JPS58125341A - Forming method of molten metal for casting utilizing thermit reaction - Google Patents

Forming method of molten metal for casting utilizing thermit reaction

Info

Publication number
JPS58125341A
JPS58125341A JP781882A JP781882A JPS58125341A JP S58125341 A JPS58125341 A JP S58125341A JP 781882 A JP781882 A JP 781882A JP 781882 A JP781882 A JP 781882A JP S58125341 A JPS58125341 A JP S58125341A
Authority
JP
Japan
Prior art keywords
molten metal
reaction
thermite
casting
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP781882A
Other languages
Japanese (ja)
Inventor
Masami Michihiro
道広 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP781882A priority Critical patent/JPS58125341A/en
Publication of JPS58125341A publication Critical patent/JPS58125341A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To obtain desired molten metal for castings which is removed of Al in a short time by blowing a gas such as are or oxygen into the molten metal formed by thermit reaction then adding desired element groups. CONSTITUTION:Thermit agents are packed in a reaction vessel A, and are caused to react, whereby molten metal is formed. After the molten metal is charged into a crucible B, a gas such as air, oxygen, nitrogen or argon is blown into the molten metal through a porous plug 6 to convert the Al contained in the molten metal to Al2O3. Thereafter, CaO, etc. are added to the molten metal to form the slag of Al2O3 and to remove Al which is a harmful element from the molten metal. Control element groups are added to the molten metal removed of the Al. Thus, the desired molten metal for castings is obtained in a short time.

Description

【発明の詳細な説明】 本発明はテルミツト剤を反応させて得た溶湯から有害元
素であるAI を脱去し、更に必要な元素を添加して所
望される鋳物用の溶湯を生成する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing AI, which is a harmful element, from a molten metal obtained by reacting a thermite agent, and further adding necessary elements to produce a molten metal for desired casting. It is something.

元来テルミット反応とは金属酸化物がA1 により脱酸
される化学反応のことであって、従来この反応時の高温
発熱を利用する金属溶接技術の一施工法として知られて
いる。そしてその場合に使用されるテルミツト剤も軟鋼
テルミット・鋳鉄用テ/l/ ミツト・耐磨耗用テルミ
ット、そしてレール溶接用テルミット等、被溶接金属の
材質に適合させる各種類のテルミツト剤があることも知
られているところであ、る。このうち我が国における鋳
鉄用テルミツト剤による反応生成金属の化学成分として
、次の例が紹介されている(昭和38年日刊工業新聞社
刊「融接と融断」)。
The thermite reaction is originally a chemical reaction in which a metal oxide is deoxidized by A1, and is conventionally known as a metal welding method that utilizes the high temperature heat generated during this reaction. In that case, there are various types of thermite used to suit the material of the metal to be welded, such as mild steel thermite, cast iron thermite, wear-resistant thermite, and rail welding thermite. It is also well known. Among these, the following example is introduced as the chemical composition of the metal produced by the reaction of thermite agents for cast iron in Japan (``Fusion Welding and Fusion Cut'', published by Nikkan Kogyo Shimbun in 1962).

CSi   Mn    AI    P    5T
C−10131550,400,400,020,01
TC−23,551,850,25’0.35  0.
02  0.01これは鉄スケール3〜4に対してAl
  lの割合であるテルミットの基本配合に、更にC*
Si  ・Mnを適量に添加調整したことを示している
。そしてそのことはテルミット反応により生成された溶
湯が成分調整をすることにより、鋳物用の溶湯となり得
ることを示唆するものである。
CSi Mn AI P 5T
C-10131550,400,400,020,01
TC-23,551,850,25'0.35 0.
02 0.01 This is Al for iron scale 3-4
In addition to the basic composition of thermite, which is a proportion of C*
This shows that Si.Mn was added in an appropriate amount. This suggests that the molten metal produced by the thermite reaction can be used as a molten metal for casting by adjusting its composition.

本発明はこの点に着目して為されたものであるが、その
目的とするところは省資源・省エネルギーの現時代の要
請に応えようとするものである。
The present invention has been made with this point in mind, and its purpose is to meet the current demands for resource and energy conservation.

