JPS5812594B2 - Denshigatsuki no Neiroseigiyosouchi - Google Patents

Denshigatsuki no Neiroseigiyosouchi

Info

Publication number
JPS5812594B2
JPS5812594B2 JP49098121A JP9812174A JPS5812594B2 JP S5812594 B2 JPS5812594 B2 JP S5812594B2 JP 49098121 A JP49098121 A JP 49098121A JP 9812174 A JP9812174 A JP 9812174A JP S5812594 B2 JPS5812594 B2 JP S5812594B2
Authority
JP
Japan
Prior art keywords
wave
timbre
voltage
circuit
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49098121A
Other languages
Japanese (ja)
Other versions
JPS5125122A (en
Inventor
河本欣士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP49098121A priority Critical patent/JPS5812594B2/en
Publication of JPS5125122A publication Critical patent/JPS5125122A/en
Publication of JPS5812594B2 publication Critical patent/JPS5812594B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrophonic Musical Instruments (AREA)

Description

【発明の詳細な説明】 本発明は電子楽器の音色制御装置、特に微妙な音色の制
御のできる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a timbre control device for an electronic musical instrument, and more particularly to a device capable of subtle timbre control.

従来、電子楽器の音色は低域P波、高城炉波、帯域通過
、帯域除去などの炉波器により作られているが、一度作
られた音声の表情を制御するために、プリリアンス調整
用の高城増減用瀘波器が設けられる程度であるので、微
妙な音色の選択は事実上不可能であった。
Traditionally, the tones of electronic musical instruments are created using a low-frequency P-wave, Takagi-roha, band-pass, and band-removal filters, but in order to control the expression of the voice once created, preliance adjustment Since only a filter was installed to increase or decrease Takagi, delicate selection of tones was virtually impossible.

本発明はこの点に着目し、従来よりも音色の微妙な表情
の調整がしやすく、音の表情の変化範囲も広い音色制御
装置を提供するものである。
The present invention focuses on this point, and provides a timbre control device that makes it easier to adjust the subtle expression of tone than before, and allows for a wider range of changes in the expression of sound.

以下本発明の一実施例を図面に基づいて説明する。An embodiment of the present invention will be described below based on the drawings.

第1図は音色制御装置を含む電子楽器のブロック図を示
し、音階信号を発生する音源1はキースイッチ2に接続
され、キースイッチ2に連動した鍵盤の鍵を押すことに
より音階信号が選択され、音色回路3に加えられ楽器音
となり、音色制御装置の涙波器群4を介してスピーカ5
により発音される。
FIG. 1 shows a block diagram of an electronic musical instrument including a timbre control device. A sound source 1 that generates a scale signal is connected to a key switch 2, and a scale signal is selected by pressing a key on a keyboard linked to the key switch 2. , is added to the timbre circuit 3 to become an instrument sound, and is transmitted to the speaker 5 via the waveform group 4 of the timbre control device.
pronounced by

6は直流電源で、音階信号の音高に比例した直流電圧を
発生し、キースイッチ2と連動して動作するキースイッ
チ7に直流電圧を供給する。
A DC power supply 6 generates a DC voltage proportional to the pitch of the scale signal, and supplies the DC voltage to a key switch 7 that operates in conjunction with the key switch 2.

押鍵によって選択された直流電圧は演算回路8に加えら
れる。
The DC voltage selected by pressing the key is applied to the arithmetic circuit 8.

演算回路8は、押鍵が1鍵で直流電圧が1つのときはそ
の値を出力し、複数鍵で直流電圧が複数のときは最高電
圧、最低電圧、平均電圧などのうち1つを出力し、制御
用端子10を介して炉波器群4に供給する。
The arithmetic circuit 8 outputs the value when one key is pressed and there is one DC voltage, and outputs one of the highest voltage, lowest voltage, average voltage, etc. when there are multiple keys and multiple DC voltages. , is supplied to the wave generator group 4 via the control terminal 10.

操作器9は炉波器群4の振幅周波数特性を制御する。The operating device 9 controls the amplitude frequency characteristics of the wave generator group 4.

第2図および第3図はそれぞれ炉波器群4の一実施例を
示す。
FIGS. 2 and 3 each show an embodiment of the wave generator group 4. FIG.

第2図において、振幅周波数特性として第4図に示すよ
うな共振峰をもつ戸波器21と22とが縦続(直列)に
接続されている。
In FIG. 2, wave generators 21 and 22 having resonance peaks as shown in FIG. 4 as amplitude frequency characteristics are connected in series.

入力端子20に電子楽器の楽音信号が加えられ、出力端
子23より出力信号が取り出される。
A musical tone signal from an electronic musical instrument is applied to an input terminal 20, and an output signal is taken out from an output terminal 23.

炉波器21と22の振幅周波数特性は前述の如く共振峰
をもちその共振周波数fAとfBとは操作器9により操
作される可変抵抗器24と25の抵抗値に従ってそれぞ
れ変化できる。
As mentioned above, the amplitude frequency characteristics of the wave generators 21 and 22 have resonance peaks, and the resonance frequencies fA and fB can be changed according to the resistance values of the variable resistors 24 and 25 operated by the operating device 9, respectively.

