JPS58123825A - Manufacture of nonoriented electrical steel sheet - Google Patents

Manufacture of nonoriented electrical steel sheet

Info

Publication number
JPS58123825A
JPS58123825A JP607382A JP607382A JPS58123825A JP S58123825 A JPS58123825 A JP S58123825A JP 607382 A JP607382 A JP 607382A JP 607382 A JP607382 A JP 607382A JP S58123825 A JPS58123825 A JP S58123825A
Authority
JP
Japan
Prior art keywords
slab
steel sheet
less
temperature
heat retention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP607382A
Other languages
Japanese (ja)
Inventor
Isao Ito
伊藤 庸
Hiroshi Matsumura
松村 「あ」
Hiroto Nakamura
中村 広登
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP607382A priority Critical patent/JPS58123825A/en
Publication of JPS58123825A publication Critical patent/JPS58123825A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture a nonoriented electrical steel sheet with a small iron loss by holding a continuously cast slab contg. specified percentages of Si, Mn, P, Al, C, S, Ca and a rare earth element in Fe at a specified temp. under specified conditions and by hot rolling it at once. CONSTITUTION:A continuously cast hot slab consisting of 1.5-4% Si, 0.1-1.5% Mn, <=0.1% P, 0.2-2% Al, <=0.008% C, 0.003-0.015% S, 0.003-0.03% at least one of Ca and a rare earth element, and the balance essentially Fe is held at 900-1,150 deg.C for <=30min. It is hot rolled at once and cold rolled to obtain a steel sheet. Thus, the time for holding the slab at said temp. can be reduced.

Description

【発明の詳細な説明】 本発明は、鉄損の低い無方向性電磁鋼板の製造方法に関
し、特に本発明は連続鋳造スラブより鉄損の低い無方向
性電磁鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a non-oriented electrical steel sheet with a low core loss, and particularly the present invention relates to a method for producing a non-oriented electrical steel sheet with a lower core loss than a continuously cast slab.

従来の無方向性電磁鋼板の製造方法としては、転炉で溶
製した溶鋼を出鋼した後、脱ガスし、合金鉄等の添加を
行って成分の調整をする。この成分調整後の溶鋼は独立
した鋳型に注入し、得られる鋼塊を分塊圧延しスラブに
するか、もしくは連続鋳造法によって直接スラブ化され
る。こうして得られたスラブは、一旦常温まで冷却した
後、貴加熱(スラブ加熱)し熱間圧延を行うため、多量
の熱エネルギーを必要としていた。これに対し、最近の
技術として連続鋳造工程と熱間圧延工程を連続化し、ス
ラブの顕熱を利用して省エネルギー化する方法が開発さ
れた。即ち、連続鋳造されたスラブを高温の壇ま熱間圧
延し、熱エネルギー効率と操業効率を高める方法である
。この製造方式は一般に連鋳直接圧電方式と呼ばれてい
るが、無方向性電磁鋼板の製造に適用した場合、目的の
磁気特性が最終製品において得られないという重大な欠
点を有する。
The conventional method for manufacturing non-oriented electrical steel sheets involves tapping molten steel produced in a converter, degassing it, and adjusting the composition by adding ferroalloys and the like. The molten steel after the composition adjustment is poured into an independent mold, and the resulting steel ingot is either bloomed into a slab or directly formed into a slab by continuous casting. The slab thus obtained requires a large amount of thermal energy because it is once cooled to room temperature and then subjected to precious heating (slab heating) and hot rolling. In response to this, a recent technology has been developed to make the continuous casting process and hot rolling process continuous, and to utilize the sensible heat of the slab to save energy. That is, this method involves hot rolling continuously cast slabs on a high-temperature platform to improve thermal energy efficiency and operational efficiency. This manufacturing method is generally called the continuous casting direct piezoelectric method, but when applied to the manufacturing of non-oriented electrical steel sheets, it has a serious drawback in that the desired magnetic properties cannot be obtained in the final product.

この原因は多量のAANが熱延板中に微細に分散析出し
、冷延鋼板の仕上焼鈍における粒成長を抑制することに
ある。
The reason for this is that a large amount of AAN is finely dispersed and precipitated in the hot-rolled steel sheet, suppressing grain growth during final annealing of the cold-rolled steel sheet.

