JPS58125982A - Solid state image pickup device - Google Patents

Solid state image pickup device

Info

Publication number
JPS58125982A
JPS58125982A JP57009313A JP931382A JPS58125982A JP S58125982 A JPS58125982 A JP S58125982A JP 57009313 A JP57009313 A JP 57009313A JP 931382 A JP931382 A JP 931382A JP S58125982 A JPS58125982 A JP S58125982A
Authority
JP
Japan
Prior art keywords
region
phototransistor
vertical
signal
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57009313A
Other languages
Japanese (ja)
Inventor
Takahiro Yamada
隆博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57009313A priority Critical patent/JPS58125982A/en
Priority to US06/415,544 priority patent/US4571626A/en
Priority to DE19823234044 priority patent/DE3234044A1/en
Publication of JPS58125982A publication Critical patent/JPS58125982A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Abstract

PURPOSE:To realize the high density of an electrostatic induction type phototransistor, by combining said phototransistor and a frame memory. CONSTITUTION:A phototransistor TR201 receives the incident light and performs a photoelectric conversion with an electronic depleting action. If a vertical flyback time starts under such conditions, phiG1 is set at a high level to turn on an MOS switch 208. Furthermore a vertical scanning circuit 203 has a high-speed operation, and the signal information of a TR201 set vertically is transmitted to a corresponding memory capacitor 212 via signal transmission lines 207 and 209. In a vertical scan period, an MOS switch 205 is turned off. Thus the pulse given from the circuit 203 is transmitted only to a pulse transmission line 204 at a memory capacitor part to turn on a vertical MOS switch 213. Then in a vertical scan period, the pulse given from a horizontal scanning circuit 211 is applied to the gate of a horizontal MOS switch 210. Thus the switch 210 is turned on. Then a signal is read out of the capacitor 212, and the signal voltage emerges at an output load resistance RL.

Description

【発明の詳細な説明】 本発明は、SIT (静電誘導トランジスタ、8tat
io Induotion Transistorの略
称)構造の光電変換部と対応するフレーム蓄積部とを有
する固体撮像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an SIT (static induction transistor, 8tat
The present invention relates to a solid-state imaging device having a photoelectric conversion section having a structure (abbreviation for io induction transistor) and a corresponding frame storage section.

固体撮像装置の光電変換部としては、p−nフォトダイ
オード、又はMO8フォトダイオードが代表的なもので
ある、これは、入射光により励起されたキャリアを浮遊
領域に蓄積し、蓄積されたキャリアを読みだすだけのも
のであるので、光感度が光検出部の開口率に依存する。
A typical photoelectric conversion unit of a solid-state imaging device is a pn photodiode or an MO8 photodiode, which accumulates carriers excited by incident light in a floating region and converts the accumulated carriers into a floating region. Since it is only for reading, the photosensitivity depends on the aperture ratio of the photodetector.

このため、撮像素子のチップサイズの小型化9画素数の
増大化というような高密度化を進めると光検出部の開口
率の低下に比例して光感度の低下が避けられない。
For this reason, if the chip size of the image sensor is reduced and the number of pixels is increased to increase the density, the light sensitivity inevitably decreases in proportion to the decrease in the aperture ratio of the photodetector.

3ページ 更に、プルーミング対策として一般的なオーバーフロー
ドレインなどをフォトダイオードの近傍に設けることも
、高密度化に伴なう開口率を考慮すると不可能になって
くる。
Page 3 Furthermore, it becomes impossible to provide a general overflow drain or the like near the photodiode as a countermeasure against pluming, considering the aperture ratio that accompanies higher density.

このような事情から、開口率を上げ、かつプルーミング
対策を可能にする素子構造として、光電変換を行なわな
い画素領域(フォトダイオードなど)と、画素選択手段
(走査回路など)と、信号読出し手段(走査回路、アナ
ログシフトレジスタなど)とが形成された半導体基板表
面の上部に積層膜として知られる光電変換機能のための
光導電性膜を形成する固体撮像装置が提案されている(
たとえば、特開昭49−91116. @開昭6l−1
0715j特開昭51−95720.特開昭51−95
721等)。しかし、光導電性膜が主に非晶質半導体や
多結晶半導体で構成されるため、材料の完全性(純度、
化学量論比の精度、結晶の完全性)の点で阻単結晶に比
べて劣シ、特性制御や再現性の改善が極めて困難である
Under these circumstances, as an element structure that increases the aperture ratio and enables countermeasures against pluming, a pixel area (such as a photodiode) that does not perform photoelectric conversion, a pixel selection means (such as a scanning circuit), and a signal readout means (such as a scanning circuit) are required. A solid-state imaging device has been proposed in which a photoconductive film for photoelectric conversion function, known as a laminated film, is formed on the surface of a semiconductor substrate on which a scanning circuit, analog shift register, etc.) are formed.
For example, JP-A-49-91116. @ Kaisho 6l-1
0715j Japanese Patent Publication No. 51-95720. Japanese Unexamined Patent Publication 1986-1995
721 etc.). However, since photoconductive films are mainly composed of amorphous or polycrystalline semiconductors, material integrity (purity,
It is inferior to single crystals in terms of accuracy of stoichiometric ratio and crystal perfection, and it is extremely difficult to control properties and improve reproducibility.

一方、開口率よシも、素子内部に増幅機能を備1引隋昭
58−125982 (2ン えることにより感度向上をはかシ、光電変換動作を、画
素領域における多数キャリア空乏動作で行なうことでプ
ルーミング対策をする提案もある(たとえば特開昭55
−124259)。これはSITをフォトトランジスタ
として用いたものであるが、本質的に3端子素子である
ため、フォトダイオードを用いるものに比べて高密度化
が極めて困難である。
On the other hand, the aperture ratio is also improved by providing an amplification function inside the element (1).Sho 58-125982 (2) The sensitivity is improved by increasing the aperture ratio, and the photoelectric conversion operation is performed by majority carrier depletion operation in the pixel region. There are also proposals to take measures against pluming (for example, Japanese Patent Laid-Open No. 55
-124259). This uses an SIT as a phototransistor, but since it is essentially a three-terminal element, it is extremely difficult to increase the density compared to one using a photodiode.

そこで、本発明は、上記のような従来の問題点を解消し
、高感度でかつプルーミング対策を備え、高密度化(高
集積化)が可能であると同時に、特性制御が容易で再現
性のよい固体撮像素子を提供することを目的とするもの
である。
Therefore, the present invention solves the above-mentioned conventional problems, provides high sensitivity, measures against plumping, enables high density (high integration), and at the same time, provides easy characteristic control and high reproducibility. The purpose is to provide a good solid-state image sensor.

このため、本発明では、光電変換部にSIT構造のフォ
トトランジスタを用い、その内部増幅機能と多数キャリ
ア空乏動作とによシ高感度化とプルーミング対策を実現
し、フォトトランジスタを基板表面に積層した&単結晶
を利用して3次元的に構成し、しかもフォトトランジス
タからの信号電荷を一時蓄積するフレームメモリを設け
ること5ページ によシ、従来はとんど不可能とされていたSIT型フォ
トトランジスタの高密度化を実現したものである。
Therefore, in the present invention, a phototransistor with an SIT structure is used in the photoelectric conversion section, and its internal amplification function and majority carrier depletion operation realize high sensitivity and prevent pluming, and the phototransistor is laminated on the surface of the substrate. & A three-dimensional structure using a single crystal, and a frame memory that temporarily stores the signal charge from the phototransistor. This realizes higher density transistors.