また前記共振峰の共振周波数fAとfBとは端子10に
印加される直流電圧によって変化できる。
Further, the resonance frequencies fA and fB of the resonance peaks can be changed by the DC voltage applied to the terminal 10.

第3図では、第5図のAとBに示す振幅周波数特性をも
つ2つの戸波器26と27を並列に設け、それぞれの出
力信号と入力信号とを抵抗28,29,30により加算
して、2つの共振峰をもつ振幅周波数特性をつくる。
In FIG. 3, two door transducers 26 and 27 having the amplitude frequency characteristics shown in A and B in FIG. , creates an amplitude frequency characteristic with two resonance peaks.

共振峰の共振周波数転とfBは、第2図の場合と同様に
可変抵抗24と25の抵抗値に従って変化でき、また端
子10に印加される直流電圧によっても変化できる。
The resonant frequency rotation of the resonant peak and fB can be changed according to the resistance values of the variable resistors 24 and 25 as in the case of FIG. 2, and can also be changed according to the DC voltage applied to the terminal 10.

入力端子21から出力端子23までの伝送特性は第5図
の破線で示すように平坦な振幅周波数特性の一部分に、
山のある形状をもつことになる。
The transmission characteristic from the input terminal 21 to the output terminal 23 is a part of the flat amplitude frequency characteristic as shown by the broken line in FIG.
It will have a mountainous shape.

第6図および第7図は第1図における電源6、キースイ
ッチ7、演算回路8の一例である。
6 and 7 are examples of the power supply 6, key switch 7, and arithmetic circuit 8 in FIG. 1.

第6図において、キースイッチの可動接片側の複数の端
子31を順次結合するように直列に接続された複数の抵
抗Rの一端に直流電源6が接続される。
In FIG. 6, a DC power source 6 is connected to one end of a plurality of resistors R connected in series so as to sequentially connect a plurality of terminals 31 on the movable contact side of the key switch.

キースイッチの固定接点側のバスパー32は負荷抵抗R
Lを介して接地されており、バスパー32より出力端子
33に出力電圧が取り出される。
The busper 32 on the fixed contact side of the key switch has a load resistance R
It is grounded via L, and the output voltage is taken out from the busper 32 to the output terminal 33.

キースイッチの可動接片34側の端子31はそれぞれ音
階の音高の順序に従って並べられる。
The terminals 31 on the movable contact piece 34 side of the key switch are arranged in accordance with the pitch order of the musical scale.

第6図では上端からC , C# , D , D#,
E , Fの順序に構成されている。
In Figure 6, from the top: C, C#, D, D#,
It is configured in the order of E and F.

上記6つの可動接片34のうち1つを上記の順序に従っ
て押さえると、出力端子33に現われる電圧は、直流電
源6の電圧をEとすると、E , RL E/( RL
+R) , RL E/(RL+2R) ,RLE/(
RL+3R),RLE/(RL+4R),RLE/(
RL+5 R)となり、押さえた可動接片に応じて、す
なわち選択した音高に従って出力電圧を得る。
When one of the six movable contact pieces 34 is pressed in the above order, the voltage appearing at the output terminal 33 is E,RL E/(RL
+R), RL E/(RL+2R), RLE/(
RL+3R), RLE/(RL+4R), RLE/(
RL+5 R), and the output voltage is obtained according to the pressed movable contact piece, that is, according to the selected pitch.

また複数の可動接片34を同時に押さえた場合は、その
うちの最低の音高に対応する出力電圧が得られる。
Furthermore, when a plurality of movable contact pieces 34 are pressed simultaneously, an output voltage corresponding to the lowest pitch among them is obtained.

可動接片の配列を逆の順序にすれば、最高音に対応した
電圧を選択することもできる。
By arranging the movable contacts in the reverse order, it is also possible to select the voltage corresponding to the highest note.

この出力端子33の電圧は第1図の端子10に加えられ
る。
This voltage at output terminal 33 is applied to terminal 10 in FIG.

第7図では、直列接続した複数の抵抗Rの一端を直流電
源6に接続し、他端を接地し、各抵抗Rの各接続点をキ
ースイッチの各可動接片34側の各端子31にそれぞれ
接続し、共通の固定接点であるところのバスパー32よ
り出力端子33に出力電圧を取り出すようにしている。
In FIG. 7, one end of a plurality of resistors R connected in series is connected to the DC power supply 6, the other end is grounded, and each connection point of each resistor R is connected to each terminal 31 on each movable contact piece 34 side of the key switch. They are connected to each other, and the output voltage is taken out from a busper 32, which is a common fixed contact, to an output terminal 33.

1つの可動接片31を押さえると、その可動接片に対応
した音高に応じて電源電圧Eが分圧されて出力端子33
に出力電圧を得る。
When one movable contact piece 31 is pressed, the power supply voltage E is divided according to the pitch corresponding to that movable contact piece, and the output terminal 33 is
to get the output voltage.