これを回避する手段として、従来法であるスラブ加熱方
式にあっては、例えば特開昭49−38814号に開示
されているように、加熱温度を1200 C以下にする
方法が、また連鋳直接圧延方式にあっては特公昭56−
18015号ならびに%公昭56=33451号に開示
されているように、熱間圧延の1M1K高温スラデを5
oo−1oso’eの温度域で40分間以上保熱し、A
ANを粗大化させる方法がある。
As a means to avoid this, in the conventional slab heating method, for example, as disclosed in JP-A No. 49-38814, there is a method of reducing the heating temperature to 1200 C or less, and a continuous casting direct heating method. Regarding the rolling method, the Special Publication Act of 1986-
As disclosed in No. 18015 and % Kosho No. 56=33451, hot-rolled 1M1K high-temperature slade was
Insulate for 40 minutes or more in the temperature range of oo-1oso'e,
There is a method to coarsen AN.

しかし、連鋳直接圧延におけるこうした長時間にわたる
保熱処理は、連鋳直接圧延の長所のひとつである操業能
率の向上に逆行するものであり、何らかの手段によって
この保熱処理時間を短縮する必要があった。
However, such long heat retention treatment in continuous cast direct rolling goes against the improvement of operational efficiency, which is one of the advantages of continuous cast direct rolling, so it was necessary to shorten this heat retention treatment time by some means. .

本発明は、従来方法によれば保熱処理時間が長いという
欠点を除去することのできる連続鋳造スラブより鉄損の
低い無方向性電磁銅板の製造方法を提供することを目的
とするものであ抄、特許請求の範囲記載の方法を提供す
ることによって前記目的を達成することができる。
An object of the present invention is to provide a method for producing a non-oriented electromagnetic copper plate having lower iron loss than a continuous casting slab, which can eliminate the disadvantage of long heat retention treatment time according to the conventional method. , the said object can be achieved by providing the method according to the claims.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明者らは、前記保熱処理時間を短縮する、ため種々
の実験を試みた末に、鋼の含有成分のうちC,S、 +
すの含有量を調整することにより、もしくはC,Ajの
含有量を調整すると共に特殊な元素を添加含有させると
とKよって、前記保熱処理時間を短縮することができる
ことを新規に知見して本)4 発明を完成した。
In order to shorten the heat retention treatment time, the present inventors have tried various experiments and found that among the components of steel, C, S, +
This book is based on the new finding that the heat retention treatment time can be shortened by adjusting the content of C or by adjusting the content of C and Aj and adding a special element. )4 Completed the invention.

本発明によれば、AAo、2〜2%を含有する連続鋳造
スラブを用いることから、スラブ中には!’dNが析出
物として析出している。
According to the present invention, since a continuous casting slab containing 2 to 2% of AAo is used, the slab contains! 'dN is precipitated as a precipitate.

ところで、AJLNが鋼板の結晶粒成長を抑制すること
によって製品の磁気特性を劣化させる機構と、AtNを
粗大化することによって磁気特性を改善させる機構につ
いては従来知られてお秒、例えは、特開昭49−388
14号に開示されている。この開示からも判るようK 
AANは固溶温度が比較的低温であり、通常のスラブ加
熱温度である1200〜1300Cにおいては大部分の
M玉は固溶しており、これが熱延中に多数の微細なAt
Nの析出物を鋼中にもたらし、結晶粒の粒成長を抑制し
て磁気特性を劣化させるが、一方スラブを1200C以
下で加熱するならば、AjNは結晶粒の成長を抑制する
ことのない大きな粒形になって鋼中に存在し、その後の
処理により良い磁気特性が得られる。
By the way, the mechanism by which AJLN deteriorates the magnetic properties of a product by suppressing the grain growth of the steel sheet and the mechanism by which the magnetic properties are improved by coarsening AtN have been known for a while. Kaisho 49-388
It is disclosed in No. 14. As can be seen from this disclosure, K
AAN has a relatively low solid solution temperature, and at the normal slab heating temperature of 1200 to 1300C, most of the M balls are in solid solution, which causes a large number of fine At
On the other hand, if the slab is heated below 1200C, AjN causes large precipitates that do not suppress grain growth and deteriorate the magnetic properties. It is present in the steel in the form of grains, and its subsequent processing provides good magnetic properties.

したがって連鋳直接圧[においても、前記特公昭56−
18045号や特公昭56−33451号に記載されて
いるような800〜1050Cの温度で40分間以上の
保熱処理によって、νNを大きなサイズに粗大化させる
ことが必要であるとされていた。
Therefore, in continuous casting direct pressure [also in
It was believed that it was necessary to coarsen νN to a large size by heat retention treatment at a temperature of 800 to 1050 C for 40 minutes or more as described in Japanese Patent Publication No. 18045 and Japanese Patent Publication No. 56-33451.