以下、図面を用いて本発明の一実施例を詳細に説明する
。第1図は本装置の光電変換部について示すものであシ
、第1図(IL)は、nzpn型フォトトランジスタを
用いているっ これはn”ipn+構造の中でn+ip部分を基板の表
面に成長させた単結晶部分に形成するものである(この
ため、以下、積層構造n+ipn+型フォトトランジス
タとも呼ぶ)。
Hereinafter, one embodiment of the present invention will be described in detail using the drawings. Figure 1 shows the photoelectric conversion section of this device, and Figure 1 (IL) uses an nzpn type phototransistor. It is formed in a grown single crystal portion (therefore, hereinafter also referred to as a stacked structure n+ipn+ type phototransistor).

第1図(IL)に示すように、P基板101の表面に、
画素領域であるn+領域’+02と、信号伝送1i11
03と接続されたn+領域104と、ゲート電極1o6
とがM08スイッチ106を構成し、n+領域102と
接し女から絶縁物領域107の表面に接してP領域10
8.光電変換を行なう高抵抗領域(1で表わす) 10
99 n+類域11o、透明電極111を積層して、n
+ipn+型フォトトランジスタを構成する。
As shown in FIG. 1 (IL), on the surface of the P substrate 101,
n+ area '+02 which is a pixel area and signal transmission 1i11
n+ region 104 connected to 03 and gate electrode 1o6
constitutes the M08 switch 106, and the P region 10 contacts the surface of the insulator region 107 from the n+ region 102 to the surface of the insulator region 107
8. High resistance region (represented by 1) for photoelectric conversion 10
99 n+ class area 11o, transparent electrode 111 are stacked, and n
A +ipn+ type phototransistor is configured.

第1図(a)の等価回路は第1図(b−1)に表わされ
る。透明電極111を含むn lpn  型フォトトラ
ンジスタは、左側に示す図のように更に簡略して表記で
き、これをSIT型フォトトランジスタ112とも呼ぶ
The equivalent circuit of FIG. 1(a) is shown in FIG. 1(b-1). The n lpn type phototransistor including the transparent electrode 111 can be further simplified as shown in the diagram on the left, and is also called an SIT type phototransistor 112.

以下、SIT型フォトトランジスタ112の動作をエネ
ルギーバンド図を示す第1図(b −2)t(b−3)
を用いて説明する。(ここで第1図(b−2)は高抵抗
領域109として真性半導体を用いた場合で、透明電極
の電圧Vsが、信号伝送線の電圧vOと等しく、かつ0
マである状態に対応する。第1図(b−s)は、vS>
oとした場合の動作状態に対応する。) 第1図(b −1)において、高低抗生領域109の不
純物密度が零か、極めて低い場合、Vs  にわずかの
電圧を印加すれば、高低抗生領域109が完全に空乏層
で覆われ、ピンチオフ状態となシ、画素領域であるn+
浮遊領域102前面に鞍部点状の電位障壁113が現わ
れ、この電位障壁113の高さが主として、?浮遊領領
域102ら透明電7ベーノ 極111に流れる電子の流量制御を行なうことになる。
Below, the operation of the SIT type phototransistor 112 is shown in FIG. 1 (b-2)t(b-3), which shows an energy band diagram.
Explain using. (Here, FIG. 1(b-2) shows the case where an intrinsic semiconductor is used as the high resistance region 109, and the voltage Vs of the transparent electrode is equal to the voltage vO of the signal transmission line and 0.
corresponds to the state of being a master. FIG. 1 (b-s) shows that vS>
This corresponds to the operating state when o is set. ) In FIG. 1(b-1), if the impurity density in the high and low antibiotic regions 109 is zero or extremely low, if a small voltage is applied to Vs, the high and low antibiotic regions 109 are completely covered with a depletion layer, resulting in pinch-off. The state is n+, which is the pixel area.
A saddle point-shaped potential barrier 113 appears in front of the floating region 102, and the height of this potential barrier 113 is mainly determined by ? The flow rate of electrons flowing from the floating region 102 to the transparent electrode 7 vane electrode 111 is controlled.

第1図(b−1)を及び(1)−3)において、光が高
低抗生領域109に入射すると、この入射光により励起
された電子・正孔対が高低抗生領域109内に発生する
。このうち、電子はn+領域110にただちに吸収され
る。正孔は高抵抗i領域109に印加されている強電界
により加速され、p浮遊領域108に流れこみ、p浮遊
領域10Bを正に帯電させる。このため、p浮遊領域1
0Bと?浮遊領領域102の接合が順方向にバイアスさ
れる。
In FIGS. 1(b-1) and (1)-3), when light enters the high-low antibiotic region 109, electron-hole pairs excited by the incident light are generated within the high-low antibiotic region 109. Among these electrons, the n+ region 110 absorbs them immediately. The holes are accelerated by the strong electric field applied to the high resistance i region 109, flow into the p floating region 108, and positively charge the p floating region 10B. Therefore, p floating region 1
With 0B? The junction of floating region 102 is forward biased.

これは鱈浮遊領域102内の電子に対する電位障壁11
3の高さを下げることとなシ、その結果、n+浮遊領域
102から電子がp浮遊領域を通過して(つまシミ位障
壁113を越えて)、高抵抗1領域109をドリフト走
行し、n+領域110に吸収される。
This is the potential barrier 11 for electrons in the cod floating region 102.
As a result, electrons from the n+ floating region 102 pass through the p floating region (crossing over the stain level barrier 113), drift through the high resistance region 109, and become n+ It is absorbed into region 110.

この結果、?浮遊領領域102電子空乏状態(つまり電
子が流出して不足するために、?浮遊領領域102正に
帯電することを表わすンとなり、しかも電位障壁113
の適切な設定によシ、感度増倍作用が生じる(Tech
、 Dig、 of1980  IICDMpp350
〜354を参照)。この時、第1図(b、−1)に示す
p浮遊領域108の容量crは小さいほど、わずかな正
孔の流入で大きく電圧が変化して感度がよくなる。一方
、れ“浮遊領域102の容量Osは、この領域の電圧値
にあまシ影響しないっすなわち、  Osに余り依存せ
ずに?浮遊領領域102−p浮遊領域108の接合が所
定の順方向バイアスになるまで、n十浮遊領域102か
ら電子が高低抗生領域109に流れ出すからである。
As a result,? The floating region 102 is in an electron depletion state (in other words, electrons flow out and become insufficient), which indicates that the floating region 102 is positively charged, and the potential barrier 113
Sensitivity multiplication effect occurs by appropriate setting of
, Dig, of1980 IICDMpp350
-354). At this time, the smaller the capacitance cr of the p floating region 108 shown in FIG. 1(b, -1), the greater the voltage change with a small inflow of holes, and the better the sensitivity. On the other hand, the capacitance Os of the floating region 102 does not affect the voltage value of this region in any significant way. This is because electrons flow from the nx floating region 102 to the high-low antibiotic region 109 until the n.