即ち本発明による鋳物溶湯の生成方法は、その主たる材
料を酸化鉄および屑鉄としているので、従来の鋳造法に
おける材料としては使用し得ないものの活用となるので
′あり、更にその溶解エネルギーがAI の化学反応熱
の利用となるので、従来の鋳造法の溶解エネルギーが不
要となるのである。
In other words, since the method for producing molten casting metal according to the present invention uses iron oxide and scrap iron as its main materials, it utilizes materials that cannot be used in conventional casting methods, and furthermore, the melting energy is Since the heat of chemical reaction is used, the melting energy of conventional casting methods is not required.

特に現在のエネルギーは電力料の高騰等により高価なも
のとなり、例えば電気炉溶解の場合の鋳物比し倍増して
居り、この傾向は今後も段階的に1遺継続して行くもの
と思料されるのであるが、実−こ4のことが従来は高価
なものとされていたテルミット反応による生成溶湯を溶
接用から鋳物用へ利用転換する本発明の実現を可能にす
る経済的な舞台装置となっているのである。
In particular, current energy is becoming more expensive due to soaring electricity costs, and for example, the cost of melting in an electric furnace is double that of casting, and it is thought that this trend will continue step by step in the future. However, this fact has become an economical stage device that makes it possible to realize the present invention, which converts the molten metal produced by the thermite reaction, which was conventionally considered to be expensive, from welding to casting. -ing

このような事情を背景として本発明の実施を考えるので
あるが、テルミツト剤の反応について次の考察をする必
要がある。
When considering the implementation of the present invention against the background of these circumstances, it is necessary to make the following considerations regarding the reaction of the thermite agent.

(1)テルミット反応は金属酸化物がAI によって脱
酸される反応である関係上、その生成溶湯中にAIが適
量に残留されるのは止むを得ないことである。これは前
掲の我が国の鋳鉄用テルミットの生成金属の化学成分表
中に0.35%〜0140%と紹介されている通りであ
るがこの残留AIは主としてこの溶湯を球状黒鉛鋳鉄の
元湯とする場合に特に不都合となるものである。球状黒
鉛鋳鉄は、ねずみ鋳鉄における片状黒鉛を球状化するこ
とにより鋳鉄に強靭性を加えた鋳鉄で、その技術が特許
されてから約30年そこそこの新らしい鋳鉄であるが、
昭和41年その特許権利期間満了と共に急激に生産が増
大し、現在では年間生産量は連年増加の一途を辿り今や
鋳鉄、鋳物の主流を占めようとしているものである。こ
の球状黒鉛鋳鉄は、ねずみ鋳鉄の元湯にMg合金を添加
反応させることにより溶湯中の片状黒鉛を球状化させる
方法が最も拡く採用されており前記の満了特許がこれで
ある。この球状黒鉛鋳鉄の黒鉛を球状化させる場合、溶
湯中の元素のうちその存゛在が黒鉛の球状化を阻害する
元素があり、その元素名と阻害限界量は次のようになっ
ている(昭和44年アグネ社刊「現場の鋳造」)0  
(珪−′KL乍餐燵ζ?閘()元 素  AI  Ti
  Cu Sn  Se  As  Nb  Ta−’
c(D他限界量圀0.020.042.00.10.0
50.050.150.2以上の如(であり、特にA1
 は限界量が0.02%の阻害元素となっている。つま
りテルミ・ソト反応による生成溝、湯中のAIの含有量
は前掲の如く0.35%〜0.4%であるので限界量の
約20倍の量が含有されていることになり、このままで
球状黒鉛鋳鉄の元湯として使用することが不都合となる
のである。尚、ねずみ鋳鉄に使用する場合もAlは黒鉛
化促進元素なので、ねずみ鋳鉄の溶湯に含有された場合
その基地をフェライト化す傾向があり、硬度が高く抗張
力が大きいパーライト基地の高級ねずみ鋳鉄の鋳造の場
合にはAIの存在は好ましくないのである。そこでテル
ミット反応による溶湯を鋳物溶湯に利用する場合には事
前にこのA1を適量に脱去する必要があるのである。
(1) Since the thermite reaction is a reaction in which a metal oxide is deoxidized by AI, it is unavoidable that a suitable amount of AI remains in the resulting molten metal. This is shown as 0.35% to 0.140% in the chemical composition table of thermite produced in Japan for cast iron mentioned above, but this residual AI mainly uses this molten metal as the source water for spheroidal graphite cast iron. This is particularly inconvenient in some cases. Spheroidal graphite cast iron is a cast iron that adds toughness to cast iron by spheroidizing the flaky graphite in gray cast iron, and it is a new cast iron that has been around 30 years since the technology was patented.
With the expiration of its patent rights in 1966, production increased rapidly, and now the annual production volume has continued to increase year after year, and it is now on the verge of occupying the mainstream of cast iron and castings. This spheroidal graphite cast iron is produced by adding Mg alloy to the base molten metal of gray cast iron to make flaky graphite in the molten metal spheroidized, and this method is most widely adopted, and the above-mentioned expired patent applies to this method. When spheroidizing the graphite of this spheroidal graphite cast iron, there are elements in the molten metal whose presence inhibits the spheroidization of graphite, and the names and inhibition limits of these elements are as follows ( Published by Agnesha in 1964 "On-site Casting") 0
(珪-'KL乍食燵ζ?閘()Element AI Ti
Cu Sn Se As Nb Ta-'
c (D other limit quantity 0.020.042.00.10.0
50.050.150.2 or higher (and especially A1
is an inhibiting element with a limit amount of 0.02%. In other words, the content of AI in the grooves and hot water produced by the Termi-Soto reaction is 0.35% to 0.4% as mentioned above, which means that the content is about 20 times the limit amount, and as it is. This makes it inconvenient to use it as a source water for spheroidal graphite cast iron. Furthermore, when used in gray cast iron, Al is an element that promotes graphitization, so when it is contained in the molten gray cast iron, it tends to turn the base into ferrite, making it difficult to cast high-grade gray cast iron with a pearlite base that has high hardness and high tensile strength. In some cases, the presence of AI is undesirable. Therefore, when the molten metal produced by the thermite reaction is used for casting molten metal, it is necessary to remove an appropriate amount of this A1 in advance.

