US2215709A - Apparatus for the production of music - Google Patents

Apparatus for the production of music Download PDF

Info

Publication number
US2215709A
US2215709A US260677A US26067739A US2215709A US 2215709 A US2215709 A US 2215709A US 260677 A US260677 A US 260677A US 26067739 A US26067739 A US 26067739A US 2215709 A US2215709 A US 2215709A
Authority
US
United States
Prior art keywords
key
tone
resistance
capacity
oscillations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US260677A
Inventor
Benjamin F Miessner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miessner Inventions Inc
Original Assignee
Miessner Inventions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miessner Inventions Inc filed Critical Miessner Inventions Inc
Priority to US260677A priority Critical patent/US2215709A/en
Application granted granted Critical
Publication of US2215709A publication Critical patent/US2215709A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/02Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos
    • G10H1/04Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation
    • G10H1/053Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/32Constructional details
    • G10H1/34Switch arrangements, e.g. keyboards or mechanical switches specially adapted for electrophonic musical instruments
    • G10H1/344Structural association with individual keys

Definitions

  • This invention relates to the production of music, and more particularly to music production under the control of playing keys, or a keyboard.
  • the invention is especially adapted and has been illustrated and described for use with instruments wherein sound-representing electric oscillations are supplied to an electro-acoustic translating device for output tone production, the supply (or excitation of the translating device) being. controlled by the keys-by control either of the original oscillation generation or of the transmission of the oscillations to the translating device.
  • An important aspect of the invention is concerned with the control over the' output tone characteristics through the touch employed by the player on the individual keys. It is an object to provide effective such control in a simple, novel and improved manner.
  • Figure l is a View, partly in elevation and partly schematic, of a portion of a musical instrument embodying my invention in one form;
  • Figure 2 is a horizontal cross-sectional view I taken along the line 2-2 of Figure 1;
  • Figure 3 is a vertical cross-sectional view along the line 33 of Figure 1;
  • Figure 4 is a view, partly in elevation and partly schematic, of a portion of a musical intaken R THE PRODUCTION OF MUS Benjamin F. Miessner, lv lillburn Township, Essex to Miessner Inventions, p, N. 3., a corporation oil 939, Serial No. 260,677
  • Figure 6 is a view; partly in elevation and partly schematic, of a portion of an instrument embodying my invention in yet another form.
  • I adapt the simpledisplacement-responsive system to operate in the manner described essentially by providing an appropriate resilient stop for the downstroke of the key.
  • This stop is arranged to be quite abruptly impinged on by the key, or some portion of the movable system of which the key is a part, at the end of a normal key depression; and the electrical control exerted by the key is arranged so that throughout this normal key depression the tone will be produced in a substantially smoothly rising amplitude up to a normal" amplitude.
  • the stop initially (i.
  • a substantial resistance preferably of the order of the static resistance of the key to initial depression, or greater, and for example of several ounces: a light and relatively slow key depression will therefore be effectively limited by the stop to a normal depression, and will produce an organ-like tone of normal amplitude.
  • the stop is yieldable throughout a substantial further range of key depression, however, with a resistance materially exceeding the static resistance abovementioned.
  • the stop may be said to be impinged on at an intermediate point in the operative downstroke of the key-i. e., the downstroke throughout which the key movement causes variation of the output tone amplitude.
  • the momentum developed by the mass of and associated with the key-and Upon more rapid key depressions the momentum developed by the mass of and associated with the key-and, if finger contact with the key is maintained throughout the depression, the momentum developed by the mass of the players finger and the momentum of the mass connected therewith, (hand and even fore-arm)-will cause the key momentarily to overshoot the normally depressed position, and to produce a tone with an initial peak, the distance of the overshooting and the amplitude of the peak being dependent on the momenta abovementioned.
  • the energy stored in the now-compressed or -defiected stop will cause a prompt return of key depression and tone amplitude to lower values.
  • the most successful use of the apparatus depends upon the establishment of a significant normal key depression, at which there will be a material (though preferably minor fraction of the maximum available) tone amplitude, up to which the reaction to rapid key depression is predominantly a mass reaction rather than a resilient reaction, and at which the reaction changes to be strongly resilient therebeyond.
  • the apparatus thus dififers from displacement-responsive systems wherein there is a smoothly continuous reaction of either or both types throughout the tone-producing range of key depression. It is also to be observed that the successful use of the apparatus requires that the tone production shall be progressively or substantially smoothly responsive to key displacement and, in contrast to the reaction to key depression, uncharacterized by any substantial discontinuity.
  • the broader aspects of my invention are applicable to any key-controlled electroacoustic instrument whose output tones are responsive to key displacement; obviously this comprises a wide variety of instruments.
  • the instrument may involve for example key control of the transmission of the oscillations between the generator which produces them and the output translating device, or on the other hand key control of the generation of the oscillations; in either of these or analogous cases, of course, the controlling device when active may be said to have one or another form of operative connection with the generating means, and its broad function may be said to'be the controlled subjection of the translating device to excitation by the generating means.
  • the instrument may involve for example the variation of a coupling (for example of resistive, electrostatic or electromagnetic type, and for example in series or shunt arrangement) either foroscillations of the tone frequencies or for high-frequency oscillations modulated at the tone frequencies, or variation of a DC. sensitization or excitation of the oscillation generators or transmitting devices, or other appropriate variation.
  • a coupling for example of resistive, electrostatic or electromagnetic type, and for example in series or shunt arrangement
  • foroscillations of the tone frequencies or for high-frequency oscillations modulated at the tone frequencies or variation of a DC. sensitization or excitation of the oscillation generators or transmitting devices, or other appropriate variation.
  • a coupling for example of resistive, electrostatic or electromagnetic type, and for example in series or shunt arrangement
  • foroscillations of the tone frequencies or for high-frequency oscillations modulated at the tone frequencies or variation of a DC. sensitization or excitation of the oscillation generators or transmitting devices, or
  • FIGs 1, 2 and 3 I show my invention embodied in an instrument wherein the generators are in the form of a plurality of tuned reeds for each note and a plurality of mechanico-electric translating devices or-pick-ups associated with each reed.
  • control is exerted by the keys over the transmission of oscillations between the generators and the output loudspeaker; and this control is effected by variation of an electrostatic series coupling.
  • each' may be mounted on its own usual reed base (2a, 2b or 2c), and may be arranged for continuous pneumatic excitation by means not herein necessary to show.
  • Adjacent each reed may be provided a plurality of pick-up electrodes each for example in the form of an adjustable screw, two such electrodes being shown with each reed in the figure.
  • 3b and for the respectivereeds may be positioned to be approached and receded from by the free end portion of the reed once during each cycle of the reed vibration; the other (4a, 4b and do for the respective reeds) may be positioned to be passed by the free end of the reed twice each cycle.