また、読み出し電圧が信号伝送線103の容量CIlに
ほとんど依存しない。これは、信号読出し時に信号伝送
線103から電子がn十浮遊領域102に流れこむと、
その瞬間、酵浮遊領域102の正電圧が低下し、結果と
して、p浮遊領域10Bとn十浮遊領域102の接合の
順方向バイアスが深くなるため、°・n十浮遊領域10
2に流れこんだ電子はただちに高抵抗1領域1o9に注
入されるからでeベーン ある。
Further, the read voltage hardly depends on the capacitance CIl of the signal transmission line 103. This is because when electrons flow into the n+ floating region 102 from the signal transmission line 103 during signal readout,
At that moment, the positive voltage of the floating region 102 decreases, and as a result, the forward bias of the junction between the p floating region 10B and the n floating region 102 becomes deeper.
Since the electrons flowing into the region 2 are immediately injected into the high resistance region 1o9, there is an e vane.

なお、透明電極111とn十領域11oの接触はオーミ
ック接触でもよいが、第1図(b−3)から分かるよう
に、正孔に対する阻止形接触の方が暗電流低減にとって
望ましいことが分かる。
Although the contact between the transparent electrode 111 and the n+ region 11o may be an ohmic contact, as can be seen from FIG. 1(b-3), it is found that a blocking type contact for holes is more desirable for reducing dark current.

また、第1図(b−3)において、電位障壁113近傍
に捕えられた正孔は蓄積状態にある。
Further, in FIG. 1(b-3), the holes trapped near the potential barrier 113 are in an accumulated state.

このため、MOSスイッチ102で信号読出しを行なっ
ても、n+#遊領域102の電位はp浮遊領域1o8の
正孔蓄積に対応する電位障壁113の高さで決まってい
るので、p浮遊領域108内の正孔が再結合などで失な
われない限シ、n十浮遊領域102の電位は変化しない
、。つまり非破壊読出しが可能上なるのである。逆にn
十領域1o2の電位を初期設定値voにするには、p領
域108内の正孔を除去しなければならない。本装置で
は後述するように、vllを一度0?I5為負電圧にし
てp浮遊領域108内の正孔を透明電極111側にi出
するという方法を用いる。
Therefore, even if a signal is read out using the MOS switch 102, the potential of the n+# free region 102 is determined by the height of the potential barrier 113 corresponding to the accumulation of holes in the p floating region 1o8. As long as the holes are not lost due to recombination or the like, the potential of the floating region 102 does not change. In other words, non-destructive reading becomes possible. On the contrary, n
In order to set the potential of the ten region 1o2 to the initial setting value vo, holes in the p region 108 must be removed. In this device, as described later, vll is set to 0? A method is used in which a negative voltage is applied for I5 and the holes in the p floating region 108 are discharged to the transparent electrode 111 side.

なお、以上の動作を実現するには、n十浮遊領域10 102から透明電極111に向かう高低抗生領域109
の直列抵抗r8と光入射で制御される高抵抗i領域10
9を含む光電変換領域の仮想コンダクタンスをGmとす
れば、 rsGm<1であることが必要である。この条
件を実現するには、高低抗生領域109として真性半導
体だけではな(,1,012〜10150111−5程
度の不純物密度を有する「型あるいはplの半導体を用
いることも可能である。また、p領域108としては、
101s〜1018C「3程度の不純物密度を用いれば
よい。
In addition, in order to realize the above operation, the high and low antibiotic regions 109 from the floating regions 10 to 102 to the transparent electrodes 111 must be
high resistance i region 10 controlled by series resistance r8 and light incidence
If the virtual conductance of the photoelectric conversion region including 9 is Gm, it is necessary that rsGm<1. In order to realize this condition, it is possible to use not only an intrinsic semiconductor but also a ``type'' or PL type semiconductor having an impurity density of about 1,012 to 10150111-5 as the high-low antibiotic region 109. As the area 108,
101s to 1018C "An impurity density of about 3 may be used.

第1図に示したようなSIT型フォトトランジスタを受
光素子として用いた本発明の固体撮像素子の一実施例を
第2図に示す。
FIG. 2 shows an embodiment of the solid-state imaging device of the present invention using the SIT type phototransistor shown in FIG. 1 as a light receiving element.

この実施例め構成は、2次元に配列されたSIT型フォ
トトランジスタ201,214、画素選択用の垂直MO
Sスイッチ2o2.垂直MOSスイッチを一行ごとに順
次走査するための垂直シフトレジスタ203.垂直シフ
トレジスタ203からの走査パルスを伝送するためのパ
ルス伝送線204および、φG3で制御されるMO8ス
イッチ20511 ノ、−ノ を介したパルス伝送線206.各垂直MOi9スイッチ
202がオンにされた時にフォトトランジスタ201の
電位を伝送するための信号伝送線207およびφ・1で
制御されるMOSスイッチ208を介した信号伝送線2
o9.各信号伝送線209を外部電源To (OVでも
よい)で電位設定するための水平MO8スイッチ210
.水平MOSスイッチ210を順次走査するための水平
走査回路211゜SIT型フォトトランジスタ201の
信号情報を一時蓄積するためのキャパシタ212,21
6、キャパシタ212の信号情報を信号伝送線209に
伝えるための垂直MO8スイッチ213.信号伝送線2
07および209の電位をリフレッシュするための、φ
G2で制御されるMOSスイッチ216とから成ってい
名。なお、フォトトランジスタ201は画素領域(これ
は第1図(IL)のn+gj4域102に相当する)の
多数キャリアの空乏動作で光電変換を行なうようにVs
が印加されている。
The configuration of this embodiment includes two-dimensionally arranged SIT type phototransistors 201 and 214, and a vertical MO for pixel selection.
S switch 2o2. Vertical shift register 203 for sequentially scanning the vertical MOS switches row by row. A pulse transmission line 204 for transmitting scanning pulses from the vertical shift register 203, and a pulse transmission line 206 . A signal transmission line 207 for transmitting the potential of the phototransistor 201 when each vertical MOi9 switch 202 is turned on and a signal transmission line 2 via a MOS switch 208 controlled by φ・1
o9. Horizontal MO8 switch 210 for setting the potential of each signal transmission line 209 with an external power supply To (OV may also be used)
.. Horizontal scanning circuit 211 for sequentially scanning the horizontal MOS switch 210 Capacitors 212 and 21 for temporarily storing signal information of the SIT phototransistor 201
6. Vertical MO8 switch 213 for transmitting signal information of the capacitor 212 to the signal transmission line 209. Signal transmission line 2
φ to refresh the potentials of 07 and 209.
It consists of a MOS switch 216 controlled by G2. Note that the phototransistor 201 is set to Vs so that photoelectric conversion is performed by the depletion operation of majority carriers in the pixel region (this corresponds to the n+gj4 region 102 in FIG. 1 (IL)).
is applied.

第2図の実施例に示す固体撮像素子の動作を、第3図の
駆動パルスのタイミングチャートと第4特需昭58−1
25982(4) 図のポテンシャルモデルを用いて以下に説明する(以下
では第2図の信号出力端子Soに印加する外、都電源か
らの電圧はOvとする)。
The operation of the solid-state image sensor shown in the embodiment shown in FIG. 2 is explained by the drive pulse timing chart shown in FIG.
25982(4) will be explained below using the potential model shown in the figure (below, in addition to being applied to the signal output terminal So in Fig. 2, the voltage from the city power supply is Ov).