例えばC#では(4 R%6 R)・E−2E/3の出
力電圧となる。
For example, in C#, the output voltage is (4R%6R)·E-2E/3.

複数の可動接片を同時に押さえると、そのうちの最高音
に対応する出力電圧と最低音に対応する出力電圧との中
間の電圧が得られる。
When a plurality of movable contacts are pressed simultaneously, a voltage intermediate between the output voltage corresponding to the highest note and the output voltage corresponding to the lowest note is obtained.

第6図、第7図において、可動接片の数は鍵盤の音域に
応じて増加することができる。
In FIGS. 6 and 7, the number of movable contact pieces can be increased depending on the range of the keyboard.

このようにして出力端子33に得た楽音信号の音域に対
応した直流電圧を、端子10を介して炉波器群4に加え
、楽音信号の音域の上下に応じて戸波器群4の共振峰の
共振周波数を上下させる。
A DC voltage corresponding to the range of the musical sound signal obtained at the output terminal 33 in this way is applied to the sound wave device group 4 via the terminal 10, and the resonance peak of the sound wave device group 4 is applied according to the upper and lower ranges of the musical sound signal. Raise or lower the resonant frequency of.

このようにすれば、ある音域において、あるいは特定の
鍵において、音源信号の基本周波数や、その高調波成分
の周波数が、共振峰の共振周波数と一致して、音量が著
しく大きくなってしまうということがなく、常に適切な
音色と音量とを得ることができる。
In this way, in a certain range or in a specific key, the fundamental frequency of the sound source signal and the frequency of its harmonic components will match the resonance frequency of the resonance peak, and the volume will become significantly louder. You can always get the right tone and volume.

第2図、第3図の可変抵抗器24と25を操作するため
の操作器9としては、スライドボリュームを2個並べて
もよいが、第8図の如き首振り自在な操作器を用いる方
がよい。
As the operating device 9 for operating the variable resistors 24 and 25 in FIGS. 2 and 3, two slide volumes may be used side by side, but it is better to use a swingable operating device as shown in FIG. 8. good.

この首振り形式の操作器は筐体40の直角をなす2側面
に回転式の可変抵抗器41と42を取り付け、それぞれ
の回転軸が自由に回わるようにし、43を支点とするレ
バー44の方向によって可変抵抗器41と42の抵抗値
をそれぞれ独立に,しかも自由に設定できるように構成
されている。
This swing type operating device has rotary variable resistors 41 and 42 attached to two perpendicular sides of a housing 40 so that their respective rotation axes can rotate freely, and a lever 44 with 43 as a fulcrum. The configuration is such that the resistance values of the variable resistors 41 and 42 can be independently and freely set depending on the direction.

この首振り形式を用いると、1つのレバー44の操作で
、2つの共振峰の共振周波数を自由に制御できるので、
音色を微妙に制御することが容易にできる。
By using this swing type, the resonance frequencies of the two resonance peaks can be freely controlled by operating one lever 44.
It is easy to subtly control the tone.

またレバー44を円状、だ円状、直線状など自由に動か
すことができるので、この軌跡の形状を選ぶことによっ
て、従来にない音色変調いわゆるワウワウ効果を実現で
きる。
Furthermore, since the lever 44 can be freely moved in a circular, elliptical, or linear shape, by selecting the shape of this locus, it is possible to realize an unprecedented timbre modulation so-called wah-wah effect.

また従来の「ワ」と「ウ」に近い音以外に、「エ」「オ
」「イ」に近い音をつくることもできるので、これらの
音を順番に組み合わせ出すことが可能になる。
In addition to the conventional sounds similar to "wa" and "u", it is also possible to create sounds similar to "e", "o", and "i", making it possible to combine these sounds in order.

第9図は操作器9の別実施例で、鍵盤50をスプリング
52で基板51上に支持し、鍵盤50が上下、前後、左
右の3次元方向に動くようにする。
FIG. 9 shows another embodiment of the operating device 9, in which a keyboard 50 is supported on a substrate 51 by a spring 52, so that the keyboard 50 can move in three-dimensional directions: up and down, back and forth, and right and left.

上記3次元方向の動きを鍵盤50と基板51との間に設
けた感圧素子、ストレーンゲージなどを用いて電圧の変
動にかえて検出し、これらの3つの電圧の変動のうち任
意の2つ、例えば左右方向と前後方向の電圧の変動を、
第2図、第3図の可変抵抗器24 ,25の抵抗値の変
動におきかえる。
The movement in the three-dimensional direction is detected instead of a voltage fluctuation using a pressure-sensitive element, a strain gauge, etc. provided between the keyboard 50 and the board 51, and any two of these three voltage fluctuations are detected. , for example, the voltage fluctuations in the left-right direction and front-back direction,
This is replaced by the variation in resistance value of the variable resistors 24 and 25 in FIGS. 2 and 3.

このためには、例えば可変抵抗器24.25としてCd
Sホトセルーランプ素子を用いて、上記電圧をランプに
印加し、CdSホトセルの抵抗値を変化させるようにす
ればよい。
For this purpose, for example Cd
Using a CdS photocell lamp element, the above voltage may be applied to the lamp to change the resistance value of the CdS photocell.