  • the reeds are connected to ground (by which is meant a reference potential) through high-resistance means; these have been shown as resistance 5a for reeds la and lb, and as resistance 50 for reed ic. Between each pick-up electrode and ground there is impressed an adjustable voltage.
  • the capacities between the pickup electrodes and their respective reeds serve to transmit the high-frequency oscillations from the potentiometer 8 to the respective high resistances 5a and 5c, and in that transmission to modulate those oscillations, to produce across the high resistances high-frequency voltages in which the frequencies and waveforms of the modulations P correspond in general to the frequencies and waveforms of the modulations correspond in general to the frequencies and waveforms mentioned in the preceding paragraph for the tone-representing oscillations across those resistances.
  • the operation of high-frequency modulating apparatus of this character has been disclosed and more detailedly described in U. S. Patent No.
  • the tone-representing oscillations (or the modulations of the high-frequency oscillations) across the resistance 5a may be shifted through a wide range of waveforms, for control of the timbre
  • any number of reeds and any number of pick-up electrodes therewith may be employed in the main generating means, the numbers shown being by way of example only.
  • FIG. 1 there will be seen a cascade of apparatus comprising the amplifier i l, potentiometer or volume-level control l2 operated for example by pedal l3, further amplifier l4, and loudspeaker 05; the voltages from across the high resistances (e. g., 5a) for the several notes of the instrument of course be understood that if the source 9 be operated as a high-frequency source, to result in the development of modulated high-frequency oscillations for transmission to the input of amplifier i i, the latter element will be operated as a demodulator as well as as an amplifier. Thus in any event tone-representing audible-frequency oscillations are passed through the elements I 2 and M to the output loudspeaker it, to be translated by the latter into output tones.
  • the amplifier i l potentiometer or volume-level control l2 operated for example by pedal l3, further amplifier l4, and loudspeaker 05
  • the voltages from across the high resistances e. g., 5a
  • the displacement-responsive system it for the illustrated note is immediately associated with the key 25.
  • This key for example of usual wooden form, is pivoted on the pivot rail 22; its rear portion normally rests on a hard felt or other rear downstop 23; and its front portion is depressible toward a hard felt front downstop which is of the usual form, substantially incomepressible and negligibly resilient, and is provided in this instance only as an ultimate stop for lzey depression.
  • Both front and rear portions of the key are provided with inset weights 25.
  • the differential weighting of front and rear portions may be such as to provide the usual 2- to 3-ounce static resistance to key depression; the total weighting of the two portions may be such as to approximate the dynamic or mass reaction to the first portion ofkey depression which is common in the conventional piano.
  • the effective value of this coupling capacity 30 is varied by key displacement; specifically in the showing of this figure, this effective value is normally rendered zero by a grounded shield carried by the key and normally extending fully between the plates of the capacityto be upwardly withdrawn, and to expose those plates to each other, by and in accordance with key depression.
  • and 32 of the capacity 30 are shown as generally vertically disposed and,
  • the grounded shield 33 is likewise generally vertically disposed and, as seen in Figure 2, may be of S -shape interwoven between and in slight spaced relationship to the plates 3
  • Figure 2 further illustrates the optional inclusion of thin sheets of dielectric 34 secured against the surfaces of the plate 33.
  • the shield 33 When the key is in its rest position the shield 33 may extend to just below the bottom of the plates 3
  • the shield 33 Upon key movement to its normally depressed position, wherein its rear portion is just in contact with the undeiiected spring 26, the shield 33 will be upwardly withdrawn to expose approximately the lower half, or somewhat less than-half, of the plates 3
  • depression of the key with any more than very low velocity will cause the key to execute an excursion beyond its normally depressed position; this excursion causes a corresponding upward excursion of the spring 26, of the shield 33 to expose still more of the plates 3
  • Figure 1 illustrates another feature of my invention. This resides in the introduction into the output tone of an extra complement of higher partials at higher tone amplitudes, particularly during the initial peak above mentioned.
  • a generator for these higher partials may be provided by the reed l0 and its two pick-up electrodes, above described, the two adjustable contacts 6 connected with those electrodes serving to adjust the waveform of the oscillations (or of the modulations of high-frequency oscillations) appearing from this generator across the resistance 50.
  • c may for example be of the fundamental frequency of the note for which it is employed; it may be of a type best adapted for a large harmonic de- 'velopment.
  • the capacity 40 which may be positioned underneath the key slightly forwardly of the capacity 30, may comprise stationary plates 4
  • and 42 may be made sufiicient so that the effective inter-plate capacity remains at zero until the key has been depressed to or almost to its normally depressed position; accordingly the introduction of the extra complement of higher partials will begin after the main tone has reached appreciable amplitude, and will be most significant in, if not limited to, the higher tone amplitudes temporarily occurring during the initial peaks or deliberately maintained thereafter by heavy pressure on the key.
  • grounded electrostatic shielding will be appropriately employed to suppress sensitivity of the apparatus to stray electrostatic fields and to prevent undesired interactions between various components of the circuit, among them components for respectively different notes.
  • the use of such shielding has been schematically indicated in Figure 1 by the dash-dot line 31, which also serves to indicate a line of division between apparatus peculiar to one note and apparatus common to all notes.
  • Figure 4 I show a simple illustration of a modified arrangement wherein, by way of example, the coupling capacities are of a different form which may have a finite minimum or residual capacity, and wherein the generator circuit is re-arranged to permit a simple bucking out of the effect of this residual capacity,
  • a single reed for the illustrated note is shown as la, mounted on base 2a, and provided with the pick-up electrodes 3a and 4a.
  • the electrodes are shown connected to respective variable contacts 6 on the groundedcenter-tap potentiometer 8 (which shunts the source 8 as before) through the high resistances 45 and 46 respectively; and to render the lower extremities of these resistances substantially at ground potential as far as oscillations are concerned those extremities may be by-passed to ground through respective condensers 41 and 48.
  • the reed la may be connected to ground through a resistance 44 of a value which is a minor fractioii of that of either 35 or 46.
  • tone-representing oscillations or modulations of high frequency oscillations if the source 9 be operated as'a high frequency source
  • the downstop is only an'ultimate stop and may even be omitted.
  • the key may be provided, preferably near its front, with inset weights 25 for dynamic or mass reaction as mentioned in connection with Figure 1; in this instance all the weighting for dynamic purposes is forward of the pivot, and the spring 49 will be chosen in view of this weighting to provide the usual static resistance to key depression.
  • the displacement-responsive system 50 associated with the key 50 includes a coupling capacity lit electrically interposed between the electrode extremity of the high resistance 45 and the ungrounded input terminal of amplifier II.
  • This capacity may be formed by a stationary electrode 62, mounted to the' bottom of the enclosure through insulation BI, and a movable electrode 63 thereabove.
  • This movable electrode may be in the form of a plunger conductively secured to the bottom of the front portion of a leaf spring 56, whose rear extremity is mounted to the enclosure through insulation 65.