(2)  テルミット反応は鉄スケール3〜4:A11
の割合の基本配合の場合、その反応温度は2000℃〜
2400℃であり、溶湯生成比は約50%である。
(2) Thermite reaction is iron scale 3-4: A11
In the case of a basic formulation with a ratio of , the reaction temperature is 2000℃~
The temperature is 2400°C, and the molten metal production ratio is about 50%.

一方現行の鋳造法の場合、炉内からの出湯温度は約15
00℃であるので、反応温度を決定するテルミツト剤の
配合に当っては、この出湯温度を考慮して決定する必要
がある。従ってテルミ・ント剤は基本配合よりも鉄スケ
ールを増やしてA4の割合を減らし、反応温度と脱A1
処理後の溶湯温度が適当になるように調整し、同時に溶
湯の生成比の向上と溶湯中のA1の残留量の低減を図る
ことが好ましい。
On the other hand, in the case of the current casting method, the temperature of the hot water released from the furnace is approximately 15
00°C, it is necessary to take this tapping temperature into consideration when formulating the thermite agent that determines the reaction temperature. Therefore, the thermite agent increases iron scale and decreases the proportion of A4 compared to the basic formulation, and changes the reaction temperature and de-A1
It is preferable to adjust the temperature of the molten metal after treatment to be appropriate, and at the same time improve the production ratio of the molten metal and reduce the amount of residual A1 in the molten metal.