第2図のフォトトランジスタ201が入射光を受け、電
子空乏動作による光電変換を行ない、第4図(a−1)
(7)n+浮遊領域401 (D電子をn″I″lJ域
402に排出する結果、n十領域401の電位がΔVだ
け電位が変化したものとする(第4図(a−3)参照)
The phototransistor 201 in FIG. 2 receives the incident light and performs photoelectric conversion by electron depletion operation, as shown in FIG. 4 (a-1).
(7) n+ floating region 401 (Assume that as a result of ejecting D electrons to the n″I″lJ region 402, the potential of the n+ region 401 changes by ΔV (see FIG. 4 (a-3))
.

この状態で垂直帰線期間(以後V−BLK期間と略記す
る)に入ると、φG1がノ・イレベルとなりMOI9ス
イッチ208がオンとなる。さらに、スタートパルスS
Pvとクロックツくルスφマ1.φマ2で動作する垂直
走査回路203が高速動作を行ない、垂直方向に並ぶフ
ォトトランジスタ201の信号情報を対応するメモリ用
キャパシタ212に順次伝送する。
When the vertical retrace period (hereinafter abbreviated as V-BLK period) is entered in this state, φG1 becomes the no-y level and the MOI9 switch 208 is turned on. Furthermore, start pulse S
Pv and Clock Tsukurusuφma1. A vertical scanning circuit 203 operating in the φ machine 2 operates at high speed and sequentially transmits signal information from the phototransistors 201 arranged in the vertical direction to the corresponding memory capacitors 212.

具体的には、V−、BLK期間中、φG3で制御される
全てのMOSスイッチ205がオンになるので、垂直走
査回路203からのパルスは、パルス伝送13ぺ一−ノ
゛ 線204および206に同時に印加される。
Specifically, during the V- and BLK periods, all MOS switches 205 controlled by φG3 are turned on, so the pulses from the vertical scanning circuit 203 are transmitted to the pulse transmission 13 page one-node lines 204 and 206. applied simultaneously.

この結果、垂直MO8スイッチ202と213とが同時
にオンとなる。この時、フォトトランジスタを構成する
n十浮遊領域401は電子空乏動作でΔVだけ下がって
おり、しかもそれはp浮遊領域403に蓄積した正孔に
よって制御される電位障壁404によって決められてい
るので、信号伝送線207および209上の電子は電位
障壁404を越えてn十領域402に排出され、垂直信
号線20?および209の電位とメモリ用キャパシタ2
120針領域406の電位とは、フォトトランジスタ2
o1のn十浮遊領域401の電位に一致する(第4図(
IL−4))。
As a result, vertical MO8 switches 202 and 213 are turned on simultaneously. At this time, the n floating region 401 that constitutes the phototransistor is lowered by ΔV due to electron depletion, and since this is determined by the potential barrier 404 controlled by the holes accumulated in the p floating region 403, the signal The electrons on the transmission lines 207 and 209 are ejected to the n+ region 402 across the potential barrier 404, and the vertical signal line 20? and the potential of 209 and memory capacitor 2
The potential of the 120 needle region 406 is the potential of the phototransistor 2
It corresponds to the potential of n0 floating region 401 of o1 (Fig. 4 (
IL-4)).

この後、φマ1の次のタイミングで、別のフォトトラン
ジスタ214の信号情報を対応するメモリ用キャパシタ
216に伝送する前に、空乏化されたままの信号伝送線
207及び209をリフレッシュする必要がある。これ
を実行するには、垂直MO8スイッチ202及び213
がオフになった後(第4図(a−5)’)%φG2をハ
イレベルとしてMOSスイッチ216をオンさせて電子
を信号伝送線207及び209に注入すればよい(第4
図(!L−6) )。
After this, at the next timing of φ ma 1, it is necessary to refresh the signal transmission lines 207 and 209, which remain depleted, before transmitting the signal information of another phototransistor 214 to the corresponding memory capacitor 216. be. To do this, vertical MO8 switches 202 and 213
is turned off (FIG. 4 (a-5)'), %φG2 is set to high level, the MOS switch 216 is turned on, and electrons are injected into the signal transmission lines 207 and 209 (the fourth
Figure (!L-6)).

このようにして、V−BLK期間に次々とフォトトラン
ジスタの信号情報は対応するメモリ用キャパシタに伝送
される。
In this way, the signal information of the phototransistors is transmitted to the corresponding memory capacitors one after another during the V-BLK period.

この後、透明電極406に印加する電圧Vsを一時、零
電圧(又は負電圧)にすることによシ、全てのフォトト
ランジスタ201の浮遊領域401の電位を初期設定に
戻すことができ、フォトトランジスタ201のリフレッ
シュは完了する(第4図(IL−7))。
After that, by temporarily setting the voltage Vs applied to the transparent electrode 406 to zero voltage (or negative voltage), the potential of the floating region 401 of all the phototransistors 201 can be returned to the initial setting, and the phototransistor The refresh of 201 is completed (FIG. 4 (IL-7)).

次に垂直走査期間に入ると、φも3がOvとなシ、MO
Sスイッチ205はオフになるので、垂直走査回路20
3からのパルスは受光部側のパルス伝送線206には伝
送されず、メモリ用キャパシタ部分のパルス伝送線20
4にのみ伝送される。
Next, when entering the vertical scanning period, φ also becomes Ov, and MO
Since the S switch 205 is turned off, the vertical scanning circuit 20
The pulse from 3 is not transmitted to the pulse transmission line 206 on the light receiving part side, but is transmitted to the pulse transmission line 20 of the memory capacitor part.
4 only.

従って、垂直走査期間内でメモリ用キャパシタから信号
情報を外部に読出すことができる。具体的な動作は、ス
タートパルスSPマとクロックパル16ら→・ スφマ1.φマ2で低速動作する垂直走査回路203か
らパルス(これは例えばNT8G信号の水平帰線期間に
発生させる)がパルス伝送線204に印加されることに
より、垂直MO8スイッチ213がオンとなるので、空
乏化しているキャパシタ212の空乏化電圧ΔV(つま
ジ信号電圧)が垂直信号線209とキャパシタ212の
容量配分により7vIとなる(第4図(IL−8)’)
。但し、空乏電子数IQは不変であるから、電荷読出し
をするならこの様な変化を考慮する必要はない。
Therefore, signal information can be read out from the memory capacitor within the vertical scanning period. The specific operation is as follows: start pulse SPma, clock pulse 16, etc.→・Sφma1. The vertical MO8 switch 213 is turned on by applying a pulse (generated, for example, during the horizontal retrace period of the NT8G signal) to the pulse transmission line 204 from the vertical scanning circuit 203 operating at low speed in the φ motor 2. The depletion voltage ΔV (pin-edge signal voltage) of the depleted capacitor 212 becomes 7vI due to the capacitance distribution between the vertical signal line 209 and the capacitor 212 (FIG. 4 (IL-8)').
. However, since the number of depleted electrons IQ remains unchanged, there is no need to take such changes into consideration when reading out charges.

そして、水平走査期間中、垂直走査回路203カラのパ
ルスはパルス伝送M2O4t−ハイレベルに維持し、同
時に、スタートパルスISP!+ 、 クロックパルス
φ!11.φH2で高速動作(水平画素数が400個程
度々らば、クロックパルスφI11.φ■2として約y
 MHzが用いられる)する水平走査回路211からパ
ルスが水平MOSスイッチ210のゲートに順次印加さ
れる。
During the horizontal scanning period, the pulse of the vertical scanning circuit 203 is maintained at pulse transmission M2O4t-high level, and at the same time, the start pulse ISP! +, clock pulse φ! 11. High speed operation with φH2 (if the number of horizontal pixels is about 400, the clock pulse φI11.φ■2 is approximately y
Pulses are sequentially applied to the gates of the horizontal MOS switches 210 from a horizontal scanning circuit 211 (which uses MHz).