  • a rod 61, secured to the bottom of the key may extend downwardly to touch the top of spring 66 a little behind the electrode :53, the spring having a light upward bias against the rod and therefore moving in accordance with key movement.
  • a piece til of resilient, compressible dielectric On top of the'electrode 52 is mounted a piece til of resilient, compressible dielectric; rubber may be satisfactorily employed, and a tough grade of sponge rubber may be mentioned as one particular example.
  • This dielectric til functions as the resilient stop for key depression. In the first portion of that depression the electrode $3 is brought downwardly into contact with the top of the dielectric raising the value of the coupling capacity from its very low minimuzn to a substantial value; the key has now reached its normally depressed position.
  • the coupling capacity til functions to control the supply to amplifier ll of oscillations from the high resistance 35 (i. e., translated from the reed by electrode to).
  • I have shown the employment of the oscillations from the high-resistance 46 (i. e., translated by the electrode do) as a second series, or extra complement predominating in higher partials.
  • To control their supply to the amplifier I have shown a. second coupling capacity behind but similar to the capacity 50, and so comprising stationary electrode 12 mounted on insulation H, movable electrode in the form of plunger 13 conductively secured to spring 66, and dielectric 14 mounted on top of electrode 12.
  • shielding enclosures 69 may be provided around the stationary electrodes, the enclosures being apertured for the plungers 63 and 73 and those plungers rising to outside the enclosures. Even then, however, there may be too much residual capacity for satisfactory elimination of residual tone with the key up, and to eliminate this I have shown a buckling arrangement.
  • the spring 66 (which forms a common element connecting the two capacities to the amplifier I I) there may be mounted, in a suitable insulating block ii, a screw 18 which has an adjustable small capacity to spring 66 when the'key is in up position.
  • This screw is connected to the reed end of resistance 44, across which there has been seen to appear a superimposed, reduced-amplitude and opposite-phase replica of the oscillations across t5 and 46.
  • variable contacts 6 on the potentiometer serve to adjust the relative amplitudes and phases of the two series of partials (from electrodes ed and la respectively), thus providing a master control for the entire instrument of the degree and character of tone brightening" at higher tone amplitudes.
  • the series from the electrode ta inherently predominates in higher partials in view of the electrode positioning, additional such predominance may be provided if desired by employing, between it and the electrode F2 in capacity 10, a filter 38-33 such as described in connection with Figure 1.
  • the displacement-responsive system comprises a pick-up coil 82 mounted on top of the key, for example through a small spacer 83; displaced, for example in the longitudinal direction of the key, from the coil 8
  • is positioned in the vertical direction so that this axis displacement when the key is in rest position will result in zero coupling between the coils; and the vertical coil dimensions are so chosen that the full maximum possible key depression will bring the axes into substantial coincidence.
  • the coil 82 is connected to the input of the amplifier H, which may be operated also as a demodulator.
  • the coupling between the coils, and the tone oscillations from the amplifier II will be progressively increased; the resilient stop 26, however, functions as before to render the normal key depression only a fraction of the maximum possible depression, and the system functions in an ultimate sense as those above described.
  • FIG 6 I have shown the embodiment of my invention in a case wherein the displacementresponsive system operates by controlling the sensitizing or polarizing voltage supplied to the generator.
  • the key appears as 5
  • a generator is formed by the reed la and pick-up electrode 30, the electrode being connected to ground through a conductor 91 and resistance 98, and the reed being connected to ground through high resistance 5a, across which amplifier I I is connected.
  • the amplitude of tone-representing oscillations developed by the generator across the high resistance 5a, and hence the output tone amplitude, is a function of the amplitude of a D. C. voltage impressed across resistance 98, and the displacement-responsive system operates to control this voltage.
  • This system may for example comprise a relatively high stack 9
  • When the key is in rest position the resistance of the stack 9
  • a musical instrument including electroacoustic translatingmeans and oscillation-generating means: the combination of a movable system comprising a depressiblekey; means for subjecting said translating means to excitation by said generating means, connected with said movable system for progressive operation thereby in accordance with key displacement and operatively connected with said generating means throughout the operative downstroke of said key, whereby output tone amplitude is caused to progressively vary with key displacement; and a resilient stop impinged on by said movable system at an intermediate point in the operative downstroke of the key, said stop being yieldable throughout at least an additional amplitudedoubling downstroke of the key.
  • a musical instrument including electro acoustic translating means and oscillation-generating means: the combinationoi a movable system comprising a depressible key; means for subjecting said translating means to excitation by said generating means, connected with said movable system for progressive operation thereby in accordance with key displacement and operatively connected with said generating means throughout the operative downstroke of said key, whereby output tone amplitude iscaused to progressively vary with key displacement; a resilient stop impinged on by said movable system at an intermediate point in the operative downstroke of the key; and inertia means, carried by said movable system, for causing a substantial temporary yielding of said stop at higher key velocities.
  • a musical instrument including electroacoustic translating means and oscillation-generating means: the combination of a'movable system comprising a depressible key; means tor subjecting said translating means to excitation by said generating means, connected with said movable system ior progressive operation thereby in accordance with key displacement and opcratively connected with said generating means throughout the operative downstroke of said key, whereby output tone amplitude is caused to progressively vary with key displacement; and
  • a musical instrument including oscillation-generating means and electro-acoustic translating means excited thereby to produce output tones: the combination of a movable system comprising a depressible key; excitationcontrol' means, connected with said key for progressive operation thereby .and operatively connected with said generating means throughout the operative downstroke of said key, for rendering the output tone amplitude responsive to key displacement;. and substantially yield'able resilient stop means, impinged on by said moving system at an intermediate point in the operative downstroke of the key, for both rendering the initial portion of the output tone envelope responsive to velocity of the key and rendering the later portion 01' the envelope responsive to pressure on the key.
  • excitation-control means comprises variable coupling means interposed between said generating means and said translating means.
  • excitation-control means comprises a. variable capacity and wherein said resilient stop comprises a dielectric in said capacity.
  • a musical instrument including an oscilladen-generating device and an electro-acoustic translating device: the combination of a key depressible from rest position; variable coupling means operatively connected with said key for variation thereby, and electrically connected between said devices for transferring oscillations therebetween, said coupling means being characterized by a residual coupling when the key is in rest positionj and an auxiliary coupling means, interposed between saiddevices and connected to one of said devices in opposd phase relationship to the connection to that device of said first-mentioned coupling means, for balacing out oscillations transferred through said residual coupling.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)

