JPS58123837A - Manufacture of sintered iron ore having improved reduction powdering property at low temperature - Google Patents

Manufacture of sintered iron ore having improved reduction powdering property at low temperature

Info

Publication number
JPS58123837A
JPS58123837A JP565882A JP565882A JPS58123837A JP S58123837 A JPS58123837 A JP S58123837A JP 565882 A JP565882 A JP 565882A JP 565882 A JP565882 A JP 565882A JP S58123837 A JPS58123837 A JP S58123837A
Authority
JP
Japan
Prior art keywords
gas
sintered
sintering
grate
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP565882A
Other languages
Japanese (ja)
Inventor
Tomiya Fukuda
福田 富也
Masashi Hasegawa
雅司 長谷川
Susumu Kameo
亀尾 晋
Toshio Yanagawa
柳川 俊雄
Fumiaki Orimo
下茂 文秋
Yoshiaki Nishimoto
西本 義明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP565882A priority Critical patent/JPS58123837A/en
Publication of JPS58123837A publication Critical patent/JPS58123837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the reduction powdering properties of sintered iron ore at low temp. by setting a period of time for which a nonoxidizing gas or a weakly oxidizing gas is fed after a combustion zone reaches the lowest layer and before sintered ore is discharged from a grate. CONSTITUTION:Iron ore is charged onto a grate to form a starting material layer for sintering, the surface of the layer is ignited while feeding air downward, and the combustion zone is allowed to reach the lowest layer. The resulting sintered ore is discharged from the grate. After the sintering and before the discharge, a period of time for which a nonoxidizing gas or a weakly oxidizing gas is fed is set. Gaseous N2 is used as the nonoxidizing gas, and a gaseous mixture of >=50vol% N2 with air is used as the weakly oxidizing gas.

Description

【発明の詳細な説明】 本発明は、製銑原料として還元炉(高炉)vc装入され
たさいに粉化する程度を抑制した、いわゆる低温還元粉
化性の改善された鉄鉱石焼結鉱の製造法に関する。
Detailed Description of the Invention The present invention provides iron ore sintered ore with improved low-temperature reduction powdering properties, which suppresses the degree of powdering when charged into a reduction furnace (blast furnace) as a raw material for iron making. Concerning the manufacturing method.

鉄鉱石焼結鉱を高炉で還元するさいに炉内降下過程で粉
化する程度、いわゆる低温還元粉化性はできるだけ抑制
されることが望ましい。この焼結鉱の低温還元粉化の現
象は、焼結時に生成した六方晶の骸晶状菱形へマタイト
が還元の進行に伴°りて立方晶に変化して体積変化を起
し、これによって微細なりランクを多数生じさせると共
に、該ヘマタイト結晶中の混合物との間に還元速度の差
が生じて膨張の違いにより還元割れを発生して粉化する
とされている。
When reducing iron ore sinter in a blast furnace, it is desirable to suppress the degree of pulverization during the descent process in the furnace, so-called low-temperature reduction pulverization, as much as possible. This phenomenon of low-temperature reduction and powdering of sintered ore occurs when the hexagonal skeleton-like rhomboid hematite produced during sintering changes into cubic crystals as the reduction progresses, causing a volume change. It is said that not only a large number of fine particles are produced, but also a difference in reduction rate occurs between the hematite crystal and the mixture in the hematite crystal, and the difference in expansion causes reduction cracking and powdering.

従来、この鉄鉱石焼結鉱の低温還元粉化性の改善を目的
とした焼結鉱の製造法として、(1)焼結過熱を避け、
層内の最高温度を約1300 r以下に維持させる低温
焼結法、あるいは、(2)焼結原料中に塩化物、例えば
0.15%程度の塩化カルシワムを配合して焼結する塩
化物添加焼結法、などが提案されている。
Conventionally, as a method for producing sintered ore with the aim of improving the low-temperature reduction and powdering properties of this iron ore sintered ore, there have been several methods for producing sintered ore: (1) avoiding overheating during sintering;
A low-temperature sintering method in which the maximum temperature within the layer is maintained at about 1300 r or less, or (2) a chloride addition method in which chloride, for example about 0.15% calcium chloride, is mixed into the sintering raw material and sintered. Sintering method, etc. have been proposed.