この時、水平MO8スイッチ21oがオンとなり、キャ
パシタ212と信号伝送線209に分布している空乏電
子数IQに対応した電子数NQ= IQがRt、を通っ
て信号伝送線209とキャパシタ212に注入され、出
力負荷抵抗九の両端に流れた電子数IQによる信号電圧
が現われ、同時にキャパシタ212、信号伝送線209
の電位が初期設定値(第4図(a−2) )に戻る。
At this time, the horizontal MO8 switch 21o is turned on, and the number of electrons NQ=IQ corresponding to the number of depletion electrons IQ distributed in the capacitor 212 and the signal transmission line 209 is injected into the signal transmission line 209 and the capacitor 212 through Rt. Then, a signal voltage based on the number of electrons IQ flowing across the output load resistor 9 appears, and at the same time, the capacitor 212 and the signal transmission line 209
The potential returns to the initial setting value (Fig. 4 (a-2)).

この動作状態を繰り返すことにより、垂直走査期間中に
全てのメモリ用キャパシタから信号情報が読み出される
By repeating this operating state, signal information is read from all memory capacitors during the vertical scanning period.

以上のように本発明によれば、SIT型フォトトランジ
スタを受光部に用い、かつフレームメモリ部を設けたこ
とによシ、 ■ 81丁型フォトトランジスタ全てのリフレッシュを
透明電極の印加電圧v8で制御できる。
As described above, according to the present invention, by using the SIT type phototransistor as the light receiving part and providing the frame memory part, (1) Refreshing of all the 81 type phototransistors is controlled by the applied voltage v8 of the transparent electrode. can.

■ しかも、SIT型フォトトランジスタを三次元構成
とし、さらにフレームメモリ部の導入によシ、受光部の
画素の高密度化に極めて有利となる。
(2) Furthermore, by adopting a three-dimensional configuration of the SIT type phototransistor and further introducing a frame memory section, it is extremely advantageous to increase the density of pixels in the light receiving section.

■ SIT型フォトトランジスタの動作は電子17・−
7・ 空乏状態を利用して光電変換を行なうので、フォトトラ
ンジスタとメモリ用キャパシタを結ぶ容量は大きくても
構わない(フレームメモlJ’を撮像素子部に設けるこ
とも可能である)。
■ The operation of SIT type phototransistor is electron 17.-
7. Since photoelectric conversion is performed using the depletion state, the capacitance connecting the phototransistor and the memory capacitor may be large (it is also possible to provide the frame memory IJ' in the image sensor section).

しかも、この様な結合は、本発明で初めて実現できるも
のである。
Moreover, such a combination can be realized for the first time with the present invention.

■ 第2図の点線枠部にフィールド選択回路を挿入すれ
ば、インタレース読出し、同時2行読出しなどが任意に
制御できる。
(2) If a field selection circuit is inserted in the dotted line frame in FIG. 2, interlaced readout, simultaneous two-line readout, etc. can be arbitrarily controlled.

■ 第2図の垂直走査回路203と水平走査回路211
をそれぞれ、垂直選択回路、水平選択回路と置きかえれ
ば、ランダムアクセス読出しが実現できる。
■ Vertical scanning circuit 203 and horizontal scanning circuit 211 in Figure 2
If these are replaced with a vertical selection circuit and a horizontal selection circuit, respectively, random access reading can be realized.

■ 上記ののリフレッシュを止めている間は、非破壊読
出しが何回も実行できるので、上記Oのランダム・アク
セス読出しと組合わせるならば、高度な情報処理のため
の入力撮像装置となるっ など、これ迄の撮像素子では決して得られない様々な特
徴が得られる。
■ Non-destructive readout can be performed many times while the above refresh is stopped, so if you combine it with the random access readout in O above, it becomes an input imaging device for advanced information processing. , various features that could never be obtained with conventional image sensors can be obtained.

また、本発明では光電変換部にのみ、三次元構造のSI
T型フォトトランジスタを用いたが、上記性能を一層向
上させるには全てをSITで構成するのが望ましい。と
くにメモリ部をSITメモリとすれば、縦型構造ゆえメ
モリ部に要する面積が少なくて済む。
In addition, in the present invention, only the photoelectric conversion section has a three-dimensional structure of SI.
Although T-type phototransistors are used, in order to further improve the above-mentioned performance, it is desirable to configure everything with SITs. In particular, if the memory section is an SIT memory, the area required for the memory section can be reduced due to the vertical structure.

ここで、第1図に示した光電変換部をもっと最適な構造
に変化させる事も可能である。
Here, it is also possible to change the photoelectric conversion section shown in FIG. 1 to a more optimal structure.

第6図(IL)は、第1図(a)の変形であり、第1図
(a)ではn1域102の表面上にp領域10Bを形成
しているが、第6図(IL)ではn十領域102の表面
下にp領域10Bを形成している。こうすることにより
高抵抗i領域の形成がより容易になる。
FIG. 6(IL) is a modification of FIG. 1(a), in which the p region 10B is formed on the surface of the n1 region 102 in FIG. 1(a), but in FIG. 6(IL) A p region 10B is formed below the surface of the n+ region 102. This makes it easier to form the high resistance i region.

さらに、フォトトランジスタの電位障壁をn十領域10
2内部のp領域601にも形成できるため、フォトトラ
ンジスタの高低抗生領域109と界面の影響が電子のド
リフト走行区間内に含まれる様になり、電位障壁の動作
がよ多安定する。
Furthermore, the potential barrier of the phototransistor is
Since it can also be formed in the p-region 601 inside the phototransistor 2, the effect of the interface with the high-low resistance region 109 of the phototransistor is included in the drift travel region of electrons, and the operation of the potential barrier becomes more stable.

第6図(b)は、本発明のフォトトランジスタとして有
効な別の実施例(以下n+−1−n+型フォトト19ベ
ーソ ランジスタとも呼ぶ)を示すものである。
FIG. 6(b) shows another embodiment (hereinafter also referred to as an n+-1-n+ type phototransistor) which is effective as a phototransistor of the present invention.

これは、フォトトランジスタの電位障壁を形成するのに
p領域を用いず、誘電率の異なる絶縁物領域503,5
04を用いて(あるいは絶縁物領域604に不純物イオ
ンを注入するなどして)、電位障壁を絶縁物領域504
で囲まれる範囲502に形成するものである(これは第
6図(b)で絶縁物領域503,504の誘電率が等し
くても本来生ずる電位障壁をより確実で安定なものとす
る手段である)°。
This method does not use the p region to form the potential barrier of the phototransistor, but insulator regions 503 and 5 with different dielectric constants.
04 (or by implanting impurity ions into the insulator region 604) to form a potential barrier in the insulator region 504.
(This is a means to make the potential barrier that originally occurs even if the dielectric constants of the insulator regions 503 and 504 are equal in FIG. 6(b) more reliable and stable. )°.