以上2点の考察を加えた本発明の実施につき、以下図面
により説明すると、第1図は本発明による鋳物溶湯の生
成方法の実施例であるが、テルミット反応容器へ)は鉄
製円錐形の外枠に耐火物による内張りをした本体(1)
と鉄製の蓋(2)より成るもので、この中に前述の考察
2により配合決定したテルミツト剤を充填し花火等によ
り点火して反応を起させるのであるが、テルミット反応
は非常に激しい反応なので反応物の飛散を防ぐために点
火後容器本体(])の上部を空気孔(3)をあけた蓋(
2)で覆うのである。反応が終了すると容器本体(1)
内の下部グ に溶湯が溜り上部にスラ亭が出来るので、溶湯を流出ノ
ズル(4)からルツボB)に注入するのであるが、その
注入のタイミングは反応熱で溶けるノズル(4)上の鉄
板(5)の厚みで設定するものとする。ルツボfBlは
鉄製円筒形の外枠に耐火物で内張すしたもので、底部に
多孔質耐火物であるポーラスプラグ(6)が取付けられ
た吹込口(7)があり、ガスのパイプ(8)して脚部(
lυにより平面上に据えられ、且つ両市及びハンドルに
より必要時に傾動させ得る構造のものである。
The implementation of the present invention with consideration of the above two points will be explained below with reference to the drawings. Figure 1 shows an embodiment of the method for producing molten casting metal according to the present invention. Main body with a frame lined with refractory material (1)
It consists of an iron lid (2), which is filled with thermite agent whose composition has been decided based on the above-mentioned consideration 2, and is ignited with fireworks to cause a reaction, but thermite reaction is a very violent reaction. After ignition, the top of the container body (]) is covered with a lid (3) with an air hole (3) in order to prevent the reactants from scattering.
2). When the reaction is completed, the container body (1)
The molten metal accumulates in the lower part of the crucible and a slurry is formed in the upper part, so the molten metal is injected from the outflow nozzle (4) into the crucible B), but the timing of the injection is determined by the iron plate on the nozzle (4), which is melted by the reaction heat. The thickness shall be set as shown in (5). The crucible fBl is an iron cylindrical outer frame lined with refractory material, and has an inlet (7) with a porous plug (6) attached to the bottom, and a gas pipe (8). ) and legs (
It has a structure that allows it to be placed on a flat surface by means of lυ, and can be tilted when necessary using both sides and a handle.

溶湯の脱AI処理及び調整元素群の添加はルツボfBi
内に溶湯が注入された後で各種のガスを単独若しくは混
合してパイプ(8)からポーラスプラグ(6)経由で溶
湯内に吹き込むことにより行なわれるが、その場合のガ
スの吹込み及びその効果は次のようになる。脱A1処理
をしようとする容器A)内の溶湯のA1以外の化学成分
は概路次の通りである。
The de-AI treatment of the molten metal and the addition of the adjusting element group are carried out in the crucible fBi.
After the molten metal is injected into the molten metal, various gases are blown into the molten metal, singly or in a mixture, from the pipe (8) via the porous plug (6). becomes as follows. The chemical components other than A1 of the molten metal in container A) to be subjected to A1 removal treatment are as follows.

C*Si  *Mn       0.05%−0,1
0%P −3−Cr −Ni  拳Mg    0.0
5%以下このような成分でAI 以外の元素量は極めて
微量であるので、ガス吹込みによる元素の変動について
、重要な配慮を特に必要としないのはこの溶湯に脱AI
処理を施す場合ρ利点である。そしてA1は下表の通り
各種元素中Ca −Mgに次いで酸素に対する親和力の
強い元素なので、その点も有利である。
C*Si*Mn 0.05%-0,1
0%P -3-Cr -Ni Fist Mg 0.0
5% or lessThe amount of elements other than AI in such a component is extremely small, so there is no need to pay special attention to changes in elements due to gas injection.
When processing is performed, ρ is an advantage. As shown in the table below, A1 is an element with the second strongest affinity for oxygen after Ca--Mg among various elements, so it is also advantageous.

(各種元素の酸素との結合力の比較) 元素量    標準生成自由エネルギー鉄 (Fe) 
          約  75クロム(Cr)   
    ■t。
(Comparison of the bonding strength of various elements with oxygen) Element content Standard free energy of formation Iron (Fe)
Approximately 75 chromium (Cr)
■t.