しかし、(11の低温焼結法では、気体燃料用の特別な
燃焼装置を必要とするし、また焼結JfII内の最高温
度が100〜150c程度低くなることから鉱石粒子が
十分に溶融せず、したがって、焼結鉱の強度の低下と歩
做の低下が余儀なくされる。また、(2)の塩化物添加
法では、塩素系の排ガスが発生するので、排気系統の配
管類の耐久性が危惧されるし、さらには焼結鉱の低温還
元粉化性の改善効果に逆比例して被還元性が劣化する、
といった問題がある。
However, the low-temperature sintering method (No. 11) requires a special combustion device for gaseous fuel, and the maximum temperature within the sintering JfII is about 100 to 150c lower, so the ore particles are not sufficiently melted. Therefore, the strength of the sintered ore is inevitably reduced and the yield is reduced.In addition, in the chloride addition method (2), chlorine-based exhaust gas is generated, which reduces the durability of the piping in the exhaust system. There are concerns that the reducibility will deteriorate in inverse proportion to the improvement in the low-temperature reduction powdering properties of sintered ore.
There are problems like this.

本発明は、このような問題の解決を目的としてなされた
もので、例えばドヮイトロイド式焼結機のように、火格
子(パレット)上に装入された焼結原料層に下向通風を
行ないながらその上面に着火し、燃焼帯が最下層にまで
達したあと火格子が□゛1 ら焼結晶を排鉱する鉄鉱石の焼結法において、燃焼帯が
最下層に達したあと火格子から排鉱される間に、窒素ガ
スあるいは窒素ガスと空気との混合ガスなどのような非
酸化性または弱酸化性のガスの通風期間を設けたことを
特徴とするものである。
The present invention was made with the aim of solving such problems. For example, in a Dotroid type sintering machine, a layer of sintering raw material charged on a grate (pallet) is ventilated downward. In the iron ore sintering method in which sintered crystals are ignited on the top surface and discharged from the grate after the combustion zone reaches the lowest layer, the grate is discharged after the combustion zone reaches the lowest layer. It is characterized by providing a ventilation period with a non-oxidizing or weakly oxidizing gas such as nitrogen gas or a mixed gas of nitrogen gas and air during mining.

本発明法に従って燃焼帯が最下層に達したあと排鉱され
るまでの間に非酸化性または弱酸化性ガスの通風区間(
期間)を設ける2と、後記実施例に示したように、得ら
れる焼結鉱成品の低温還元粉化性は非常に改善できる。
According to the method of the present invention, after the combustion zone reaches the lowest level and until the ore is discharged, there is a ventilation zone (
2), as shown in Examples below, the low-temperature reduction powdering property of the obtained sintered mineral product can be greatly improved.

これは、焼結層の特に下層部において生成しゃすい骸晶
状菱形へマタイトの形成が効果的に防止されることによ
ると推察される。
This is presumed to be due to the fact that the formation of skeletal rhombic hematite, which occurs particularly in the lower layer of the sintered layer, is effectively prevented.

本発明法の実施謔さいし、非酸化性ガスとしては窒素が
便宜である。必ずしも完全に非酸化性でなくとも通常の
空気よりも酸素分圧を低くした窒素と空気の混合ガスで
あってもよく、窒素混入量が多いほどその効果は太′き
いが窒素を50容量チ程度含有する場合でも効果が現わ
れる。この窒素ガスに代えて他の不活性ガスを使用して
もよい。
In practicing the method of the invention, nitrogen is conveniently used as the non-oxidizing gas. Although it is not necessarily completely non-oxidizing, it may be a mixed gas of nitrogen and air with a lower oxygen partial pressure than normal air. The effect appears even when it is contained to a certain extent. Other inert gases may be used in place of this nitrogen gas.