一方、ktNの粗大化をスラブ保熱処理によらずに達成
する方法としては、従来のスラブ加熱方式にあってはA
ANの一定温度での固溶量を低減させる方法が従来より
知られそおり、原理的には次のa)とb)の方法が可能
な方法として挙げられる。
On the other hand, in the conventional slab heating method, A
Methods of reducing the solid solution amount of AN at a constant temperature have been known for some time, and in principle, the following methods a) and b) are possible.

a)鋼中紅の添加量を増やし、AjNの固溶量を減らす
ことを要旨とするTrans、A8M 461470〜
1499 (1954)に記載の方法。
a) Trans, A8M 461470~, whose main purpose is to increase the amount of added steel and reduce the amount of solid solution of AjN
1499 (1954).

b)鋼中のC量を減らすことKよって/UNの固溶量を
低減することを特徴とする特開昭49−38814号に
開示された方法。
b) A method disclosed in JP-A-49-38814, characterized in that the amount of C in the steel is reduced, thereby reducing the amount of solid solution of /UN.

従来のスラブ加熱方式において、νNの固溶量の低減に
より磁気特性が向上する機構はすでに明確である。即ち
、あるスラブ加熱温度においてAtNの固溶量が減少す
ることは、一度溶解して、次工程である熱間圧延中に析
出する微細なAjNO数が減少するという“ことを意味
してお炒、この結果、AtNの絶対数が減り、−板の結
晶粒成長に対してAjNによる結晶粒の成長抑制作用を
充分無害化させることができるのである。
In the conventional slab heating method, the mechanism by which magnetic properties are improved by reducing the amount of νN in solid solution is already clear. In other words, a decrease in the solid solution amount of AtN at a certain slab heating temperature means that the number of fine AjNOs that are dissolved and precipitated during the next step of hot rolling is reduced. As a result, the absolute number of AtN is reduced, and the effect of inhibiting the growth of crystal grains by AjN on the growth of crystal grains in the negative plate can be sufficiently rendered harmless.

本発明者らは前記a)tたはb)による成分調整による
手段が連鋳直接圧延にお−ても効果を有すると考えたが
、しかしその作用効果をもたらす機構は従来のスラブ加
熱方式のものと全く異なることを知見した。即ち、a)
またはb)の手段によりklNの固溶温度が上昇するた
め、高温で鋳造されたスラブが冷却される過程で成分調
整を施していないものより、より高温度から/UNが析
出を開始し、また、こうした高い温度では虹やNの拡散
速度の大きいことが幸いして、/UNは数の少ない粗大
粒に成長する。このため、M量とC量を適切に選ぶこと
によ9後工程での鋼板の粒成長に対して充分無害化たら
しめることが可能である。
The present inventors thought that the component adjustment method described in a) t or b) above would also be effective in continuous casting direct rolling, but the mechanism that brings about this effect is different from that of the conventional slab heating method. I found out something completely different. That is, a)
Or, because the solid solution temperature of klN increases by means of b), /UN starts to precipitate at a higher temperature than a slab that has not been subjected to composition adjustment during the cooling process of a slab cast at a high temperature, and Fortunately, at such high temperatures, the diffusion rate of rainbow and N is high, and /UN grows into coarse grains with a small number. Therefore, by appropriately selecting the amount of M and the amount of C, it is possible to make the steel plate sufficiently harmless to grain growth in the subsequent process.

本発明者らはこのことを次の実験により確認した。The present inventors confirmed this through the following experiment.

実験1 転炉で溶製した後、真空脱ガス処理を行い、M量を調整
した第1表に示される盛彷を有する各種溶銅を、連続鋳
造により200■厚のスラブとする。
Experiment 1 After melting in a converter, vacuum degassing treatment was performed, and the amount of M was adjusted. Various types of molten copper having the thickness shown in Table 1 were continuously cast into slabs with a thickness of 200 mm.

連鋳機から出た約1200cの温度の高温スラブの表面
に、表面温度が設定保熱温度になりた時、断熱材を載せ
、放熱を防ぎながら保熱時間を変えて試料を切出し、直
ちに熱間圧延を行って2−厚の熱延板に仕上げた。
When the surface temperature of the high-temperature slab that comes out of the continuous casting machine reaches the set heat retention temperature, a heat insulating material is placed on the surface of the high-temperature slab at a temperature of approximately 1200c, and the sample is cut out while changing the heat retention time while preventing heat radiation. Inter-rolling was performed to produce a 2-thick hot rolled sheet.