マンガン(Mn )      128珪素(Si) 
       138 チタン(Ti)       150 アルミニウム(AI)    185 マグネシウム(Mg )    195カルシウム(C
a)     225 (昭和37年コロナ社刊「鋳鉄の材質」)以上のように
A1 は酸素との結合力が強いので、従来溶湯中の脱酸
剤として使用されている。っまり溶湯中の酸素を脱去し
ようとする場合、その酸素に対する特性を利用して、A
Iを溶湯中に添加して酸素と結合させてアルミナ(AI
□03)ヲ生成させて脱去する脱酸法である。本発明に
おける脱AI の手法はこのAI の特性を逆に利用し
、酸素を吹込んで脱AI をしようとするもので、原理
的には従来の脱酸法と同じであり、従ってその効果にお
いてもAI−と酸素の結合という点に於いて相違点はな
いのである。以上のような特性を持つA1の脱去処理で
あり、しかも要処理量が05%以下という微量なので次
のガス吹効果が考えられる。
Manganese (Mn) 128 Silicon (Si)
138 Titanium (Ti) 150 Aluminum (AI) 185 Magnesium (Mg) 195 Calcium (C
a) 225 (``Materials of Cast Iron'', published by Corona Publishing, 1960) As mentioned above, A1 has a strong binding force with oxygen, so it has been conventionally used as a deoxidizing agent in molten metal. When trying to remove oxygen from the molten metal, A
Alumina (AI) is created by adding I to the molten metal and combining it with oxygen.
□03) This is a deoxidation method that generates and removes . The deoxidation method of the present invention reversely utilizes the characteristics of this AI and attempts to deoxidize it by blowing in oxygen.The principle is the same as the conventional deoxidation method, and therefore its effectiveness is also There is no difference in the bond between AI- and oxygen. Since this is a removal treatment of A1 having the above-mentioned characteristics, and the amount required to be treated is as small as 0.5% or less, the following gas blowing effect can be considered.

ガスの種類   効   果 酸   素 AI との結合によりAl2O3を積極的
に生成する。
Type of gas Effect Oxygen Actively generates Al2O3 by combining with AI.

空   気 (1)空気中の酸素とAI との結合によ
りAl2O3を生成する。
Air (1) Al2O3 is produced by the combination of oxygen in the air and AI.

(2)溶湯に撹拌を起し溶湯の表面 で空気中の酸素とAIが結合して A12o3となる機会を増やす。(2) The surface of the molten metal is created by stirring the molten metal. When oxygen in the air and AI combine Increase opportunities to become A12o3.

窒素及び  空気との混合により空気中の水アルゴン 
素の含有比率を下げたガスで溶湯の撹拌を起し溶湯の表
面で空気中の酸 素とA1 が結合する機会を増やす。
Water in the air by mixing with nitrogen and air argon
The molten metal is stirred using a gas with a lower elemental content ratio, increasing the chances of A1 combining with oxygen in the air on the surface of the molten metal.