1鳴1 この非酸化性または弱酸化性ガスの通風区間(期間)は
、燃焼帯が最下層に達L5たあとに(直後に)設けるこ
とが大切である。燃焼帯が層中を下降している燃焼時期
にこのようなガスを通風すると酸化反応が抑制され十分
な強度をもつ焼結晶が得られなくなる恐れがあるし、場
合vcよっては燃焼不能になったりする。捷た、燃焼に
長時間を費し、生産性を著しく減少させることにもなる
。燃焼帯が最下層に達したあと、すなわち、原料層の燃
結が進行して配合した粉コークスがほぼ燃焼し尽くした
時点で、非または弱酸化性ガスを通風しても前記のよう
な問題はなく、この場合VCは、骸晶状菱形へマタイト
の生成が効果的に防止される。
1 Sound 1 It is important to provide this ventilation section (period) of non-oxidizing or weakly oxidizing gas after (immediately after) the combustion zone reaches the lowest layer L5. If such a gas is ventilated during the combustion period when the combustion zone is descending through the layer, the oxidation reaction will be suppressed and there is a risk that sintered crystals with sufficient strength will not be obtained, and depending on the VC, combustion may become impossible. do. It takes a long time to burn and burn, which significantly reduces productivity. After the combustion zone reaches the lowest layer, that is, when the combustion of the raw material layer has progressed and the blended coke breeze has been almost completely burned, even if non-oxidizing gas or weakly oxidizing gas is ventilated, the above-mentioned problem will not occur. In this case, VC effectively prevents the formation of skeletal rhombic hematite.

この骸晶状菱形へマタイトの生成が防止されるのは次の
ような焼結メカニズムを想定するとよく理解できる。
The prevention of the formation of this skeletal rhomboid hematite can be better understood by assuming the following sintering mechanism.

一般に鉄鉱石の焼結のさいには、原料鉱石中のヘマタイ
2−1、燃焼帯の約1550 ce越える高温領域で熱
解離してマグネタイトに変り、ざらにスラグ融液と反応
して多成分系マグネタイトicxる。
Generally, during the sintering of iron ore, hematite 2-1 in the raw ore is thermally dissociated into magnetite in the high temperature region exceeding about 1550 ce of the combustion zone, and reacts with the slag melt to form a multicomponent system. Magnetite ICX Ru.

従来の常法に従う焼結法では、燃焼以降における降温過
程においてその降温初期の1200〜1350 c付近
でも通気がなされるのが通常であるがら、生成した多成
分系マグネタイトは焼結層内を通過する空気中の酸素に
よって酸化され、骸晶状菱形へマタイトヲ形成する。す
なわち、通常の強制下方吸引通風方式の焼結法において
は、粉コークスなどの固体燃料を熱源として配合した焼
結原料を火格子上に300〜700朋厚さとなるように
装入し、この原料層の上面に着火して燃焼帯を形成せし
め、これを下方通風によって順次降下させながら焼結を
進行させるのであるが、この場合、焼結層では上方の燃
焼帯からの高温ガスIC,Uっで下方はど予熱されるこ
とになるので、下層はど燃焼帯最高は上昇し、かつ生成
した多成分系マグネタイトは通風空気中の酸素VCよっ
て骸晶状菱形へマタイトとなる高温域も広がることVC
なる。この骸晶状菱形へマタイトが生成すると焼結鉱成
品の低温還元粉化性が劣化することは、先述のとおりで
あるが、本発明法による場合1’(は、燃焼終了後の熱
保存帯とも言うべき下層での高温域の広がりが防止され
ると共に酸素分圧が低下するので、骸晶状菱形へマタイ
トの生成が効果的に抑制され、その結果として、焼結鉱
成品の低温還元粉化性が改善されることになると考えら
れる。
In conventional sintering methods, aeration is normally performed during the temperature cooling process after combustion, even around 1200 to 1350 °C at the beginning of the temperature drop, but the multicomponent magnetite produced passes through the sintered layer. It is oxidized by oxygen in the air, forming skeletal rhomboid matite. That is, in the normal forced downward suction draft sintering method, a sintering raw material mixed with a solid fuel such as coke powder as a heat source is charged onto a grate to a thickness of 300 to 700 cm, and the raw material is The upper surface of the layer is ignited to form a combustion zone, and the sintering progresses as this is gradually lowered by downward ventilation.In this case, in the sintered layer, high temperature gas IC, U, As the lower part is preheated, the highest combustion zone in the lower layer rises, and the high-temperature region where the generated multi-component magnetite turns into skeletal rhombic hematite due to oxygen VC in the ventilation air also expands. VC
Become. As mentioned above, when this skeleton-like rhombic hematite is generated, the low-temperature reduction and powdering properties of the sintered mineral product deteriorate. This prevents the expansion of the high-temperature region in the lower layer and lowers the oxygen partial pressure, effectively suppressing the formation of skeletal rhombic hematite, and as a result, reducing the low-temperature reduced powder of the sintered ore product. It is thought that this will improve the chemical properties.