ここで、第6図>)は本発明の光電変換部構造としては
最も簡単であるが、本発明の性能は、光電変換部の高抵
抗1領域109を8i単結晶でしかも欠陥のない完全結
晶としてn十領域102表面にスムーズに形成できるか
どうかに大きく依存する。
Here, Fig. 6>) is the simplest structure of the photoelectric conversion section of the present invention, but the performance of the present invention is that the high resistance region 109 of the photoelectric conversion section is made of an 8i single crystal and a perfect crystal with no defects. It depends largely on whether or not it can be formed smoothly on the surface of the n+ region 102.

第6図には、そうした意味で、本素子の光電変換部を製
造する代表的プロセスを示°している。
In this sense, FIG. 6 shows a typical process for manufacturing the photoelectric conversion section of this device.

すなわち、第6図(IL−1)に示すようにp基板10
1表面に、拡散又はイオン打込みで、n十領域102と
n1域104を形成する。この後、表特開昭58−12
5982(a) 面を熱酸化(〜1000ム)し、5i02 などの第1
絶縁物領域503を形成する。続いて、ゲート電極10
5をポリシリコンで形成した後、再び表面を熱酸化し第
2の絶縁物領域504を形成し、イオン打込みなどでp
十型とする。
That is, as shown in FIG. 6 (IL-1), the p-substrate 10
An n1 region 102 and an n1 region 104 are formed on one surface by diffusion or ion implantation. After this, the table JP-A-58-12
5982(a) surface was thermally oxidized (~1000 μm) to form the first
An insulator region 503 is formed. Subsequently, the gate electrode 10
5 is formed of polysilicon, the surface is thermally oxidized again to form a second insulator region 504, and p is formed by ion implantation or the like.
Shall be type 10.

次に穴あけをして、アルミニウムなどで信号伝送線10
3を形成し、n十領域104とコンタクトをとる。この
後、再び熱酸化して第3の絶縁物領域603を形成する
。この上に、CVDポリシリコンロ01を堆積(〜1o
oOム)させ、n十領域102上に穴あけをする。
Next, drill a hole and use aluminum etc. for the signal transmission line 10.
3 and makes contact with the n+ region 104. Thereafter, thermal oxidation is performed again to form a third insulator region 603. On top of this, deposit CVD polysilicon 01 (~10
oOm) and make a hole on the n10 area 102.

次に第6図(&−2)に示すように、エピタキシャル層
を成長させると、n十領域102上には単結晶シリコン
602が成長し、cvnポリシリコンロ01上には、ポ
リシリコンロ03が均一に成長する(これをシリコン−
ポリシリコン同時成長と呼ぶ)。
Next, as shown in FIG. 6(&-2), when an epitaxial layer is grown, single crystal silicon 602 grows on the n0 region 102, and polysilicon layer 03 grows on the cvn polysilicon layer 01. grows uniformly (this is called silicon-
(referred to as simultaneous polysilicon growth).

続いて、第6図(a、−3,)に示すように、レーザビ
ームあるいはエネルギービームを上から照射して単結晶
シリコン領域602を核にしてポリン21ベーヅ リコン領域601および603を単結晶シリコンに変え
、絶縁物領域603の表面全域にゎたシ、単結晶シリコ
ンの高抵抗領域604が形成される。
Subsequently, as shown in FIG. 6(a, -3,), a laser beam or an energy beam is irradiated from above to turn the polygon 21 base silicon regions 601 and 603 into single crystal silicon using the single crystal silicon region 602 as a core. On the other hand, a high resistance region 604 of single crystal silicon is formed over the entire surface of the insulator region 603.

この後、表面にn十領域、透明電極を順に形成すれば、
第6図(b)に示すフォトトランジスタ構造ができあが
る。
After this, if n0 regions and transparent electrodes are formed on the surface in order,
A phototransistor structure shown in FIG. 6(b) is completed.

以上のように本発明の固体撮像素子の第1の実施例に用
いる光電変換部は三次元構造にょシ高密度化が可能であ
るが、第2図に示した回路構成では、必要な面積が大き
いという欠点を有する。
As described above, the photoelectric conversion section used in the first embodiment of the solid-state image sensor of the present invention can have a three-dimensional structure with high density. However, with the circuit configuration shown in FIG. It has the disadvantage of being large.

この占有面積については縦形構造のSIT、つまり三次
元構造を十分に利用した回路構成を用いるならば、大幅
な小型化が可能となる。そのような実施例を第7図、第
8図を用いて説明する。
This occupied area can be significantly reduced in size by using a vertically structured SIT, that is, a circuit configuration that fully utilizes a three-dimensional structure. Such an embodiment will be explained using FIGS. 7 and 8.

第2図に示した第1°の実施例と比較して、構成上、根
本的に異なるところは、SIT型フォトトランジスタ2
01の信号情報を選択する為の垂直MO8スイッチが不
要になったこと、及び、それに伴ないV−BLK期間に
垂直走査回路203を高速動作させることが不必要にな
シ、同時に垂直信号線をリセットする為にφG2で制御
されるMOSスイッチ216が不要になったことである
The fundamental difference in configuration compared to the first embodiment shown in FIG. 2 is that the SIT phototransistor 2
The vertical MO8 switch for selecting the signal information of 01 is no longer required, and the vertical scanning circuit 203 does not need to operate at high speed during the V-BLK period. The MOS switch 216 controlled by φG2 for resetting is no longer necessary.

更に、全ての素子をSITで構成するため、キャノタシ
タ212の信号情報を読出す為のMOSスイッチ213
がSITスイッチ213′になったこと、およびキャパ
シタ212と信号伝送線209をリセットする為に水平
走査回路211からのパルスで制御されるMOSスイッ
チ210がSITスイッチ210′になったことである
Furthermore, since all elements are configured with SIT, a MOS switch 213 for reading signal information of the capacitor 212 is provided.
is now an SIT switch 213', and the MOS switch 210, which is controlled by a pulse from the horizontal scanning circuit 211 to reset the capacitor 212 and signal transmission line 209, is now an SIT switch 210'.

更に、φG1で制御されるMOSスイッチ208がフォ
トトランジスタ2o1からキャパシタ212に直接、信
号情報を伝送するための191Tスイツチ208′に変
わシ、その結果、V−BLK期間に−1がハイレベルと
なると、SITスイッチ208′が全てオンとなシ、全
てのフォトトランジスタ201の電子空乏状態が、対応
するキャパシタ212を電子空乏状態にしながら、信号
情報の伝達が終了する。この後、キャパシタ212から
信号が出力に読出される方法は、第2図と同様に行なわ
れる。
Furthermore, when the MOS switch 208 controlled by φG1 changes to a 191T switch 208' for directly transmitting signal information from the phototransistor 2o1 to the capacitor 212, and as a result, -1 becomes high level during the V-BLK period. , SIT switches 208' are all turned on, and the transmission of signal information is completed while the electron depletion state of all phototransistors 201 turns the corresponding capacitor 212 into an electron depletion state. Thereafter, the manner in which the signal is read out from capacitor 212 is similar to that of FIG.

以上の様に第7図に示す第2の実施例は、回路23ベー
ノ 構成だけでなく、動作そのものも簡単化される。
As described above, in the second embodiment shown in FIG. 7, not only the configuration of the circuit 23 but also the operation itself is simplified.

この第2の実施例の画素1ビット部分の断面構造を第8
図に示す。
The cross-sectional structure of the 1-bit pixel portion of this second embodiment is shown in the eighth example.
As shown in the figure.