以上の通りであるが、合板りに1.000  Kgの溶
湯中の0.3%のA1をAl2O3に転化しようとする
場合の酸素の必要量は単純計算で約1.8 tt/とな
り、同じ効果を得るための空気量は約9,3−となるが
、酸素はFeとも結合するので吹込み酸素量の確認及び
脱A1処理後の簡単な脱酸処理の配慮か必要である。又
空気吹込の場合は空気中の水素の存在が鋳物のピンホー
ルの原因になることがあるので空気と他のガスとの混合
による水素比率の低下等の配慮も必要である。この様に
してガス吹込みにより生成された溶湯中のAl2O3は
CaO等の粉末を溶湯中に投入してスラグ化して除去す
るのであるが、その点Al2O3の比重は3゜95〜4
.10とFeの比重より小さいので、溶湯の表面に浮上
しようとするので好都合である。このようにして脱AI
処理が可成り進行した時点で調整元素群を添加し、同時
に空気・酸素の量を減らしアルゴン・窒素等の量を増や
したガスに転換すれば添加元素を損うことなく、吹込み
による溶湯撹拌が元素群の溶湯への溶は込みを促進する
効果となるので好都合である。このことは球状黒鉛鋳鉄
の場合のMg合金の添加による黒鉛球状化処理に於いて
特に顕著である。このようにして脱AI処理と成分′調
整を終了した溶湯を鋳型に注湯するのであるが、この時
点の溶湯温度は約1500℃に保つ必要があるので、反
応容器回内でのデルミツト反応温度の調整の時点に遡る
温度調整が必要であることは当然である。
As mentioned above, when trying to convert 0.3% A1 in 1.000 kg of molten metal into Al2O3 for plywood, the required amount of oxygen is approximately 1.8 tt/, which is the same The amount of air required to obtain the effect is approximately 9,3-, but since oxygen also combines with Fe, it is necessary to check the amount of oxygen blown and to consider a simple deoxidation treatment after the A1 removal treatment. In addition, in the case of air blowing, the presence of hydrogen in the air may cause pinholes in the casting, so consideration must be given to reducing the hydrogen ratio due to mixing of air and other gases. Al2O3 in the molten metal generated by gas injection in this way is removed by adding powder such as CaO into the molten metal to turn it into slag, but the specific gravity of Al2O3 is 3°95-4.
.. Since it has a specific gravity smaller than that of 10 and Fe, it tends to float to the surface of the molten metal, which is advantageous. In this way, de-AI
If the adjustment elements are added when the treatment has progressed considerably, and at the same time the amount of air and oxygen is reduced and the gas is changed to a gas with increased amounts of argon, nitrogen, etc., the molten metal can be stirred by blowing without damaging the added elements. This is advantageous because it has the effect of promoting dissolution of the element group into the molten metal. This is particularly noticeable in the case of spheroidal graphite cast iron, which is subjected to graphite nodularization treatment by adding Mg alloy. The molten metal that has been subjected to the AI removal treatment and component adjustment is poured into the mold in this way.The temperature of the molten metal at this point needs to be maintained at approximately 1500°C, so the dermite reaction temperature in the reaction vessel is Of course, it is necessary to adjust the temperature back to the time of adjustment.

第2図は本発明による鋳物溶湯の生成方法の他の実施態
様を示すもので、この場合の反応容器穴も鉄製円錐形の
外枠に耐火物を内張すした本体(1)と鉄製の蓋(2)
より成り、底部又は側面部の耐火物に多孔質耐火物であ
るポーラスプラグ(6)が埋込まれた吹込口(7)にガ
スのパイプ(8)が接続されているものである。そして
本体(1)の側面部にはスラグの排出口(9)が設けら
れ鉄板(5)で閉塞されているものとし、また本体(1
)を傾動させるための歯車−と7%ンドル→を有してい
るものとする。この容器本体(1)の中でのテルミツト
剤の反応が収まると、溶湯(ロ)の上を流動性のあるス
ラグ0句が覆った形となるので、適当なタイミングでス
ラグ排出口(9)に外部から耐火物製のパイプ(1呻を
挿入すると、反応熱で赤熱状態になるように予め厚さの
設定をしておいた鉄板(5)が除去され、鉄板(5)に
よって堰止めされていたスラグo印が耐火物製パイプ0
0)からm呻4スラグ溜(1→に溜められるのである。
Figure 2 shows another embodiment of the method for producing molten casting metal according to the present invention. Lid (2)
A gas pipe (8) is connected to an inlet (7) in which a porous plug (6), which is a porous refractory, is embedded in the bottom or side refractory. A slag discharge port (9) is provided on the side surface of the main body (1) and is closed with an iron plate (5).
) is assumed to have a gear - and a 7% wheel →. When the reaction of the thermite agent in the container body (1) has subsided, the molten metal (B) is covered with fluid slag, so at an appropriate time, the slag discharge port (9) is When a refractory pipe (1) is inserted from the outside, the iron plate (5) whose thickness has been set in advance so that it becomes red hot due to the reaction heat is removed, and the pipe is dammed by the iron plate (5). The slag o mark that was used is 0 for refractory pipes.
0) to m groan 4 slag pool (1→).