Description

' EAQ a. F. MRESSNER Z ZTSSfiQQ APZ ARATUS FOR THE PRODUCTION OF MUSIC Filed March 9, 1939 2 Sweets-Sheet l W B. F. MIEssNER v 9 APPARATUS FOR THE PRODUCTION OF MUSIC Filed March 9, 1939 2 Shams-Sheet 2 Patented Sept. 24, 1940 inane APPARATUS F @ounty, N. 1., assignor Inc, Millburn Townshi New Jersey Application March 9, l
14 Claims.
This invention relates to the production of music, and more particularly to music production under the control of playing keys, or a keyboard. The invention is especially adapted and has been illustrated and described for use with instruments wherein sound-representing electric oscillations are supplied to an electro-acoustic translating device for output tone production, the supply (or excitation of the translating device) being. controlled by the keys-by control either of the original oscillation generation or of the transmission of the oscillations to the translating device.
An important aspect of the invention is concerned with the control over the' output tone characteristics through the touch employed by the player on the individual keys. It is an object to provide effective such control in a simple, novel and improved manner.
It is an object to provide effective velocityresponsive control over the early tone envelope characteristics in such a manner.
It is an object to provide efiective such velocity-responslve control in conjunction with cf- 25 festive pressure-responsive control over the later tone envelope characteristics.
It is an object to extend these controls to characteristics of the tone other than the envelope.
It is an object to adapt a simple displacementresponsive control to provide efifective velocity response.
It is an object to provide, in simple and improved manner, a. response of the harmonic 35 structur of the output tones to the touch.
It is an object to provide in such'a manner an initial extra brightness of tone such as characterizes the piano and other instruments.
It is an objectto provide an improved combination of key and means for coupling the generating means to the translating device.
Other and allied objects will more fully appear from the following description and the appended claims.
In the description reference is had to the accompanying drawings, of which:
Figure l is a View, partly in elevation and partly schematic, of a portion of a musical instrument embodying my invention in one form;
Figure 2 is a horizontal cross-sectional view I taken along the line 2-2 of Figure 1;
Figure 3 is a vertical cross-sectional view along the line 33 of Figure 1;
Figure 4 is a view, partly in elevation and partly schematic, of a portion of a musical intaken R THE PRODUCTION OF MUS Benjamin F. Miessner, lv lillburn Township, Essex to Miessner Inventions, p, N. 3., a corporation oil 939, Serial No. 260,677
mbodying my invention in another [embodying my invention in still another form; 5
and
Figure 6 is a view; partly in elevation and partly schematic, of a portion of an instrument embodying my invention in yet another form.
It is a well-recognized fact that an extremely 10 effective touch-response, to which players very instinctively adapt themselves, lies in response to velocity of key depression. This is the essential touch-response of the piano; therein the amplitude of tone inception, after which the tone of course decays, is directly responsive to key velocity. This response isinherently provided in the piano typeof instrument since the tonal characteristics depend on the velocity of the hammer in striking the string, and that hammer velocity is naturally dependent on key velocity. The simpler forms of key control of electric oscillation generation or transmission, however, usually provide a response to distance of key depression, or displacement. This 1'8-25 spouse, in its basic form, is not one to which most playersinstinctively or readily adapt themselves. I have found, however, that I may very readily adapt a simple displacement-responsive system to provide an effective velocity-responsive production of decadent-type tones.
By the same arrangement I am able to provide, after an inherent initial decadence immediately following the tone inception, a continuing control over the individual'tone through key-pressure. This latter feature, known in itself but not alone of very great value, is extremely useful in its integral relationship to the velocity-controlled tone inception according to my invention; thus it may be considered that the key control over the tone becomes automatically transferred from the early velocity-control to the later pressurecontrol. Since, throughout a very wide rade of tonal variation, it is the initial portion of any tone which is principally efiective in establishing the sensation of volume and tone-type, these characteristics are efiectively established under the desirable. velocity-control; the ability to exert a continuing control over the tone, however; frees the later portion of the tone from the lim- 5o itation of uniquely'fixed relationship to the early portion, and an almost endless variety of overall envelope effects are made available-all at the instant command of the player for every note he plays.
I establish a certain minimum volume (subject of course to variation by general or master volume-level controls) which will be reached even at low key velocities, provided the normal distance of key depression is traversed (a slow, incomplete traversal remaining available for even lower volumes). If a low key velocity is used the note will attain this volume without indulging in an initial peak and decadence therefrom; and since it may be maintained at this volume indefinitely, in view of the automatic transfer of control abovementioned, true organ-like tones may be produced-at will, among the production of pianistic and other tones, and purely in response to the touch employed.
I adapt the simpledisplacement-responsive system to operate in the manner described essentially by providing an appropriate resilient stop for the downstroke of the key. This stop is arranged to be quite abruptly impinged on by the key, or some portion of the movable system of which the key is a part, at the end of a normal key depression; and the electrical control exerted by the key is arranged so that throughout this normal key depression the tone will be produced in a substantially smoothly rising amplitude up to a normal" amplitude. The stop initially (i. e., when first impinged on), or after it has yielded negligibly, may have a substantial resistance, preferably of the order of the static resistance of the key to initial depression, or greater, and for example of several ounces: a light and relatively slow key depression will therefore be effectively limited by the stop to a normal depression, and will produce an organ-like tone of normal amplitude. The stop is yieldable throughout a substantial further range of key depression, however, with a resistance materially exceeding the static resistance abovementioned. Thus the stop may be said to be impinged on at an intermediate point in the operative downstroke of the key-i. e., the downstroke throughout which the key movement causes variation of the output tone amplitude.
Upon more rapid key depressions the momentum developed by the mass of and associated with the key-and, if finger contact with the key is maintained throughout the depression, the momentum developed by the mass of the players finger and the momentum of the mass connected therewith, (hand and even fore-arm)-will cause the key momentarily to overshoot the normally depressed position, and to produce a tone with an initial peak, the distance of the overshooting and the amplitude of the peak being dependent on the momenta abovementioned. The energy stored in the now-compressed or -defiected stop will cause a prompt return of key depression and tone amplitude to lower values. In the case of only light continued pressure on the key, these lower values will be substantially the normal V values; but by higher continued pressures the values to which the return occurs will be maintained correspondingly above normal. While there would :appear a tendency toward return of the tone, whether of high or only slight initial peak, to a uniform normal amplitude, this is oil'- set to a surprising degree by an inherent tendency of the player to exert a greater continuing pressure on the key the greater the velocity with which he has depressed it-thus tending toward the more usual proportionality between amplitudes of initial peak and tone continuance. Accordingly the player with touch habits developed on the piano, for example, will instinctively produce quite pianistic eilects with the instant apparatus; and so rapidly as hisimagination and desire may dictate, he may develop a facility in the exploitation of the far wider expressive p ossibilities now opened up.
It is to be understood that the most successful use of the apparatus depends upon the establishment of a significant normal key depression, at which there will be a material (though preferably minor fraction of the maximum available) tone amplitude, up to which the reaction to rapid key depression is predominantly a mass reaction rather than a resilient reaction, and at which the reaction changes to be strongly resilient therebeyond. The apparatus thus dififers from displacement-responsive systems wherein there is a smoothly continuous reaction of either or both types throughout the tone-producing range of key depression. It is also to be observed that the successful use of the apparatus requires that the tone production shall be progressively or substantially smoothly responsive to key displacement and, in contrast to the reaction to key depression, uncharacterized by any substantial discontinuity.
In general, the broader aspects of my invention are applicable to any key-controlled electroacoustic instrument whose output tones are responsive to key displacement; obviously this comprises a wide variety of instruments. In respect of the point where control is exerted over the supply of oscillations to the output translating device, the instrument may involve for example key control of the transmission of the oscillations between the generator which produces them and the output translating device, or on the other hand key control of the generation of the oscillations; in either of these or analogous cases, of course, the controlling device when active may be said to have one or another form of operative connection with the generating means, and its broad function may be said to'be the controlled subjection of the translating device to excitation by the generating means. In respect of the manner in which the control is exerted, the instrument may involve for example the variation of a coupling (for example of resistive, electrostatic or electromagnetic type, and for example in series or shunt arrangement) either foroscillations of the tone frequencies or for high-frequency oscillations modulated at the tone frequencies, or variation of a DC. sensitization or excitation of the oscillation generators or transmitting devices, or other appropriate variation. Likewise in respect of the form of the generators, no limitations as to broader aspects are intended, as obviously there may be employed any of a variety of forms of generators and of interrelationships between the generators. It will accordingly be understood that the following description of specific embodiments is presented principally in an illustrative rather than in a limitative sense.
