resulting in extremely high efficiency. Furthermore, since a water-repellent substance is not required, the three-phase reaction zone that can participate in the reaction per unit area is extremely wide and is greater than 0, which makes it possible for the oxygen electrode according to the present invention to generate extremely large electric power per unit area. . In addition, since no substances are used for water repellency, there is a three-phase reaction zone and the outside air (the atmosphere which is the #1 source).
The distance between the electrode active material and the electrode active material is approximately the same as the particle size of the electrode active material. Therefore, not only oxygen from the atmosphere is easily supplied to the three-phase reaction zone, but also water generated in the three-phase reaction zone is quickly released outside the battery as water vapor, which has been a problem in the past. , dilution of hydrogen ions by water, and isolation of the three-phase reaction zone from the outside air by water droplets were also solved.

これにより電池の特性を大きな電力を得るために運転し
ても長期間に渡って安定に保持することができるように
成ったと考えられる。
This is thought to have made it possible to maintain the characteristics of the battery stably for a long period of time even when the battery was operated to obtain large amounts of power.

酸素電極製造に関する本発明も各々の独自な特徴を持ち
ながら、従来にない高性能の酸素電極を得るのに適して
いることが本実施例に於て明白となった。
Although each of the present inventions relating to the production of oxygen electrodes has its own unique characteristics, it became clear from this example that it is suitable for obtaining an oxygen electrode with unprecedented high performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来用いられて来たメタノール・空気燃料電池
の断面を示したものである。 1・・・・・・アノード溶液(メタノール水溶液)2・
・・・・・負極(アノード) 3・・・・・・炭酸ガス出口 4・・・・・・陽イオン交換膜 5・・・・・・カソード溶液 6・・・・・・酸素電極 7・・・・・・燃料供給口 9・・・・・・電池槽 第2図は本発明の酸素電極の断面を示す。(実際は一枚
の膜であるが溶液側と空気側の面を示すため陽イオン交
換膜とそれに担持された電極活物質を層で表わした) 10・・・・・・陽イオン交換膜 11・・・・・・電極活性物質が担持された面(層)1
2・・・・・・アノード溶液 13・・・・・・空 気 第3図は第2図を部分的に更に拡大したものを示す。 10.12.13・・・・・・第2図に同じ14・・・
・・・電極活物質の粒子 第4図は特許請求の範囲第2項記載の燃料電池用酸素電
極の製造方法で用いた真空蒸着装置の断面を示したもの
である。 15・・・・・・陽イオン交換II(すフイオン)16
・・・・・・試料台 17・・・・・・白金線(電極活物質)とタングステン
線をより合わせたもの 18・・・・・・ヒーター・ホルダー 19・・・・・・ヒーター電極支柱 20・・・・・・ガラス値 21・・・・・・ガラス鏡台 22・・・・・・排気口 23・・・・・・リーク用吸気口 24・・・・・・ヒーター電源 第5図は特許請求の範囲第2項記載の燃料電池用酸素電
極の製造方法で用いた熱間圧延機を示したものである。 25・・・・・・陽イオン交換膜 26・・・・・・電極活物質の粉末 27・・・・・・加熱ローラー 28・・・・・・陽イオン交換膜中へ埋め込まれた電極
活物質(反応層) 29・・・・・・ローラー 30・・・・・・試料台 第6図は本発明の実施例で用いたメタノール・空気燃料
電池の断面を示したものである。 31・・・・・・燃料供給口 52・・・・・・アノード溶液(メタノール、水、リン
酸の混合液) 33・・・・・・炭酸ガス出口 54・・・・・・負 極 35・・・・・・陽イオン交換膜 35′・・・陽イオン交換膜中へ埋め込まれた電極活物
質を反応層として模式的に表わし たもの 36・・・・・・リー ド線 57・・・・・・電池槽 以  上 第1図 第2図 第3図 一μ 第4図 第5図 第6図 −347−
FIG. 1 shows a cross section of a conventionally used methanol/air fuel cell. 1... Anode solution (methanol aqueous solution) 2.
... Negative electrode (anode) 3 ... Carbon dioxide gas outlet 4 ... Cation exchange membrane 5 ... Cathode solution 6 ... Oxygen electrode 7 ...Fuel supply port 9...Battery tank FIG. 2 shows a cross section of the oxygen electrode of the present invention. (Actually, it is a single membrane, but to show the solution side and air side sides, the cation exchange membrane and the electrode active material supported on it are shown as layers.) 10...Cation exchange membrane 11. ...Surface (layer) 1 on which electrode active material is supported
2... Anode solution 13... Air Figure 3 shows a partially enlarged view of Figure 2. 10.12.13... Same as Figure 2 14...
Particles of electrode active material FIG. 4 shows a cross section of a vacuum evaporation apparatus used in the method for producing an oxygen electrode for a fuel cell as set forth in claim 2. 15...Cation exchange II (sulfur ion) 16
...Sample stand 17...Twisted platinum wire (electrode active material) and tungsten wire 18...Heater holder 19...Heater electrode support 20...Glass value 21...Glass mirror stand 22...Exhaust port 23...Leak intake port 24...Heater power source Fig. 5 1 shows a hot rolling mill used in the method for manufacturing an oxygen electrode for a fuel cell according to claim 2. 25... Cation exchange membrane 26... Electrode active material powder 27... Heating roller 28... Electrode active material embedded in the cation exchange membrane Material (reaction layer) 29...Roller 30...Sample stage FIG. 6 shows a cross section of a methanol/air fuel cell used in an example of the present invention. 31... Fuel supply port 52... Anode solution (mixture of methanol, water, and phosphoric acid) 33... Carbon dioxide gas outlet 54... Negative electrode 35 ...Cation exchange membrane 35'... Schematic representation of the electrode active material embedded in the cation exchange membrane as a reaction layer 36...Lead wire 57... ...Battery tank and above Figure 1 Figure 2 Figure 3 Figure 1 μ Figure 4 Figure 5 Figure 6 -347-