第10図A,Bは操作器9の更に別の実施例で、鍵盤5
0の下面を導電ゴム板53で支持し、左右を導電ゴム片
54.54’とアングル5 5 . 5 5’とで支持
し、後部を導電ゴム片56とアングル5Tとで支持して
いる。
10A and 10B show still another embodiment of the operating device 9, in which the keyboard 5
0 is supported by a conductive rubber plate 53, and conductive rubber pieces 54, 54' and an angle 55. 5 and 5', and the rear part is supported by a conductive rubber piece 56 and an angle 5T.

鍵盤50を下方に押さえると、導電ゴム板53の抵抗が
下る。
When the keyboard 50 is pressed downward, the resistance of the conductive rubber plate 53 decreases.

左右に動かすと、導電ゴム片54,54’が伸縮してそ
の抵抗値が変化する。
When moved from side to side, the conductive rubber pieces 54, 54' expand and contract, changing their resistance value.

前後に動かすと、導電ゴム片56の抵抗値が変化する。When moved back and forth, the resistance value of the conductive rubber piece 56 changes.

これらの導電ゴム53,54,56のうちの2つを可変
抵抗器24 .25として利用する。
Two of these conductive rubbers 53, 54, 56 are connected to a variable resistor 24. Use as 25.

第9図、第10図の鍵盤50を演奏に際して前後、左右
に動かすと、2つの共振峰が移動するので、ワウワウ効
果が得られるが、第8図の操作器の場合と同様に、鍵盤
50上での指の運動の軌跡にしたがって、これまでにな
いワウワウ効果も得ることが可能となる。
When the keyboard 50 in FIGS. 9 and 10 is moved back and forth, left and right during performance, the two resonance peaks move, producing a wah-wah effect. It is also possible to obtain an unprecedented wah-wah effect by following the trajectory of the finger movement.

第9図、第10図の操作器では3次元の運動や位置の情
報が得られるので、第2図、第3図におけるF波器21
,22.27.28の数を増加して、共振峰の数を3つ
にしてもよい。
Since the operating devices shown in FIGS. 9 and 10 can obtain information on three-dimensional movement and position, the F-wave device 21 in FIGS. 2 and 3
, 22, 27, and 28 may be increased to make the number of resonance peaks three.

第8図の操作器のレバー44に足ペダルを設け、足ペダ
ルの2次元的な操作によって音色の制御を行なってもよ
い。
A foot pedal may be provided on the lever 44 of the operating device shown in FIG. 8, and the tone may be controlled by two-dimensional operation of the foot pedal.

第11図は2次元の位置を検出する操作器の他の実施例
である。
FIG. 11 shows another embodiment of the operating device for detecting a two-dimensional position.

64はベークライトなどの基板で、その上に導電塗料を
塗付したり、導体金属を蒸着したりした導電性の表面6
5をもち、さらに出力端子66を有している。
64 is a substrate made of Bakelite or the like, and has a conductive surface 6 on which a conductive paint is applied or a conductive metal is vapor-deposited.
5, and further has an output terminal 66.

61と63は柔かい絶縁物例えばゴム、ビニールなどに
長方形のスリット67.68を設けられた絶縁シートで
、それぞれのスリット67 .68は互いに直交するよ
うに配置される。
Reference numerals 61 and 63 are insulating sheets in which rectangular slits 67, 68 are provided in a soft insulating material such as rubber or vinyl. 68 are arranged perpendicularly to each other.

62は抵抗シートで、柔かい絶縁物の上面に、適当間隔
をおいて抵抗体69と70を細く平行に蒸着し、その間
に該抵抗体69.70と直角方向に多数の線状の導体7
1を蒸着し、抵抗体70の両端に端子72と73を設け
、下面には上面と同様のパターンを丁度直角だけずらし
て作り、端子74と75を設けている。
Reference numeral 62 designates a resistor sheet, on which resistors 69 and 70 are deposited thin and parallel on the upper surface of a soft insulator at appropriate intervals, and a large number of linear conductors 7 are inserted between the resistors 69 and 70 in a direction perpendicular to the resistors 69 and 70.
1 is vapor-deposited, terminals 72 and 73 are provided at both ends of the resistor 70, and terminals 74 and 75 are provided on the lower surface by making a pattern similar to that on the upper surface but shifted by just a right angle.

そして絶縁シート61のスリット67と抵抗シート62
の上面の線状導体T1は交いに直交し、抵抗シート62
の下面の線状導体(図示せず)と絶縁シート63のスリ
ット68は交いに直交するように配置される。
And the slit 67 of the insulation sheet 61 and the resistance sheet 62
The linear conductors T1 on the upper surface of
The linear conductor (not shown) on the lower surface of the insulating sheet 63 and the slit 68 of the insulating sheet 63 are arranged so as to be perpendicular to each other.

60は下面が導電性の柔かい膜で、下面の導電体に接続
して出力端子76を設けている。
60 is a soft film whose lower surface is conductive, and an output terminal 76 is provided by connecting to the conductor on the lower surface.