In Figures 1, 2 and 3 I show my invention embodied in an instrument wherein the generators are in the form of a plurality of tuned reeds for each note and a plurality of mechanico-electric translating devices or-pick-ups associated with each reed. In this instrument control is exerted by the keys over the transmission of oscillations between the generators and the output loudspeaker; and this control is effected by variation of an electrostatic series coupling.
In Figure 1 there are shown three reeds, la,
lb and lo, employed in the oscillation generating means for one note; each'may be mounted on its own usual reed base (2a, 2b or 2c), and may be arranged for continuous pneumatic excitation by means not herein necessary to show. Adjacent each reed may be provided a plurality of pick-up electrodes each for example in the form of an adjustable screw, two such electrodes being shown with each reed in the figure. One of these (3a. 3b and for the respectivereeds) may be positioned to be approached and receded from by the free end portion of the reed once during each cycle of the reed vibration; the other (4a, 4b and do for the respective reeds) may be positioned to be passed by the free end of the reed twice each cycle. The reeds are connected to ground (by which is meant a reference potential) through high-resistance means; these have been shown as resistance 5a for reeds la and lb, and as resistance 50 for reed ic. Between each pick-up electrode and ground there is impressed an adjustable voltage. For this purpose there may be employed a voltage source 9 shunted by a potentiometer 8 having grounded center-tap l; and a lurality of adjustable contacts 6, each movable over the entire potentiometer resistance independently of the positions of the others, the several contacts 6 being respectively connected to the pick-up electrodes.
The source 9 being operated as a high-voltage D. C. source, the minute capacities between the pick-up electrodes and their respective reeds are charged to high voltages through the respective high resistances to and 5c; the vibratory variations of these capacities cause the appearance across the respective high resistances of tonerepresenting oscillatory voltages each of fundamental frequency and waveform determined by the reed frequency and waveform and the relationship of the respective electrode to the reed. The amplitudes and phases of these several oscil latory voltages are respectively controlled by the adjustments of the respective potentiometer contacts 6 relative to the center-tap '5; and it will be understood that the several voltages which appear across each single one of the two high resistances 5a and 5c are therein superimposed on one another. The operation of arrangements of this character has been disclosed and more detailedly described in my co-pending applications Serial No. 758,155, filed December 19, 1934; Serial No. 67,245, filed March 5, 1936; and Serial No.
91,092, filed July 17, 1936, in which applications various claims to such arrangements have been made. I
If the source 9 be operated as a high-frequency oscillation source, the capacities between the pickup electrodes and their respective reeds serve to transmit the high-frequency oscillations from the potentiometer 8 to the respective high resistances 5a and 5c, and in that transmission to modulate those oscillations, to produce across the high resistances high-frequency voltages in which the frequencies and waveforms of the modulations P correspond in general to the frequencies and waveforms of the modulations correspond in general to the frequencies and waveforms mentioned in the preceding paragraph for the tone-representing oscillations across those resistances. The operation of high-frequency modulating apparatus of this character has been disclosed and more detailedly described in U. S. Patent No.
2,140,025, issued December 13, 1938, on application of myself.
In Figure 1 the two reeds la and lb and the of the output tone.
the second) thereof, and by appropriately shifting the adjustments of the contacts 6 which are con-;. nected to pick-up electrodes for those reeds, the tone-representing oscillations (or the modulations of the high-frequency oscillations) across the resistance 5a, may be shifted through a wide range of waveforms, for control of the timbre Of course any number of reeds and any number of pick-up electrodes therewith may be employed in the main generating means, the numbers shown being by way of example only.
In Figure 1 there will be seen a cascade of apparatus comprising the amplifier i l, potentiometer or volume-level control l2 operated for example by pedal l3, further amplifier l4, and loudspeaker 05; the voltages from across the high resistances (e. g., 5a) for the several notes of the instrument of course be understood that if the source 9 be operated as a high-frequency source, to result in the development of modulated high-frequency oscillations for transmission to the input of amplifier i i, the latter element will be operated as a demodulator as well as as an amplifier. Thus in any event tone-representing audible-frequency oscillations are passed through the elements I 2 and M to the output loudspeaker it, to be translated by the latter into output tones.
The displacement-responsive system it for the illustrated note is immediately associated with the key 25. This key, for example of usual wooden form, is pivoted on the pivot rail 22; its rear portion normally rests on a hard felt or other rear downstop 23; and its front portion is depressible toward a hard felt front downstop which is of the usual form, substantially incomepressible and negligibly resilient, and is provided in this instance only as an ultimate stop for lzey depression. Both front and rear portions of the key are provided with inset weights 25. The differential weighting of front and rear portions may be such as to provide the usual 2- to 3-ounce static resistance to key depression; the total weighting of the two portions may be such as to approximate the dynamic or mass reaction to the first portion ofkey depression which is common in the conventional piano. Supported on a suitable rail 29, for example behind the rear key extremity, is a leaf spring 28, which extends forwardly to slightly overhang that extremity. The spring may be biased downwardly; but a limit for its response to its own bias may be provided by a screw 21' threaded upwardly through a forward portion of the rail 29 into contact with the bottom of the spring 28. The spacing of the forward spring extremity above the top of the rear end portion of the key is such that that key portion willimpinge upon and encounter the resistance of the spring while the front key portion is still maprovided a coupling capacity 36 serially con- 75 grounded) nected between the ungrounded extremity of resistanee 5a and one of the input terminals of amplifier II (the other input terminal of which is The effective value of this coupling capacity 30 is varied by key displacement; specifically in the showing of this figure, this effective value is normally rendered zero by a grounded shield carried by the key and normally extending fully between the plates of the capacityto be upwardly withdrawn, and to expose those plates to each other, by and in accordance with key depression. In the purely typical construction illustrated, the two plates 3| and 32 of the capacity 30 are shown as generally vertically disposed and,
as seen in Figure 2, they may be of intermeshed U-shaped in horizontal cross-section; they may be insulatedly supported in any convenient manner. As seen in Figure 3, their outer portions may be inclined, inwardly toward the top, to render the inter-plate capacity per unit area greater in their top than in their bottom portions. The grounded shield 33 is likewise generally vertically disposed and, as seen in Figure 2, may be of S -shape interwoven between and in slight spaced relationship to the plates 3| and 32. Figure 2 further illustrates the optional inclusion of thin sheets of dielectric 34 secured against the surfaces of the plate 33.
When the key is in its rest position the shield 33 may extend to just below the bottom of the plates 3| and 32, rendering zero the effective interplate capacity and hence the output tone for this note. Upon key movement to its normally depressed position, wherein its rear portion is just in contact with the undeiiected spring 26, the shield 33 will be upwardly withdrawn to expose approximately the lower half, or somewhat less than-half, of the plates 3| and 32 to each other; the capacity between those plates is thus raised from zerp to a minor fraction of the total available, and an output tone of intermediate or relatively low volume is produced. As explained above, however, depression of the key with any more than very low velocity will cause the key to execute an excursion beyond its normally depressed position; this excursion causes a corresponding upward excursion of the spring 26, of the shield 33 to expose still more of the plates 3| and 32 to each other, of the capacity between the plates (to an especial degree in view of the higher capacity per unit area toward their tops), and of output tone amplitude (to a degree corresponding to that of the capacity change). And as explained above, this excursion is followed by an automatic return of the key (by spring 26) to a position dependent on pressure-the position of shield 33, the capacity between plates 3| and 32, and the output tone amplitude executing a corresponding return.
Figure 1 illustrates another feature of my invention. This resides in the introduction into the output tone of an extra complement of higher partials at higher tone amplitudes, particularly during the initial peak above mentioned. By way of example, a generator for these higher partials may be provided by the reed l0 and its two pick-up electrodes, above described, the two adjustable contacts 6 connected with those electrodes serving to adjust the waveform of the oscillations (or of the modulations of high-frequency oscillations) appearing from this generator across the resistance 50. The reed |c may for example be of the fundamental frequency of the note for which it is employed; it may be of a type best adapted for a large harmonic de- 'velopment. Additionally to cause the oscillations (or modulations) therefrom to predominate in higher partials, there may be connected to the resistance 50 a filter comprising series capacity 38 and shunt resistance 39 appropriately chosen for attenuation of lower partial components. The output of the filter, or ungrounded end of the resistance 39, may be connected to the ungrounded input terminal of amplifier through a coupling capacity 40, whose effective value is varied by key displacement in a generally similar manner to that already described for the capacity 30.