第8図(IL)は断面構造、第8図(b)は上面図を示
す。
FIG. 8(IL) shows a cross-sectional structure, and FIG. 8(b) shows a top view.

第8図(IL)に従って、下から透明電極801.n十
領域8o2.高低抗生領域803を形成し、高抵抗i領
域803の上に、各画素を絶縁分離する絶縁物領域80
4で囲まれp領域805.  n十領域806が形成さ
れる(以上は第1図に示しだ構造と対応する光電変換部
であp、n+pin型フォトトランジスタ201でもあ
る)。
According to FIG. 8 (IL), transparent electrode 801. n ten area 8o2. An insulator region 80 that forms a high-low antibiotic region 803 and insulates and isolates each pixel on the high-resistance i region 803
4 is surrounded by p region 805. An n+ region 806 is formed (the above is a photoelectric conversion portion corresponding to the structure shown in FIG. 1, and is also a p, n+ pin type phototransistor 201).

この上部、すなわち、絶縁物領域804の上にSITス
イッチ213′のゲートとなるp領域807゜n÷領域
aoeの上に「領域808が形成され、さらにこの上に
絶縁物領域809で囲まれた針類域810・ 「領域8
11が形成され、1域811表面にゲートとしてのp領
域812で囲まれたn十領域813が形成される。この
中でn十領域806〜n−領域8o8〜n十領域810
〜p領域80アが、伽1で制御されるSITスイッチ2
08′を構成し、n十領域810〜n−領域811〜n
十領域813〜p領域812がSITスイッチ213′
を構成する。
Above this, that is, on the insulator region 804, a "region 808" is formed on the p region 807゜n÷area aoe which becomes the gate of the SIT switch 213', and further on this is surrounded by an insulator region 809. Needle area 810・'Area 8
11 is formed, and an n+ region 813 surrounded by a p region 812 serving as a gate is formed on the surface of the region 811. Among these, n0 area 806 to n- area 8o8 to n0 area 810
~p region 80a is SIT switch 2 controlled by Kay 1
08', n10 areas 810 to n- areas 811 to n
The ten area 813 to the p area 812 are the SIT switch 213'
Configure.

以上筒2の実施例によれば、第1の実施例の特徴に付加
して ■ 徹底した三次元構造の採用により一層の高密度化と
、駆動系の簡略化が実現できる。
According to the embodiment of the cylinder 2 described above, in addition to the features of the first embodiment, (1) a thorough adoption of a three-dimensional structure makes it possible to achieve even higher density and to simplify the drive system.

■ 全てのフォトトランジスタの信号情報を対応するメ
モリに、同時伝送できることから、理想的なエレクトロ
ニカルシャツタとしての機能も実現できる(この場合、
vsを)・イレベルにする時間がシャッター開放時間に
対応する)。
■ Since the signal information of all phototransistors can be simultaneously transmitted to the corresponding memory, it can also function as an ideal electronic shutter (in this case,
vs)・The time to level out corresponds to the shutter opening time).

以上のように、本発明によれば、積層構造のSIT型フ
ォトトランジスタとフレームメモリを組合わせることに
より、従来不可能とされていたSIT型フォ))ランジ
スタの高密度化を実現することができ、徹底した三次元
構造の採用で理想的なエレクトロニカルシャッター機能
が実現できる。
As described above, according to the present invention, by combining an SIT phototransistor with a stacked structure and a frame memory, it is possible to realize high density SIT phototransistors, which was previously considered impossible. By adopting a thorough three-dimensional structure, an ideal electronic shutter function can be achieved.

また、 SXTを用いることで、高感度でブルー25・
\−ノ ミンクの発生しない(これは電子空乏動作の場合本質的
に生じないからである)ことは勿論確保されており、更
に、非破壊読出しとランダムアクセスも容易なため、映
像の情報処理機能を備えることも可能である。
In addition, by using SXT, blue 25 and high sensitivity can be achieved.
Of course, it is ensured that nomink occurs (this is essentially non-occurrence in the case of electron depletion operation), and furthermore, non-destructive readout and random access are easy, so the information processing function of the image can be improved. It is also possible to prepare.

従って本発明によれば、テレビカメラ、電子ステイルカ
メ2.情報処理用光センサ等として、幅広い用途が考え
られるものである。
Therefore, according to the present invention, a television camera, an electronic still camera, 2. A wide range of applications can be considered, such as optical sensors for information processing.

なお、上記実施例では、nチャ4ン淘・MOSとnチャ
ネル8ITを用いたが、pチャネルMO8およびpチャ
ネルSITでも同様である。
In the above embodiment, an n-channel 4-channel MOS and an n-channel 8IT are used, but the same applies to a p-channel MO8 and a p-channel SIT.

又、基板材料もSiに限らず、CaAsなども用い得る
ことはいうまでもない。
Furthermore, it goes without saying that the substrate material is not limited to Si, but also CaAs or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図’ r  (b−1) y  (b−2) t 
 (b  3)は本発明の第1の実施例における固体撮
像装置の光電変換部の断面構造図、等価回路図、’l5
=Oの時のエネルギーバンド図、Vs)Oの時のエネル
ギーバンド図、第2図はその固体撮像装置の回路図、第
3図は同装置に用いる駆動パルスのタイミングチャート
、第4図(a−1)〜(a−8)は同装置の動作を示す
等価回路図、ポテンシャルモデル図、第6図a、  b
は本発明の他の実施例における固体撮像装置の断面構造
図、第6図(z  1))(a−2L  (L−3)は
その光電変換部の製造過程を示す断面図、第7図は本発
明の第2の実施例における固体撮像装置の等価回路図、
第8図a。 bはその固体撮像素子の断面構造図、上面図である。 1o1・・・・・・p基板、1o2・・・−・・n十領
域、103・・・・・・信号伝送線、1o4・・・・・
・n+a域、106・・・・・・ゲート電極、106・
・・・・・MOSスイッチ、107絶縁物領域、1o8
・・・・・・p領域、109・・・・・・高抵抗領域、
110・・・・・・n十領域、111・・・・・・透明
電極、201・・・・・・SIT型フォトトランジスタ
、202・・・・・・垂直MOSスイッチ、2o3・・
・・・・垂直シフトレジスタ、2o4・・・・・・パル
ス伝送線、205・・・・・・MOSスイッチ、206
・・・・・・パルス伝送線、207・・・・・・信号伝
送線、2o8・・・・・・MOSスイッチ、209・・
・・・・信号伝送線、210・・・・・・水平MOSス
27ベーソ イツチ、211・・・・・・水平走査回路、212,2
15・・・・・・キャパシタ、213・・・・・・垂直
MOSスイッチ、216・・・・・・MOSスイッチ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名特開
昭58−125982 (8) f/s 1 図 第4図 !!I 5 図
Figure 1' r (b-1) y (b-2) t
(b 3) is a cross-sectional structural diagram and an equivalent circuit diagram of the photoelectric conversion section of the solid-state imaging device in the first embodiment of the present invention, 'l5
2 is a circuit diagram of the solid-state imaging device, FIG. 3 is a timing chart of drive pulses used in the device, and FIG. -1) to (a-8) are equivalent circuit diagrams and potential model diagrams showing the operation of the device, Figure 6 a, b
6(z1))(a-2L(L-3) is a sectional view showing the manufacturing process of the photoelectric conversion unit, and FIG. is an equivalent circuit diagram of a solid-state imaging device according to a second embodiment of the present invention,
Figure 8a. b is a cross-sectional structural diagram and a top view of the solid-state image sensor. 1o1...p substrate, 1o2...-n10 area, 103...signal transmission line, 1o4...
・n+a region, 106...gate electrode, 106・
...MOS switch, 107 insulator area, 1o8
...p region, 109...high resistance region,
110...n10 area, 111...transparent electrode, 201...SIT type phototransistor, 202...vertical MOS switch, 2o3...
...Vertical shift register, 2o4...Pulse transmission line, 205...MOS switch, 206
...Pulse transmission line, 207...Signal transmission line, 2o8...MOS switch, 209...
...Signal transmission line, 210...Horizontal MOS switch 27 base switch, 211...Horizontal scanning circuit, 212,2
15... Capacitor, 213... Vertical MOS switch, 216... MOS switch. Name of agent: Patent attorney Toshio Nakao and one other person JP-A-58-125982 (8) f/s 1 Figure 4! ! I 5 Figure