なお、上述のような焼結メカニズムからすれば、骸晶状
菱形へマタイトの生成tt抑制するi’(は、酸化反応
温度域に被酸化物が存在する時間を減少させる対策を講
じたり、また、被酸化物である多成分系マグ洋タイトの
量を減少させる対策も有効な処決であると考えられる。
In addition, considering the sintering mechanism as described above, i' (to suppress the formation of skeletal rhomboid hematite tt can be achieved by taking measures to reduce the time that the oxidized material exists in the oxidation reaction temperature range, or by , measures to reduce the amount of multicomponent maggiotite, which is an oxidizable substance, are also considered to be an effective solution.

しかし、本発明法の場合fcは、既存の焼結反応条件を
実質上変更させないで反応後の処理に工夫したものであ
るから、焼結操業条件の変更や焼結成品の他の必要な物
性、例えば強度や被還元性などに実質上影響を与えるこ
となく行なえる点で一層有利である。
However, in the case of the method of the present invention, fc is a devised post-reaction treatment without substantially changing the existing sintering reaction conditions, so it is possible to change the sintering operating conditions and other necessary physical properties of the sintered product. This is even more advantageous in that it can be carried out without substantially affecting, for example, strength or reducibility.

実施例 1 内径0.3 m、高さ0.65 mの鋼鉄製の焼結鍋に
床敷鉱(焼結鉱のうち10〜20IlIIサイズのもの
)を2 kg装入したあと、この上に第1111表に示
す配合の焼結原料’(H55kg装入し、この原料層の
最下部に測温用の熱電対を埋め込み、排気ブロワ−によ
る強制的な下方吸引通風全行ないながら上面にLPG燃
焼炎によって着火して焼結を開始した。
Example 1 2 kg of bedding ore (sintered ore of size 10 to 20IlII) was charged into a steel sintering pot with an inner diameter of 0.3 m and a height of 0.65 m. A sintering raw material with the composition shown in Table 1111 (H55 kg) was charged, a thermocouple for temperature measurement was embedded in the bottom of the raw material layer, and LPG was burned on the upper surface while a forced downward suction ventilation was carried out by an exhaust blower. The flame ignited it and started sintering.

そして、前記熱電対によって測温される原料層最下部の
温度が最高点に達した時をみはからって、通風ガスを窒
素量を種々の割合で含有する混合ガスに切換え、この混
合ガスをいずれも3分間通気した。
Then, when the temperature at the bottom of the raw material layer measured by the thermocouple reaches the highest point, the ventilation gas is switched to a mixed gas containing nitrogen in various proportions, and this mixed gas is Both were aerated for 3 minutes.

得られた焼結鉱は、焼結鍋から取出し整粒したあと、低
温還元粉化試験に供した。その試験結果を第1図に示し
た。
The obtained sintered ore was taken out from the sintering pot, sized, and then subjected to a low-temperature reduction powdering test. The test results are shown in FIG.

第1図の結果から明らかなように、混合ガス中の窒素ガ
ス量が多くなるにしたがって焼結鉱の低温還元粉化指数
は低下して低温還元粉化性が改善される。窒素100 
Vol、−の場合に最も効果が大きいが窒素50 Vo
l、%以上でも十分な効果が得られることがわかる。
As is clear from the results shown in FIG. 1, as the amount of nitrogen gas in the mixed gas increases, the low-temperature reduction powdering index of the sintered ore decreases, and the low-temperature reduction powdering properties are improved. Nitrogen 100
The effect is greatest when Vol, -, but nitrogen 50 Vo
It can be seen that sufficient effects can be obtained even when the amount is 1.1% or more.