The capacity 40, which may be positioned underneath the key slightly forwardly of the capacity 30, may comprise stationary plates 4| and 42, generally similar and analogous to 3| and 32; and its effective value may be varied by a grounded shield 43 secured to the key and functioning generally as did shield 33 for the capacity 30. The extension of shield 43 below the bottoms of plates 4| and 42, however, may be made sufiicient so that the effective inter-plate capacity remains at zero until the key has been depressed to or almost to its normally depressed position; accordingly the introduction of the extra complement of higher partials will begin after the main tone has reached appreciable amplitude, and will be most significant in, if not limited to, the higher tone amplitudes temporarily occurring during the initial peaks or deliberately maintained thereafter by heavy pressure on the key. It will be understood that while I have thus shown the successive introduction of two series of progressively higher partials (main and extra), no limitation to this number of series is necessary or intended. Broadly, this successive higher partial introductionis highly useful in the simulation or approximation of the tones of conventional musical instruments, wherein the brightness or stridency of the tone varies markedly with the tone amplitude.
It will be understood that grounded electrostatic shielding will be appropriately employed to suppress sensitivity of the apparatus to stray electrostatic fields and to prevent undesired interactions between various components of the circuit, among them components for respectively different notes. The use of such shielding has been schematically indicated in Figure 1 by the dash-dot line 31, which also serves to indicate a line of division between apparatus peculiar to one note and apparatus common to all notes.
In Figure 4 I show a simple illustration of a modified arrangement wherein, by way of example, the coupling capacities are of a different form which may have a finite minimum or residual capacity, and wherein the generator circuit is re-arranged to permit a simple bucking out of the effect of this residual capacity, The cascade ||-12-|4--|5 for all notes again appears. A single reed for the illustrated note is shown as la, mounted on base 2a, and provided with the pick-up electrodes 3a and 4a. In this embodiment the electrodes are shown connected to respective variable contacts 6 on the groundedcenter-tap potentiometer 8 (which shunts the source 8 as before) through the high resistances 45 and 46 respectively; and to render the lower extremities of these resistances substantially at ground potential as far as oscillations are concerned those extremities may be by-passed to ground through respective condensers 41 and 48. The reed la may be connected to ground through a resistance 44 of a value which is a minor fractioii of that of either 35 or 46. It will be understood that tone-representing oscillations (or modulations of high frequency oscillations if the source 9 be operated as'a high frequency source) wll be developed by the respective pick-up electhough again the downstop is only an'ultimate stop and may even be omitted. The key may be provided, preferably near its front, with inset weights 25 for dynamic or mass reaction as mentioned in connection with Figure 1; in this instance all the weighting for dynamic purposes is forward of the pivot, and the spring 49 will be chosen in view of this weighting to provide the usual static resistance to key depression.
The displacement-responsive system 50 associated with the key 50, and which may be contained within a grounded shielding enclosure 59 provided underneath the key, includes a coupling capacity lit electrically interposed between the electrode extremity of the high resistance 45 and the ungrounded input terminal of amplifier II. This capacity may be formed by a stationary electrode 62, mounted to the' bottom of the enclosure through insulation BI, and a movable electrode 63 thereabove. This movable electrode may be in the form of a plunger conductively secured to the bottom of the front portion of a leaf spring 56, whose rear extremity is mounted to the enclosure through insulation 65. A rod 61, secured to the bottom of the key may extend downwardly to touch the top of spring 66 a little behind the electrode :53, the spring having a light upward bias against the rod and therefore moving in accordance with key movement.
On top of the'electrode 52 is mounted a piece til of resilient, compressible dielectric; rubber may be satisfactorily employed, and a tough grade of sponge rubber may be mentioned as one particular example. This dielectric til functions as the resilient stop for key depression. In the first portion of that depression the electrode $3 is brought downwardly into contact with the top of the dielectric raising the value of the coupling capacity from its very low minimuzn to a substantial value; the key has now reached its normally depressed position. A downward excursion of the key beyond this position will occur when higher velocities or high pressures are employed, the dielectric being temporarily compressed and raising the value of the coupling capacity much further; fundamentally this action is analogous to that already discussed in connection with the earlier figures, and need-not be re-detailed.
The coupling capacity til functions to control the supply to amplifier ll of oscillations from the high resistance 35 (i. e., translated from the reed by electrode to). In this embodiment, by way of example, I have shown the employment of the oscillations from the high-resistance 46 (i. e., translated by the electrode do) as a second series, or extra complement predominating in higher partials. To control their supply to the amplifier I have shown a. second coupling capacity behind but similar to the capacity 50, and so comprising stationary electrode 12 mounted on insulation H, movable electrode in the form of plunger 13 conductively secured to spring 66, and dielectric 14 mounted on top of electrode 12. The spacing of I3 above Himay be somewhat greater than between 63 and 64, so that the increase of capacity 10 upon key depression lags" behind that of the capacity 60. But after the plunger 63 has reached contact with dielectric 64 and the downward force of rod 61 is causing the compression of that dielectric, part' of that rod force will be diverted into causing a downward bowing of spring 66, bringing plunger 13 into contact with dielectric l4 and even compressing the latter somewhat in the case of more extreme forces.
To minimize the residual or key-up values of the capacities 60 and Hi, shielding enclosures 69 may be provided around the stationary electrodes, the enclosures being apertured for the plungers 63 and 73 and those plungers rising to outside the enclosures. Even then, however, there may be too much residual capacity for satisfactory elimination of residual tone with the key up, and to eliminate this I have shown a buckling arrangement. Thus above the spring 66 (which forms a common element connecting the two capacities to the amplifier I I) there may be mounted, in a suitable insulating block ii, a screw 18 which has an adjustable small capacity to spring 66 when the'key is in up position. This screw is connected to the reed end of resistance 44, across which there has been seen to appear a superimposed, reduced-amplitude and opposite-phase replica of the oscillations across t5 and 46. By proper adjustment of the screw E8 the residual tone from either of the capacities B0 and 10 may be balanced out; and by making at least one of the resistances 45 and it variable and properly adjusting. it relative to the other (in view of the slightly different residual values of the capacities ti] and 10) a single adjustment. of the screw it will suirice to balance out the tone from both capacities.
It will be understood that in this embodiment the variable contacts 6 on the potentiometer serve to adjust the relative amplitudes and phases of the two series of partials (from electrodes ed and la respectively), thus providing a master control for the entire instrument of the degree and character of tone brightening" at higher tone amplitudes. Although the series from the electrode ta inherently predominates in higher partials in view of the electrode positioning, additional such predominance may be provided if desired by employing, between it and the electrode F2 in capacity 10, a filter 38-33 such as described in connection with Figure 1.
In the simple schematic illustration of Figure 5 I have shown the embodiment of my invention in another one of the many possible forms; herein the displacement-responsive system 86 functions by varying a magnetic coupling. The key appears as H, arranged as in Figure 1 and having the inset weights 25 as described in connection with that figure; and there is again provided the resilient stop in the form of the adjustable spring 26. A generator, for example of high-frequency oscillations modulated at the tone frequencies, is shown as the voltage source s, the reed la and the electrode 3a., these being connected in series with a small coil 8| held stationary above the rear portion of the key, for example with a horizontal axis extending in the longitudinal direction of the key. The displacement-responsive system comprises a pick-up coil 82 mounted on top of the key, for example through a small spacer 83; displaced, for example in the longitudinal direction of the key, from the coil 8| to permit its being brought into adjacency therewith; and having its axis, when the key is in rest position, displaced below that of coil 8|. The coil 8| is positioned in the vertical direction so that this axis displacement when the key is in rest position will result in zero coupling between the coils; and the vertical coil dimensions are so chosen that the full maximum possible key depression will bring the axes into substantial coincidence. The coil 82 is connected to the input of the amplifier H, which may be operated also as a demodulator. As the key is depressed the coupling between the coils, and the tone oscillations from the amplifier II, will be progressively increased; the resilient stop 26, however, functions as before to render the normal key depression only a fraction of the maximum possible depression, and the system functions in an ultimate sense as those above described.
In Figure 6 I have shown the embodiment of my invention in a case wherein the displacementresponsive system operates by controlling the sensitizing or polarizing voltage supplied to the generator. The key appears as 5|, arranged as in Figure 4 and having the inset weights 25 as'de scribed in connection with that figure; and there is provided a resilientstop, for example in the form of a compressible piece 96 of sponge rubber, beneath the key and arranged to be impinged on by the key at an intermediate point in the fulldepression range. A generator is formed by the reed la and pick-up electrode 30, the electrode being connected to ground through a conductor 91 and resistance 98, and the reed being connected to ground through high resistance 5a, across which amplifier I I is connected. The amplitude of tone-representing oscillations developed by the generator across the high resistance 5a, and hence the output tone amplitude, is a function of the amplitude of a D. C. voltage impressed across resistance 98, and the displacement-responsive system operates to control this voltage. This system may for example comprise a relatively high stack 9| of discs of carbonaceous material, positioned in a well 92 below the key and resting on a conductive plate 93 at the bottom 75 the resistance of the stack with the key. in