膜60、絶縁シート61、抵抗シート62、絶縁シート
63および基板64は順次重ね合わされ、周辺を絶縁性
の接着剤で固定される。
The membrane 60, the insulating sheet 61, the resistive sheet 62, the insulating sheet 63, and the substrate 64 are sequentially stacked on top of each other, and their peripheries are fixed with an insulating adhesive.

端子72と73の間に直流電圧Vを印加すると、線状導
体71にはそれぞれの位置に応じて異なって分圧された
電圧が現われている。
When a DC voltage V is applied between the terminals 72 and 73, different divided voltages appear on the linear conductor 71 depending on the respective positions.

膜60と抵抗シート62とは通常絶縁シート61によっ
て隔離されているが、指で膜60を押さえると、押さえ
た位置付近の線状導体71と膜60下面の導電体とが接
触して、分圧された電圧が出力端子76に取り出される
The membrane 60 and the resistance sheet 62 are usually separated by an insulating sheet 61, but when the membrane 60 is pressed with a finger, the linear conductor 71 near the pressed position and the conductor on the lower surface of the membrane 60 come into contact, causing separation. The increased voltage is taken out to the output terminal 76.

出力端子γ6の電圧はY軸方向の位置に対応する。The voltage at the output terminal γ6 corresponds to the position in the Y-axis direction.

またこのとき抵抗シート62の下面と基板64の表面6
5も接触する。
Also, at this time, the lower surface of the resistor sheet 62 and the surface 6 of the substrate 64
5 also comes into contact.

従って端子74と75とに直流電圧を印加しておけば、
接触したX軸方向の位置に応じた分圧電圧が出力端子6
6に得られる。
Therefore, if a DC voltage is applied to terminals 74 and 75,
The divided voltage corresponding to the position of contact in the X-axis direction is output from output terminal 6.
6.

第12図は第11図の操作器の電気的接続を示゜す図で
、抵抗シート62の上面より上方に位置する部分すなわ
ちY軸方向の位置検出についてのみ示している。
FIG. 12 is a diagram showing the electrical connections of the operating device shown in FIG. 11, and only shows the portion located above the upper surface of the resistance sheet 62, that is, position detection in the Y-axis direction.

指で膜60を押さえると、抵抗体69と70により分圧
された直流電圧Vのうち一部が線状導体71を経て選択
される。
When the membrane 60 is pressed with a finger, a portion of the DC voltage V divided by the resistors 69 and 70 is selected via the linear conductor 71.

膜60の下面の電圧は出力端子76を介してFET77
のゲートに導かれる。
The voltage on the bottom surface of the membrane 60 is applied to the FET 77 via the output terminal 76.
will lead you to the gate.

FET77と抵抗79はソースホロワを構成し、ゲート
電圧に応じて端子80に出力電圧を出す。
FET 77 and resistor 79 constitute a source follower, and output voltage to terminal 80 according to the gate voltage.

ゲートにはキャパシタ78が接続されており、指を離し
て膜60と抵抗シート;62の接触が断たれても、それ
までのゲート電圧がキャパシタ78に長時間記憶される
A capacitor 78 is connected to the gate, and even if the finger is removed and the contact between the membrane 60 and the resistive sheet 62 is broken, the current gate voltage is stored in the capacitor 78 for a long time.

第11図の操作器の基板64の下に、磁性体の板を敷い
ておき、膜60の上に強力な磁石の小片を置き、磁石の
小片と磁性体の板との間の吸収力を利用して、膜60と
抵抗シート62と基板64とが接触するようにし、上記
磁石小片の位置によってX軸とY軸方向に応じた電圧を
取り出してもよい。
A magnetic plate is placed under the board 64 of the operating device shown in FIG. 11, and a small piece of a strong magnet is placed on the membrane 60 to increase the absorption force between the small piece of magnet and the magnetic plate. The film 60, the resistance sheet 62, and the substrate 64 may be brought into contact with each other, and voltages may be extracted in accordance with the X-axis and Y-axis directions depending on the position of the magnet pieces.

この場合には手を磁石小片から離しても接触は続けられ
る。
In this case, contact continues even if the hand is removed from the magnet piece.

第13図は共振峰をもつ涙波器2 1 ,22,26,
27の一例で、特に電圧で共振峰の共振周波数を制御す
るようにした例である。
Figure 13 shows lachrymal transducers 2 1 , 22, 26, with resonance peaks,
This is an example of No. 27, in which the resonant frequency of the resonant peak is controlled by voltage.

ここで入力端子81と位相反転型の増幅器83の入力端
とは抵抗82を介して接続され、増幅器83の入力端と
出力端子84とはキャパシタC1,C2と抵抗R1,R
2とにより構成される並列T回路85を介して結合され
ている。
Here, the input terminal 81 and the input terminal of the phase inversion type amplifier 83 are connected via a resistor 82, and the input terminal of the amplifier 83 and the output terminal 84 are connected to capacitors C1 and C2 and resistors R1 and R.
2 and 2 through a parallel T circuit 85.