Claims (1)

【特許請求の範囲】[Claims] (1)2次元に配列され多数キャリアの空乏動作で働い
て光電変換を行なうフォトトランジスタと、前記フォト
トランジスタの信号変化を一時記憶するために前記フォ
トトランジスタに対応して2次元に配列されたキャパシ
タと、前記フォトトランジスタと前記キャパシタとを結
ぶ信号伝送手段と、前記キャパシタに一時記憶した信号
変化を外部にとシ出す信号読出し手段とを有することを
特徴とする固体撮像装置。 @)信号伝送手段がフォトトランジスタを選択する第1
のスイッチ手段と、キャパシタを選択する第2のスイッ
チ手段と、前記第1のスイッチ手段と前記第2のスイッ
チ手段とを結ぶ信号伝送線とからな如、前記第1のスイ
ッチ手段および前記第2のスイッチ手段が1水平ライン
ごとに開閉されることを特徴とする特許請求の範囲第(
1)項記載の固体撮像装置。 (′4 伝送手段が、フォトトランジスタとキャノ(シ
タの間に設けられた第3のスイッチ手段よシなシ、前記
第3のスイッチ手段が同時に開閉されることを特徴とす
る特許請求の範囲第(1)項記載の固体撮像装置。
(1) Phototransistors that are arranged in two dimensions and perform photoelectric conversion by working through the depletion operation of majority carriers, and capacitors that are arranged in two dimensions corresponding to the phototransistors to temporarily store signal changes of the phototransistors. A solid-state imaging device comprising: a signal transmission means for connecting the phototransistor and the capacitor; and a signal readout means for outputting a signal change temporarily stored in the capacitor to the outside. @) The first method in which the signal transmission means selects a phototransistor
the first switch means and the second switch means, a second switch means for selecting a capacitor, and a signal transmission line connecting the first switch means and the second switch means. Claim No. 3, characterized in that the switch means is opened and closed for each horizontal line.
1) The solid-state imaging device described in section 1). ('4) The transmission means is a third switch means provided between a phototransistor and a capacitor, and the third switch means is opened and closed at the same time. The solid-state imaging device described in (1).
JP57009313A 1981-09-17 1982-01-22 Solid state image pickup device Pending JPS58125982A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57009313A JPS58125982A (en) 1982-01-22 1982-01-22 Solid state image pickup device
US06/415,544 US4571626A (en) 1981-09-17 1982-09-07 Solid state area imaging apparatus
DE19823234044 DE3234044A1 (en) 1981-09-17 1982-09-14 SOLID BODY IMAGING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57009313A JPS58125982A (en) 1982-01-22 1982-01-22 Solid state image pickup device

Publications (1)

Publication Number Publication Date
JPS58125982A true JPS58125982A (en) 1983-07-27

Family

ID=11716978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57009313A Pending JPS58125982A (en) 1981-09-17 1982-01-22 Solid state image pickup device

Country Status (1)

Country Link
JP (1) JPS58125982A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094764A (en) * 1983-08-31 1985-05-27 テキサス インスツルメンツ インコ−ポレイテツド Infrared ray image forming device
JPS60160162A (en) * 1984-01-30 1985-08-21 Matsushita Electric Ind Co Ltd Solid state image pickup device
JPS61154371A (en) * 1984-12-27 1986-07-14 Canon Inc Photoelectric converting device
JPH0265380A (en) * 1988-08-31 1990-03-06 Canon Inc Image-pick up device
EP0653881A2 (en) * 1993-11-17 1995-05-17 Canon Kabushiki Kaisha Solid-state image pickup device
US7821551B2 (en) 2004-05-13 2010-10-26 Canon Kabushiki Kaisha Solid-state image pickup device with an analog memory and an offset removing unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094764A (en) * 1983-08-31 1985-05-27 テキサス インスツルメンツ インコ−ポレイテツド Infrared ray image forming device
JPS60160162A (en) * 1984-01-30 1985-08-21 Matsushita Electric Ind Co Ltd Solid state image pickup device
JPS61154371A (en) * 1984-12-27 1986-07-14 Canon Inc Photoelectric converting device
JPH0523548B2 (en) * 1984-12-27 1993-04-05 Canon Kk
JPH0265380A (en) * 1988-08-31 1990-03-06 Canon Inc Image-pick up device
EP0653881A2 (en) * 1993-11-17 1995-05-17 Canon Kabushiki Kaisha Solid-state image pickup device
EP0653881A3 (en) * 1993-11-17 1995-07-19 Canon Kk Solid-state image pickup device.
US5587738A (en) * 1993-11-17 1996-12-24 Canon Kabushiki Kaisha Solid-state image pickup device having plural switches for subtracting a stored signal from a pixel output
US7821551B2 (en) 2004-05-13 2010-10-26 Canon Kabushiki Kaisha Solid-state image pickup device with an analog memory and an offset removing unit

Similar Documents

Publication Publication Date Title
US7465602B2 (en) Anti-blooming storage pixel
US8513761B2 (en) Backside illumination semiconductor image sensor
US6960757B2 (en) Simplified wiring schemes for vertical color filter pixel sensors
US20040021137A1 (en) Semiconductor device
US20120200752A1 (en) Solid-state image pickup device
EP1081766A1 (en) CCD image sensor using amplification by secondary electron generation
JPH0312510B2 (en)
US20040036009A1 (en) Low dark current pixel with a guard drive active photodiode
JPS60206063A (en) Solid-state image pickup element and solid-state image pickup device
JP2005237016A (en) Mos image sensor
US4571626A (en) Solid state area imaging apparatus
Hynecek BCMD-An improved photosite structure for high-density image sensors
US7034273B1 (en) Sensor method for dual line integrating line scan sensor
TW201513327A (en) Image sensor pixel cell having dual self-aligned implants next to storage gate
JPS58125982A (en) Solid state image pickup device
JPS61157184A (en) Image pickup device
US5270558A (en) Integrated electronic shutter for charge-coupled devices
JPH0424870B2 (en)
JP3285928B2 (en) Solid-state imaging device
JP2556885B2 (en) Semiconductor device
JPS6376582A (en) Photoelectric converter
JPS6022881A (en) Solid-state image sensor
JP2833825B2 (en) Solid-state imaging device
JP2679659B2 (en) Solid-state imaging device
JPS59108458A (en) Solid-state image pickup device and its manufacture