こうして大量のスラグを除去された溶湯面の残溜スラグ
は蓋を除いた本体(1)の上から除去処理をするのであ
る。そしてその時点で前述の要領によるガスによる脱A
I処理を行いながら諸元素の添加を実施して成分調整を
し所望の鋳物溶湯にするのである。
The remaining slag on the molten metal surface from which a large amount of slag has been removed in this way is removed from the top of the main body (1) excluding the lid. At that point, de-A by gas according to the above-mentioned procedure.
While performing the I treatment, various elements are added to adjust the composition to obtain the desired molten casting metal.

このようにして取分調整をして所望する鋳物溶湯にした
ものを、鋳型の上部に移動した容器穴を傾動させて注湯
するのであるが、小さい鋳型に数多(注湯する必要があ
り、その間に溶湯の温度ドロップか避けられない場合は
大きい容器A)で大量の鋳物溶湯を造り、保持炉等で温
度保持をしながら小さい取鍋で頻繁な注湯をすることが
望ましい。
The molten metal that has been adjusted in this manner to obtain the desired casting molten metal is then poured into the mold by tilting the container hole that has been moved to the top of the mold. If a drop in the temperature of the molten metal cannot be avoided during that time, it is desirable to make a large amount of molten casting metal in a large container A), and pour the molten metal frequently into a small ladle while maintaining the temperature in a holding furnace or the like.

以上のように本発明を実施することにより、安価な材料
で而かも従来の溶解設備とエネルギーを必要としない鋳
造を行うことが可能となるが、同次のようなメリットを
計算することが出来る。
By implementing the present invention as described above, it becomes possible to perform casting using inexpensive materials and without requiring conventional melting equipment and energy, but the following advantages can be calculated. .

従来の電気炉溶解の場合は、1.5を溶解の場合1溶解
に2時間程度の溶解時間を必要としているが、本発明の
場合は同じ容量の溶湯の生成と成分調整が15分程度で
出来るので、鋳型があるだけ・・・・・・つまり必要な
溶湯量を短時間で用意できるので作業時間の短縮と生産
量の拡大が可能となり、結果的に鋳物の総合コストの低
減をもたらすことになるのである。
In the case of conventional electric furnace melting, it takes about 2 hours for one melt to melt 1.5, but in the case of the present invention, it takes about 15 minutes to generate the same volume of molten metal and adjust the composition. Because all you need is a mold, you can prepare the required amount of molten metal in a short time, which shortens work time and increases production, resulting in a reduction in the overall cost of castings. It becomes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による鋳物溶湯の生成方法の実施例で反
応容器とルツボを組合せた断面図、第2図は同じ(鋳物
溶湯の生成方法の他の実施態様を示す反応容器の断面図
である。 符号の説明 (A)・・・反応容器 FB+・・・ルツボ (1)・
・・容器の本体(2)・・・蓋 (3)・・・蓋の空気
孔 (4)・・・流出ノズル (5)・・・鉄板(6)
・・・ポーラスプラグ (7)・・・吹込口 (8)・
・・ガスパイプ (9)・・・スラグ排出口 θ0)・
・・耐火パイプ(11)・・・脚部 (121・・・溶
湯 (13)・・・スラグ α4)・・・スラグ溜。 特許出願人 道 広 正 己
Fig. 1 is a cross-sectional view of a combination of a reaction vessel and a crucible in an embodiment of the method for producing molten casting metal according to the present invention, and Fig. 2 is a sectional view of the reaction vessel showing another embodiment of the method for producing molten casting metal according to the present invention. Yes. Code explanation (A)... Reaction vessel FB+... Crucible (1).
... Container body (2) ... Lid (3) ... Air hole in the lid (4) ... Outflow nozzle (5) ... Iron plate (6)
... Porous plug (7) ... Inlet (8)
・・Gas pipe (9)・・Slag discharge port θ0)・
... Fireproof pipe (11) ... Leg (121 ... Molten metal (13) ... Slag α4) ... Slag sump. Patent applicant Masami Michihiro

Claims (4)