並列T回路85はその定数を適切に選ぶことにより特定
の周波数の信号の通過を阻止し得ることが知られている
It is known that the parallel T circuit 85 can block passage of signals of specific frequencies by appropriately selecting its constants.

従って並列T回路を帰還回路としてもつ第13図の回路
は共振回路になる。
Therefore, the circuit of FIG. 13 having a parallel T circuit as a feedback circuit becomes a resonant circuit.

2つの抵抗R1とR2としてCdSホトセル素子を用い
、ランプL1とL2の光量によってそれらの抵抗値を可
変にすると、共振周波数が変化する。
When CdS photocell elements are used as the two resistors R1 and R2 and their resistance values are made variable depending on the light intensity of the lamps L1 and L2, the resonance frequency changes.

ランプL1,L2の光量は端子MとNに印加する電圧に
よって可変し得る。
The amount of light from the lamps L1 and L2 can be varied by changing the voltages applied to terminals M and N.

このようなF波器を第2図や第3図の戸波器2L22,
26,27として用いるならば、操作器9によって可変
抵抗器24や25の抵抗値を変える代りに、涙波器に与
える電圧を変えることにより、共振峰の共振周波数を変
えることが可能となる。
Such an F-wave device is shown in Fig. 2 and Fig. 3 as Toba device 2L22,
26 and 27, the resonant frequency of the resonant peak can be changed by changing the voltage applied to the tear wave device instead of changing the resistance values of the variable resistors 24 and 25 using the operating device 9.

第13図のように電圧で共振峰の共振周波数を制御する
ことのできる炉波器を使うと、上記操作器9以外に、変
調信号発生器から各戸波器毎に相異なる変調信号、例え
ば2つ沖波器に位相差の異なる正弦波信号を加えるよう
にできる。
When using a furnace wave generator that can control the resonant frequency of the resonance peak with a voltage as shown in FIG. It is possible to add sine wave signals with different phase differences to the transducer.

この場合第8図〜第11図の操作器によって円状の軌跡
の運動を行なったのと等価な変調効果が実現できる。
In this case, a modulation effect equivalent to the movement of a circular trajectory using the operating device shown in FIGS. 8 to 11 can be achieved.

また2つの炉波器に交いに相関のないランダムな信号を
それぞれ与えれば、操作器9を2次元の空間において、
ランダムに動かしたと同様の変調効果が得られる。
Furthermore, if uncorrelated random signals are given to the two wave generators, the controller 9 can be moved in two-dimensional space.
You can get the same modulation effect as if you moved it randomly.

またこれらの電気信号を混合して印加するようにしても
よい。
Alternatively, these electrical signals may be mixed and applied.

また炉波器21,22,26.27などの直列や並列の
混合型すなわち直並列型にしてもよい。
Further, the wave generators 21, 22, 26, 27, etc. may be of a mixed type in series or parallel, that is, a series/parallel type.

また共振峰の共振周波数に加えて、共振のQや、共振峰
のレベルなども制御するようにすれば、さらに微妙な音
色の制御が可能となる。
In addition to the resonance frequency of the resonance peak, if the Q of the resonance, the level of the resonance peak, etc. are controlled, even more delicate control of the timbre becomes possible.

また複数の共振峰の形状を同一とせず、相異なるように
すれば、同一の場合よりも多様な特性を実現し得る。
Further, by making the shapes of the plurality of resonance peaks different from each other instead of making them the same, it is possible to realize more diverse characteristics than if they were the same.

なぜならば、2つの共振峰の一方が高城側にあり他方が
低域側にあるときと、その逆に一方が低域側にあり他方
が高城側にあるときとで、振幅周波数特性が一致するこ
とは全くなくなるからである。
This is because the amplitude frequency characteristics match when one of the two resonance peaks is on the high frequency side and the other on the low frequency side, and conversely, when one is on the low frequency side and the other is on the high frequency side. This is because nothing will happen at all.

また第2図、第3図の入力端子20には鍵盤楽器以外の
例えばエレキギターなどの楽音信号を印加してもよい。
Furthermore, a musical tone signal from a musical instrument other than a keyboard instrument, such as an electric guitar, may be applied to the input terminal 20 in FIGS. 2 and 3.

上述説明において、共振峰をもつF波器を用いたが、そ
の一部または全部の代りに、減衰の大きい谷をもつ帯域
阻止涙波器を用いることもできる。
In the above description, an F-wave transducer having a resonant peak is used, but a band-stop wave transducer having a valley with large attenuation may be used in place of a part or all of the F-wave transducer.

また複数の炉波器の一部に低域炉波器を用いることもで
きる。
Moreover, a low range furnace wave device can also be used as a part of the plurality of furnace wave devices.