of the well; and a conductive plunger 94 extending downwardly from the key to the top of the stack. The discs are of suitable form so that the stack is highly compressible, with an attendant wide resistance variation. A high-voltage D. C. source 95 is connected from the plate 93 to ground. The plunger 94 is connected with the ungrounded extremity of resistance 98, so that the resistance of stack 9| and the resistance 98 form a potentiometer arrangement across the source 85.
When the key is in rest position the resistance of the stack 9| may be infinite, and the voltage across resistance 98 therefore zero, there being then no oscillation supply by the generator to the amplifier II. It is desirable, however, that the resistance of the stack 9| begin to reduce substantially with the beginning of key depression, so that a substantial voltage may have been developed across resistance 88 when the key has reached its normally depressed position; this makes it difficult in practise to arrange for a. completely infinite resistance of the stack 9| at any time. Accordingly I prefer to permit rest position to be simply an extremely high resistance, a minute D. C. voltage therefore tending to appear'across the resistance 98; and to annul the effects of this tendency by either opencircuiting the generator (e. g., in the conductor 9'!) or grounding the sensitizing voltage supply (e. g., the upper extremity of resistance 98), or both, when the key is in its rest position. Accordingl I have shown a leaf-spring switch pole I00 underneath the key, operated by a rod 99 extending downwardly from the key; a leafspring switch contact ||I| beneath the pole |fl|| and contacted thereby except when the key is in rest position, I00 and-|0| being serially connected in the conductor 91; and a grounded leafspring switch contact I02 above the pole H10 and contacted thereby only when the key is in rest position. Since these switch members operate to change the circuit conditions only when no voltage appears across the resistance 98 and the sensltiely of the system is therefore extremely low, they introduce negligible clicks" or disturbances into the tone; residual tendencies toward such disturbances, however, and tendencies toward noise generation in the stack 9|, may be suppressed by an appropriate filtering arrangement. Such an arrangement has been indicated as a condenser I03 shunted across the resistance 98; any such arrangement, however, must be apportioned to have a very short time constant, to avoid impairing substantially instantaneous response of the voltage and tone amplitude to key displacement.
It may be noted that particularly in the embodiments of Figures 4 and 6 it is possible to obtain a relatively steep change of output tone amplitude with key depression beyond the normal depression, so that there need not be of great magnitude a further depression sufilcient to double or still more greatly increase the tone amplitude; and in general I intend no unexpressed limitations in respect of the steepness 0! this change.
It will be understood that the various features of the disclosed embodiments, and the various groupings of features therein, are subject to wide variation without departure from the spirit or scope of the invention, thatscope being defined in the following claims.
I claim:
1. In a musical instrument including electroacoustic translatingmeans and oscillation-generating means: the combination of a movable system comprising a depressiblekey; means for subjecting said translating means to excitation by said generating means, connected with said movable system for progressive operation thereby in accordance with key displacement and operatively connected with said generating means throughout the operative downstroke of said key, whereby output tone amplitude is caused to progressively vary with key displacement; and a resilient stop impinged on by said movable system at an intermediate point in the operative downstroke of the key, said stop being yieldable throughout at least an additional amplitudedoubling downstroke of the key.
2. The combination according to claim 1, wherein said movable system comprises sufllcient mass to cause a substantial temporary yielding of said stopat higher key velocities.
3. In a musical instrument including electroacoustic translating means and oscillationgenerating means: the combination of a movable system comprising a depressible key; means for subjecting said translating means to excitation by said generating means, connected with said movable system for progressive operation thereby in accordance with key displacement and oper-' atively connected with said generating means throughout the operative downstroke 0! said key, whereby output tone amplitude is caused to progressively vary with key displacement; and a resilient stop impinged on by said movable system at an intermediate point in the operative downstroke of the key, yieldable through a substantial range throughout'which its resistance materially exceeds the static resistance of the key to initial depression.
4. The combination according to claim 3, wherein said movable system comprises suiflcient mass to cause a substantial temporary yielding of said stop at higher key velocities.
5. In a musical instrument including electro acoustic translating means and oscillation-generating means: the combinationoi a movable system comprising a depressible key; means for subjecting said translating means to excitation by said generating means, connected with said movable system for progressive operation thereby in accordance with key displacement and operatively connected with said generating means throughout the operative downstroke of said key, whereby output tone amplitude iscaused to progressively vary with key displacement; a resilient stop impinged on by said movable system at an intermediate point in the operative downstroke of the key; and inertia means, carried by said movable system, for causing a substantial temporary yielding of said stop at higher key velocities.
6. In a musical instrument including electroacoustic translating means and oscillation-generating means: the combination of a'movable system comprising a depressible key; means tor subjecting said translating means to excitation by said generating means, connected with said movable system ior progressive operation thereby in accordance with key displacement and opcratively connected with said generating means throughout the operative downstroke of said key, whereby output tone amplitude is caused to progressively vary with key displacement; and
' means, comprising mass included in said movable system and a resilient stop impinged on by said system at an intermediate point in the operative downstroke of the key, for causing the key-at higher-velocities to have essentially mass and resilient reactions in the respective successive portions of its downstroke.
7. In a musical instrument including oscillahon-generating means and 'electro-acoustic translating means excited thereby to produce output tones: the combination of a movable system comprising a depressible key; excitationcontrol means, connected with said key for progressive operation thereby and operatively con-.
8. In a musical instrument including oscillation-generating means and electro-acoustic translating means excited thereby to produce output tones: the combination of a movable system comprising a depressible key; excitationcontrol' means, connected with said key for progressive operation thereby .and operatively connected with said generating means throughout the operative downstroke of said key, for rendering the output tone amplitude responsive to key displacement;. and substantially yield'able resilient stop means, impinged on by said moving system at an intermediate point in the operative downstroke of the key, for both rendering the initial portion of the output tone envelope responsive to velocity of the key and rendering the later portion 01' the envelope responsive to pressure on the key.
9. The combination according to claim 7, wherein said excitation-control means comprises variable coupling means interposed between said generating means and said translating means.
10; The combination according to claim 7, wherein said excitation-control means comprises a. variable capacity and wherein said resilient stop comprises a dielectric in said capacity.
11. The combination according to claim '7, wherein said generating means is controllably sensitizable, and wherein said excitation-control means comprises means for controlling the sensitization of said generating means.
12. The combination according to claim 7, further including a second oscillation-generating means for oscillations of higher frequencies harmonically related to those :trcm said first-mentioned generating means; and means, responsive to higher key displacements, ior progressively subjecting said translating means to excitation by said second generating means.
13. In a musical instrument including oscillanon-generating means and electro-acoustic translating means: the combination of a key depressible from rest position; a variable condenser operatively connected with said key for variation thereby, and electrically connected to said gen crating means and to said translating means for transferring oscillations therebetween, said condenser being characterized by a residual capacity when the key is in rest position; and capacitative means, electrically connected to said generating means in opposed phase relationship to said variable condenser, io'r balancing out oscillations transferred through said residual capacity.
14. In a musical instrument including an oscilladen-generating device and an electro-acoustic translating device: the combination of a key depressible from rest position; variable coupling means operatively connected with said key for variation thereby, and electrically connected between said devices for transferring oscillations therebetween, said coupling means being characterized by a residual coupling when the key is in rest positionj and an auxiliary coupling means, interposed between saiddevices and connected to one of said devices in opposd phase relationship to the connection to that device of said first-mentioned coupling means, for balacing out oscillations transferred through said residual coupling.-
annmmn r'. messes.
US260677A 1939-03-09 1939-03-09 Apparatus for the production of music Expired - Lifetime US2215709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US260677A US2215709A (en) 1939-03-09 1939-03-09 Apparatus for the production of music