【特許請求の範囲】[Claims] (1)  テルミツト剤を反応させて生成した溶湯にら
、該溶湯に元素群を添加して所望の鋳物に必要な成分に
調整することを特徴とするテルミット反応を利用した鋳
物溶湯の生成方法。
(1) A method for producing molten metal for castings using a thermite reaction, which comprises adding a group of elements to the molten metal produced by reacting a thermite agent to adjust the composition to the composition required for a desired casting.
(2)反応容器内でテルミツト剤を反応させて生成した
溶湯をルツボ内に注入し、該ルツボ内の溶湯にガスを吹
込むようにした特許請求の範囲第1項に記載の鋳物溶湯
の生成方法。
(2) The method for producing molten metal for castings according to claim 1, wherein the molten metal produced by reacting a thermite agent in a reaction vessel is injected into a crucible, and gas is blown into the molten metal in the crucible.
(3)反応容器内でテルミツト剤を反応させて生成した
溶湯に、該反応容器内で直接ガスを吹込むようにした特
許請求の範囲第1項に記載の鋳物溶湯の生成方法。
(3) The method for producing molten metal for castings according to claim 1, wherein gas is directly blown into the molten metal produced by reacting a thermite agent in the reaction vessel.
(4)多孔質耐火物であるポーラスプラグに接続された
ガスの吹込口を有する特許請求の範囲第3項に記載の鋳
物溶湯を生成するテルミット反応容器。
(4) A thermite reaction vessel for producing molten casting metal according to claim 3, which has a gas inlet connected to a porous plug which is a porous refractory.
JP781882A 1982-01-20 1982-01-20 Forming method of molten metal for casting utilizing thermit reaction Pending JPS58125341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP781882A JPS58125341A (en) 1982-01-20 1982-01-20 Forming method of molten metal for casting utilizing thermit reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP781882A JPS58125341A (en) 1982-01-20 1982-01-20 Forming method of molten metal for casting utilizing thermit reaction

Publications (1)

Publication Number Publication Date
JPS58125341A true JPS58125341A (en) 1983-07-26

Family

ID=11676167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP781882A Pending JPS58125341A (en) 1982-01-20 1982-01-20 Forming method of molten metal for casting utilizing thermit reaction

Country Status (1)

Country Link
JP (1) JPS58125341A (en)

Similar Documents

Publication Publication Date Title
FI83540B (en) YMPNINGSMEDEL FOER GRAOTT GJUTJAERN.
RU2426796C2 (en) Improved procedure for production of malleable iron
US5972129A (en) Process for smelting a titanium steel and steel obtained
CN101307414A (en) Steel for high performance manganese-containing engineering machinery wheel and method for preparing same
AU549961B2 (en) Boron alloying additive for continuously casting boron steel
GB2317357A (en) Adding alloying additives to an aluminothermically produced weld
JPH10237528A (en) Agent and method for spheroidizing of nodular graphite cast iron
CA2214054C (en) Process for the aluminothermic welding of rails with alloying of the weld metal in the rail head region
US4097269A (en) Process of desulfurizing liquid melts
JPH0480093B2 (en)
US4430123A (en) Production of vermicular graphite cast iron
WO2011045755A1 (en) Ferrochrome alloy production
US5037609A (en) Material for refining steel of multi-purpose application
JPS58125341A (en) Forming method of molten metal for casting utilizing thermit reaction
CN100595304C (en) Composite alloy for steel-making deoxidization and microalloying
CA2559154A1 (en) Method for a direct steel alloying
RU97106316A (en) METHOD OF MANUFACTURING NATURALLY-ALLOYED VANADIUM STEEL UNDER VANADIUM CHUGUN'S TRANSFER IN OXYGEN CONVERTERS BY MONOPROCESS WITH METAL LAYER UP TO 30%
RU2186856C1 (en) Composite blend for smelting alloyed steels
JPS587700B2 (en) Seizouhou
RU2124569C1 (en) Method of producing carbon steel
RU2140995C1 (en) Method of deoxidation, modification and microalloying of steel with vanadium-containing materials
RU2176416C1 (en) Radioactive waste immobilization process
RU2091494C1 (en) Method of smelting steel alloyed with chromium and nickel
SU1270173A1 (en) Method of producing cast iron with globular graphite
RU2058415C1 (en) Method for production of ferroalloy containing manganese and silicon