以上のように本発明はキースイッチで選択された音源信
号を音色回路に加えて所定の楽器音にし、この音色回路
の出力を上記音色回路とは別のp波器群を介して取出す
ように構成し、上記炉波器群を、振幅周波数特性に共振
峰または谷をもつ複数のP波器で構成し、これら戸波器
を並列または直列もしくは直並列に接続して、前記音源
信号の音域に従って前記戸波器の振幅周波数特性を変化
せしめるとともに、操作器の操作に従って前記炉波器の
振幅周波数特性を連続的に制御するようにしたものであ
る。
As described above, the present invention adds the sound source signal selected by the key switch to the timbre circuit to produce a predetermined musical instrument sound, and the output of this timbre circuit is taken out via a p-wave generator group separate from the timbre circuit. The above-mentioned wave wave device group is constituted by a plurality of P wave devices having resonance peaks or valleys in the amplitude frequency characteristic, and these wave wave devices are connected in parallel, in series, or in series and parallel, according to the sound range of the sound source signal. The amplitude frequency characteristic of the door wave device is changed, and the amplitude frequency characteristic of the door wave device is continuously controlled in accordance with the operation of an operating device.

このように音源信号を一度音色回路に加えて所定の楽器
音にし、この音色回路の出力を音色回路とは別に設けた
炉波器に加えてその振幅周波数特性を可変するようにす
れば、音色回路で形成された音色から大きく逸脱しない
範囲内で微妙な音色制御が行なえ、電子楽器の音色制御
装置としてきわめて有効なものとすることができる。
In this way, once the sound source signal is applied to the timbre circuit to create a predetermined instrument sound, and the output of this timbre circuit is applied to a reactor wave generator installed separately from the timbre circuit to vary its amplitude frequency characteristics, the timbre can be changed. Subtle timbre control can be performed within a range that does not significantly deviate from the timbre formed by the circuit, making it extremely effective as a timbre control device for electronic musical instruments.

また本発明によれば、音源信号の音域にしたがって炉波
器群の振幅周波数特性の共振峰や共振の谷の周波数を最
適のところに移動させることができるから、常に最適の
音を得ることができる。
Furthermore, according to the present invention, it is possible to move the frequencies of the resonance peaks and resonance valleys of the amplitude-frequency characteristics of the wave generator group to the optimum position according to the sound range of the sound source signal, so it is possible to always obtain the optimum sound. can.

たとえば音源信号の基本周波数やその高調波成分の周波
数が、共振峰の共振周波数と一致しないように制御して
、音量が極端に大きくなってしまうのを避けるとか、逆
にこれを積極的に利用して音源信号の基本周波数やその
高調波成分の周波数が常に共振峰の共振周波数と一致す
るように制御し、音量を極端に大きくすることもできる
For example, the fundamental frequency of the sound source signal and the frequency of its harmonic components can be controlled so that they do not match the resonance frequency of the resonance peak to avoid the volume becoming extremely loud, or conversely, this can be actively used. By controlling the fundamental frequency of the sound source signal and the frequencies of its harmonic components to always match the resonance frequency of the resonance peak, it is also possible to make the volume extremely loud.

また本発明によれば、操作器の操作により炉波器の振幅
周波数特性を連続的に制御するようにしているから、音
源信号の音域に従った音色制御と相俟って、さらに微妙
な音色制御が行なえる。
Furthermore, according to the present invention, since the amplitude frequency characteristics of the sound wave generator are continuously controlled by operating the operating device, in combination with the timbre control according to the range of the sound source signal, even more subtle timbre can be achieved. Can be controlled.

また本発明によれば、複数の炉波器を用いることにより
共振峰や共振の谷を数多く設けることができるから、自
然楽器に近いニュアンスも出しやすい。
Furthermore, according to the present invention, by using a plurality of resonance wave generators, it is possible to provide many resonance peaks and resonance valleys, so it is easy to produce nuances similar to those of a natural musical instrument.