実施例 2 有効機長som、巾3m、有効面積150771″、風
箱(2,5mx3m)20基のドワイトロイド式焼結機
を使用し、第2表に示す配合の焼結原料を用いて焼結し
た。
Example 2 Sintering was carried out using a Dwight Lloyd sintering machine with effective machine length som, width 3 m, effective area 150771'', and 20 wind boxes (2.5 m x 3 m), using sintering raw materials with the composition shown in Table 2. did.

そのさり、原料層高f450m、、・ζレットスピード
i 1.85 m7分に設定し、第19番目の風箱に相
当する位置に到達した時点で燃焼帯が焼結原料層の最下
部口達するようにし、次いで第20番目の最終風箱の位
置を経てから排鉱する操業を実施した。第20番目の最
終風箱のところで、焼結層表面に窒素ガスを吹付け、こ
の窒素ガスが焼結層内に吸引通過するようにした。
Then, the height of the raw material layer was set to f450 m, and the let speed i was set to 1.85 m7 minutes, and the combustion zone reached the bottom of the sintered raw material layer when it reached the position corresponding to the 19th wind box. Then, an operation was carried out in which ore was discharged after passing through the position of the 20th and final wind box. At the 20th and final wind box, nitrogen gas was blown onto the surface of the sintered layer so that the nitrogen gas was sucked and passed into the sintered layer.

焼結機から排鉱された焼結塊は冷却器で冷却の後、破砕
ふるい分は工程で整粒して製鉄用焼結鉱を得た。この焼
結鉱の低温還元粉化試験を行ない、低温還元粉化指数を
測定して第3表の結果を得た。
The sintered lump discharged from the sintering machine was cooled in a cooler, and the crushed sieve fraction was sized in the process to obtain sintered ore for iron manufacturing. This sintered ore was subjected to a low-temperature reduction powdering test, and the low-temperature reduction powdering index was measured, and the results shown in Table 3 were obtained.

また、第20番目の風箱のところで空気を通風させる従
来法に従った場合の試験結果も第3表に示した。
Table 3 also shows the test results when the conventional method of ventilating air at the 20th wind box was followed.

第3表 第5表の結果から明らかなように、本発明法に従って、
燃焼帯が最下層に達したあと非酸化性ガスを通過させる
だけで、焼結鉱の低温還元粉化性は著しく改善され、低
温還元粉化指数は従来の37.22から33.50に低
下した。
As is clear from the results in Table 3 and Table 5, according to the method of the present invention,
By simply passing non-oxidizing gas after the combustion zone reaches the bottom layer, the low-temperature reduction pulverization properties of sintered ore are significantly improved, and the low-temperature reduction pulverization index drops from 37.22 to 33.50. did.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃焼帯が最下層に達し友あとに通気するガスの
空気と窒素の割合(容量%]と焼結鉱の低温還元粉化指
数との関係図である。 出願人  日新製鋼株式会社
Figure 1 is a diagram showing the relationship between the ratio of air and nitrogen (volume %) in the gas vented after the combustion zone reaches its lowest level and the low-temperature reduction powdering index of sintered ore. Applicant: Nisshin Steel Co., Ltd. company

Claims (1)