Claims (1)

【特許請求の範囲】 t 正極活物質と陽イオン交変膜が一体であり、カソー
ド溶液が不要であることを特徴とする燃料電池用酸素電
極。 2 陽イオン交換膜へ正極活物質を蒸着により集積し、
燃料電池用酸素電極とすることを特徴とする燃料電池用
酸素電極の製造方法。 五 陽イオン交換膜へ正極活物質の微粒子を熱圧着し、
担持させ燃料電池用酸素電極とすることを特徴とするこ
とを特徴とする特許請求の範囲第2項記載の燃料電池用
酸素電極の製造方法。
[Scope of Claims] t. An oxygen electrode for a fuel cell, characterized in that a positive electrode active material and a cation exchange membrane are integrated, and a cathode solution is not required. 2 Accumulate the positive electrode active material on the cation exchange membrane by vapor deposition,
A method for producing an oxygen electrode for a fuel cell, characterized in that the oxygen electrode is an oxygen electrode for a fuel cell. 5. Bonding fine particles of the positive electrode active material to the cation exchange membrane by thermocompression,
A method for producing an oxygen electrode for a fuel cell according to claim 2, characterized in that the oxygen electrode for a fuel cell is made by supporting the oxygen electrode.
JP57008675A 1982-01-22 1982-01-22 Oxygen electrode for fuel cell and its manufacture Pending JPS58126674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008675A JPS58126674A (en) 1982-01-22 1982-01-22 Oxygen electrode for fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008675A JPS58126674A (en) 1982-01-22 1982-01-22 Oxygen electrode for fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JPS58126674A true JPS58126674A (en) 1983-07-28

Family

ID=11699502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008675A Pending JPS58126674A (en) 1982-01-22 1982-01-22 Oxygen electrode for fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPS58126674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027850A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and method for preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027850A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and method for preparation thereof
US6827748B2 (en) 2000-09-29 2004-12-07 Sony Corporation Fuel cell and method for preparation thereof

Similar Documents

Publication Publication Date Title
US4804592A (en) Composite electrode for use in electrochemical cells
US6383556B2 (en) Method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell
JP3100979B2 (en) Ceramic solid electrolyte based electrochemical oxygen concentrator
US5151334A (en) Fuel cell utilizing solidous electrolyte
JPH08503100A (en) Hydrogen battery
JPH10302812A (en) Solid oxide fuel cell stack having composite electrode and production thereof
JP3755840B2 (en) Electrode for polymer electrolyte fuel cell
JPH09199138A (en) Manufacture of electrode for fuel cell or electrode electrolytic film bonding body, and electrode for fuel cell
JPH0817440A (en) Electrode for polymer electrolyte-type electrochemical cell
JP4709477B2 (en) Method for producing electrode catalyst for fuel cell
JP4367983B2 (en) Electrode electrolyte assembly for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof
JPH08180879A (en) Electrode for fuel cell, its manufacture and manufacture of generating layer
JP4129366B2 (en) Proton conductor manufacturing method and fuel cell manufacturing method
JPH08111226A (en) Solid polyelectrolyte type electrochemistry cell and its preparation
JP3442408B2 (en) Method for producing electrode-electrolyte assembly and fuel cell using the same
JPS58126674A (en) Oxygen electrode for fuel cell and its manufacture
JPH08106915A (en) Electrode of solid polymer fuel cell and manufacture of fuel cell
CN108461760A (en) A kind of membrane electrode diffusion layer and preparation method thereof
JP2001143723A (en) Electrolyte for fuel cell and fuel cell
JPH08130020A (en) Manufacture of electrode for polymer solid-electrolytic electrochemical cell
JP2004185900A (en) Electrode for fuel cell, film/catalyst layer junction, fuel cell, and manufacturing method of them
JPH05315000A (en) Polymer solid electrolyte-type fuel cell
JPH10189002A (en) Electrode for fuel cell and its manufacture
JP3714659B2 (en) Fabrication method of anode for solid oxide fuel cell
JPH06203848A (en) Manufacture of solid high polymer fuel cell