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US260677A US2215709A (en) 1939-03-09 1939-03-09 Apparatus for the production of music

Publications (1)

Publication Number Publication Date
US2215709A true US2215709A (en) 1940-09-24

Family

ID=22990153

Family Applications (1)

Application Number Title Priority Date Filing Date
US260677A Expired - Lifetime US2215709A (en) 1939-03-09 1939-03-09 Apparatus for the production of music

Country Status (1)

Country Link
US (1) US2215709A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2463597A (en) * 1943-01-09 1949-03-08 Arthur T Cahill Art or method and meand for generating music electrically
US2569521A (en) * 1947-12-02 1951-10-02 Pulford J Greaves Electronic organ
US2809547A (en) * 1955-01-28 1957-10-15 Ca Nat Research Council Intensity control device for electrical musical instrument
US2921494A (en) * 1955-10-28 1960-01-19 Donald J Leslie Electrostatic musical tone generator system
DE1152878B (en) * 1955-03-18 1963-08-14 Wurlitzer Co Electronic piano
US3570357A (en) * 1969-02-08 1971-03-16 Nippon Musical Instruments Mfg Electronic musical instrument with a touch reponsive dc voltage generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2463597A (en) * 1943-01-09 1949-03-08 Arthur T Cahill Art or method and meand for generating music electrically
US2569521A (en) * 1947-12-02 1951-10-02 Pulford J Greaves Electronic organ
US2809547A (en) * 1955-01-28 1957-10-15 Ca Nat Research Council Intensity control device for electrical musical instrument
DE1152878B (en) * 1955-03-18 1963-08-14 Wurlitzer Co Electronic piano
US2921494A (en) * 1955-10-28 1960-01-19 Donald J Leslie Electrostatic musical tone generator system
US3570357A (en) * 1969-02-08 1971-03-16 Nippon Musical Instruments Mfg Electronic musical instrument with a touch reponsive dc voltage generator

Similar Documents

Publication Publication Date Title
US4580478A (en) Musical keyboard using planar coil arrays
US4257305A (en) Pressure sensitive controller for electronic musical instruments
US4044642A (en) Touch sensitive polyphonic musical instrument
US2873637A (en) Touch control for polyphonic musical instruments
US3943812A (en) Touch responsive sensor in electronic keyboard musical instrument
US3507970A (en) Touch sensitive electronic musical instrument responsive to only terminal velocities of keys
US2141231A (en) Electrical musical instrument
US3662641A (en) Electronic musical apparatus
US2414886A (en) Apparatus for the production of music
US4503745A (en) Musical instrument
US2215709A (en) Apparatus for the production of music
US2656755A (en) Apparatus for the production of music
US3711617A (en) Electronic piano with thump-generating means
US4099439A (en) Electronic musical instrument with dynamically responsive keyboard
US2200718A (en) Electronic piano
JP3074797B2 (en) Keyboard device
US4665788A (en) Keyboard apparatus
US3634593A (en) Key-operating mechanisms for electronic musical instruments
US2237105A (en) Apparatus for the production of music
US2809547A (en) Intensity control device for electrical musical instrument
US2036691A (en) Electromusical instrument
US2878708A (en) Capacitative switching apparatus
US2482548A (en) Electric piano
US2273975A (en) Apparatus for the production of music
US2001391A (en) Apparatus for the production of music