たとえば人間の音声のフオルマンドは3つ以上あり、こ
れらの配列により母音のそれぞれを異ならしめることが
可能となるが、本発明を用いると、人間の母音のそれぞ
れに近い音をもつ楽器を作ることができる。
For example, there are three or more formans in the human voice, and it is possible to make each vowel different by arranging them, but by using the present invention, it is possible to create a musical instrument that has sounds close to each of the human vowels. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の音色制御装置を含む鍵盤式電子楽器の
ブロック図、第2図および第3図は本発明の要部の一例
を示すブロック図、第4図および第5図は本発明を説明
するための振幅周波数特性の一例図、第6図および第7
図は楽音信号の音域に応じた電圧を得るための回路の一
例図、第8図〜第11図は本発明に用いる操作器の一例
図、第12図は操作器の電気的接続例図、第13図は電
圧で制御する炉波器の一回路例図である。 1……音源、2……キースイッチ、3……音色回路、4
……洲波器群、6……直流電圧、7……キースイッチ、
8……演算回路、9……操作器、21,22,26,2
7……炉波器、24,25……可変抵抗器。
FIG. 1 is a block diagram of a keyboard-type electronic musical instrument including a timbre control device of the present invention, FIGS. 2 and 3 are block diagrams showing an example of essential parts of the present invention, and FIGS. Figures 6 and 7 are examples of amplitude frequency characteristics for explaining the
The figure is an example of a circuit for obtaining a voltage according to the range of musical tone signals, FIGS. 8 to 11 are examples of the operating device used in the present invention, and FIG. 12 is an example of the electrical connection of the operating device. FIG. 13 is an example circuit diagram of a furnace wave generator controlled by voltage. 1... Sound source, 2... Key switch, 3... Tone circuit, 4
...Suwa device group, 6...DC voltage, 7...key switch,
8... Arithmetic circuit, 9... Operating device, 21, 22, 26, 2
7... Reactor wave generator, 24, 25... Variable resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 キースイッチで選択された音源信号を音色回路に加
えて所定の楽器音にし、この音色回路の出力を上記音色
回路とは別の炉波器群を介して取出すように構成し、上
記炉波器群を、振幅周波数特性に共振峰または谷をもつ
複数のP波器で構成しこれらF波器を並列または直列も
しくは直並列に接続して、前記音源信号の音域に従って
前記p波器の振幅周波数特性を変化せしめるとともに、
操作器の操作に従って前記P波器の振幅周波数特性を連
続的に制御するようにした電子楽器の音色制御装置。
1. A sound source signal selected by a key switch is added to a timbre circuit to produce a predetermined musical instrument sound, and the output of this timbre circuit is taken out through a group of oven wave generators separate from the above-mentioned timbre circuit. The device group is composed of a plurality of P-wave devices having resonance peaks or troughs in their amplitude-frequency characteristics, and these F-wave devices are connected in parallel, in series, or in series-parallel, and the amplitude of the P-wave device is determined according to the sound range of the sound source signal. In addition to changing the frequency characteristics,
A timbre control device for an electronic musical instrument, wherein the amplitude frequency characteristic of the P-wave device is continuously controlled according to the operation of an operating device.
JP49098121A 1974-08-26 1974-08-26 Denshigatsuki no Neiroseigiyosouchi Expired JPS5812594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49098121A JPS5812594B2 (en) 1974-08-26 1974-08-26 Denshigatsuki no Neiroseigiyosouchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49098121A JPS5812594B2 (en) 1974-08-26 1974-08-26 Denshigatsuki no Neiroseigiyosouchi

Publications (2)

Publication Number Publication Date
JPS5125122A JPS5125122A (en) 1976-03-01
JPS5812594B2 true JPS5812594B2 (en) 1983-03-09

Family

ID=14211450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49098121A Expired JPS5812594B2 (en) 1974-08-26 1974-08-26 Denshigatsuki no Neiroseigiyosouchi

Country Status (1)

Country Link
JP (1) JPS5812594B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581799B2 (en) * 1976-06-16 1983-01-12 松下電器産業株式会社 Tone control device
JPS5379522A (en) * 1976-12-23 1978-07-14 Nippon Gakki Seizo Kk Electronic musical instrument
JPH0656651B2 (en) * 1980-05-28 1994-07-27 富士通株式会社 Magnetic disk
US4612279A (en) * 1985-07-22 1986-09-16 Eastman Kodak Company Protective overcoat for photographic elements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499371A (en) * 1972-05-23 1974-01-26
JPS4952617A (en) * 1972-09-19 1974-05-22

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827308B2 (en) * 1971-03-22 1973-08-21
JPS4958332U (en) * 1972-08-29 1974-05-23
JPS4974227U (en) * 1972-10-12 1974-06-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499371A (en) * 1972-05-23 1974-01-26
JPS4952617A (en) * 1972-09-19 1974-05-22

Also Published As

Publication number Publication date
JPS5125122A (en) 1976-03-01

Similar Documents

Publication Publication Date Title
US3626350A (en) Variable resistor device for electronic musical instruments capable of playing monophonic, chord and portamento performances with resilient contact strips
US4306480A (en) Electronic musical instrument
US4044642A (en) Touch sensitive polyphonic musical instrument
US4257305A (en) Pressure sensitive controller for electronic musical instruments
US4336734A (en) Digital high speed guitar synthesizer
US2142580A (en) Electrical musical instrument
US3965789A (en) Electronic musical instrument effects control
US20110290099A1 (en) Intuitive Electric Guitar Switching for Selecting Sounds of Popular Guitars
US3624583A (en) Playing devices for electronic musical instruments
US3609203A (en) Partamento musical instrument having a single tone and envelope control
US3694559A (en) Electronic musical instrument employing variable resistor fingerboards
US3673304A (en) Electronic guitar having plural output channels, one of which simulates an organ
US2045172A (en) Musical instrument
JPS5812594B2 (en) Denshigatsuki no Neiroseigiyosouchi
US4244261A (en) Electronic keyboard musical instrument
JP3074797B2 (en) Keyboard device
US3553336A (en) Accenter touch bar for electronic musical instrument
US3681507A (en) Electronic organ voicing control mounted on voice tab
US4305321A (en) Electrical control devices
US4448103A (en) Tunable bass-tone device
US3474182A (en) Musical instrument employing single unijunction transistor oscillator in which volume is controlled by key displacement
US3776087A (en) Electronic musical instrument with variable impedance playboard providing portamento
US4621557A (en) Electronic musical instrument
US2809547A (en) Intensity control device for electrical musical instrument
US2215709A (en) Apparatus for the production of music