【特許請求の範囲】 ill  火格子上に装入された焼結原料層に下向通風
を行ないながらその上面に着火し、燃焼帯が最下層にま
で達したあと火格子から焼結凸金排鉱する鉄鉱石の焼結
法において、燃焼帯が最下層に達したあと火格子から排
鉱されるまでの間に、非酸化性または弱酸化性ガスによ
る通風期間を設けたことを特徴とする低温還元粉化性の
改善された鉄鉱石焼結鉱の製造法。 1コ;  非酸化性ガスは窒素ガスである特許請求の範
囲第1項記載の製造法。 (31弱#!fヒ性ガスは、窒素f50容量チ以上含む
窒素と空気の混合ガスである特許請求の範囲第1項記載
の製造法。
[Scope of Claims] ill The sintered raw material layer charged on the grate is ignited on the upper surface while providing downward ventilation, and after the combustion zone reaches the lowest layer, the sintered convex metal is discharged from the grate. A method of sintering iron ore for mining, which is characterized by providing a period of ventilation with non-oxidizing or weakly oxidizing gas after the combustion zone reaches the lowest level and before the ore is discharged from the grate. A method for producing sintered iron ore with improved low-temperature reduction powdering properties. 1. The manufacturing method according to claim 1, wherein the non-oxidizing gas is nitrogen gas. (The manufacturing method according to claim 1, wherein the arsenic gas is a mixed gas of nitrogen and air containing at least 50 volumes of nitrogen.
JP565882A 1982-01-18 1982-01-18 Manufacture of sintered iron ore having improved reduction powdering property at low temperature Pending JPS58123837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP565882A JPS58123837A (en) 1982-01-18 1982-01-18 Manufacture of sintered iron ore having improved reduction powdering property at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP565882A JPS58123837A (en) 1982-01-18 1982-01-18 Manufacture of sintered iron ore having improved reduction powdering property at low temperature

Publications (1)

Publication Number Publication Date
JPS58123837A true JPS58123837A (en) 1983-07-23

Family

ID=11617208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP565882A Pending JPS58123837A (en) 1982-01-18 1982-01-18 Manufacture of sintered iron ore having improved reduction powdering property at low temperature

Country Status (1)

Country Link
JP (1) JPS58123837A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023176A (en) * 2010-12-13 2011-04-20 首钢总公司 Method for acquiring high temperature characteristics of iron ore powder in sintering process
CN108754132A (en) * 2018-06-14 2018-11-06 鞍钢股份有限公司 A method of improving Metallurgical Properties of Sinter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023176A (en) * 2010-12-13 2011-04-20 首钢总公司 Method for acquiring high temperature characteristics of iron ore powder in sintering process
CN108754132A (en) * 2018-06-14 2018-11-06 鞍钢股份有限公司 A method of improving Metallurgical Properties of Sinter
CN108754132B (en) * 2018-06-14 2020-02-18 鞍钢股份有限公司 Method for improving performance of sintered ore metallurgy

Similar Documents

Publication Publication Date Title
TWI449795B (en) Method for producing sintered ore
US4257806A (en) Fired iron-ore pellets having macro pores and process for producing the same
JP6686974B2 (en) Sintered ore manufacturing method
JPS58123837A (en) Manufacture of sintered iron ore having improved reduction powdering property at low temperature
JP6477167B2 (en) Method for producing sintered ore
JP2946880B2 (en) Sinter production method
KR0173842B1 (en) Sintered ore manufacturing method using high crystal water iron ore as raw materials
JP2000178660A (en) PRODUCTION OF HIGH QUALITY LOW SiO2 SINTERED ORE
JP2001294945A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
US3957486A (en) Method of reducing iron ore
JPS63219534A (en) Manufacture of self-fluxing pellet
US2684296A (en) Reduction of iron ores
US3427149A (en) Process for removing arsenic from iron ore
JPH08239720A (en) Method for manufacturing sintered ore from ore with high content of water of crystallization
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
US3486880A (en) Heat indurated compacts of manganese ore and process of making same
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
US2606110A (en) Reduction of the powders of the oxides of iron or iron alloys
AU2019391453B2 (en) Sintered ore manufacturing method
JP7323075B2 (en) Method for producing agglomerate ore, method for producing reduced iron, agglomerate ore, sintering machine and pellet firing furnace
WO2024069991A1 (en) Method for producing iron ore pellets, and iron ore pellets
JP4501656B2 (en) Method for producing sintered ore
JPH05247545A (en) Pseudo particle for raw material of sintered ore and raw material of sintered ore
JPH0827525A (en) Production of sintered ore formed by using ore of high crystallization water as raw material