第1表    (%) この熱延板を900Cで1分間の焼準後、酸洗し、冷間
圧電でQ、5Qwの厚さKし、900Cで4分間の脱炭
焼鈍(雰囲気H26096,N240%、露点5゜C)
を施して最終製品とし、磁気特性の調査を行った。その
結果の一部を第1図に示す。なお、脱炭清純後のC含有
量はいずれも0.004%以下であり、磁気特性に及ぼ
す一部は極めて少ないものである。
Table 1 (%) This hot-rolled sheet was normalized at 900C for 1 minute, pickled, cold piezoelectrically processed to a thickness of Q, 5Qw, and decarburized annealed at 900C for 4 minutes (atmosphere H26096, N240 %, dew point 5°C)
The final product was obtained by subjecting it to the following steps, and its magnetic properties were investigated. Some of the results are shown in FIG. Note that the C content after decarburization and purification is 0.004% or less in all cases, and its effect on magnetic properties is extremely small.

鋼塊DKついて鉄損に及ぼす保熱温度と保熱時間との関
係を第2図に示す。同図においてO印は鉄損良好な点を
、X印は鉄損不良な点を示し、ハツチングを施した枠内
は短時間で良好な鉄損が得られる領域である。
Figure 2 shows the relationship between heat retention temperature and heat retention time on iron loss for steel ingot DK. In the figure, the O mark indicates a point with good iron loss, and the X mark indicates a point with poor iron loss, and the hatched frame is an area where good iron loss can be obtained in a short time.

第1図、第2図の結果より、S量を0.003%以下、
C量をo、’oos憾以下、At量を0.20%以上と
規制するととによ抄、有効な保熱温度領域は900〜1
150Uとなり、保熱時間は30分以内に短縮される。
From the results in Figures 1 and 2, the amount of S should be 0.003% or less.
If the amount of C is regulated to be less than o, 'oos, and the amount of At is regulated to be more than 0.20%, the effective heat retention temperature range is 900 to 1.
It becomes 150U, and the heat retention time is shortened to less than 30 minutes.

有効保熱温度領域が既知の連鋳直接圧延の温度域よりも
高温側へ移行したことは、本発明方法が、AANの固溶
温度の上昇を利用して鉄損改善・の作用効果を得たこと
を示している。
The fact that the effective heat retention temperature range has shifted to a higher temperature side than the known temperature range of continuous casting direct rolling indicates that the method of the present invention utilizes the increase in the solid solution temperature of AAN to obtain the effect of improving iron loss. It shows that

しかしながら、第1図の鋼塊記号Eに示されるように鋼
中8濃度が高い場合は、こうしたA1.、Cの調整を行
っても、保熱時間の短縮が不可能であることを発見した
However, if the concentration of 8 in the steel is high, as shown by the steel ingot symbol E in FIG. , C was found to be impossible to shorten the heat retention time.

しかし、実際の製造においてはS量を0.003%以下
に抑えることは甚しいコストアップとなるので、S量の
高い場合においても高温スラブの保熱時間の短縮化が可
能となる技術の開発が必要である。前記鋼塊Eのように
高8fiの場合、保熱時間短縮効果が得られない原因は
、種々の調査の結果、本発明者らはMn8の析出物によ
る粒成長抑制効果であることを見出した。またAJLN
と異な9、MnSは固溶温度の′上昇によって高温スラ
ブの保熱時間の短縮化は困難であるとの結論に到達した
。最も有効な方法として本発明者らは、Sを磁気特性上
無害となる他の元素との化合物として結合させること、
しかもその化合物の固溶温度が高いような元素を選定す
ることを試みた。つまり、Sの大部分を他の元素と結合
させ、Mn8として存在し得る〔S〕濃度を実質的に0
.00396以下に抑える方法−である、溶鋼中の8を
固定する元素としては、希土類元素とCaが知られてお
り、この両者について、S量0.006 %の溶鋼中に
8固定当量分投入して実験Iと同様の実験を行った。各
スラブの成分と実験結果の一部を第2表に示す。
However, in actual manufacturing, suppressing the S content to 0.003% or less would result in a significant cost increase, so we developed a technology that can shorten the heat retention time of high-temperature slabs even when the S content is high. is necessary. As a result of various investigations, the present inventors found that the reason why the heat retention time shortening effect could not be obtained in the case of a high 8fi like the steel ingot E was the grain growth suppressing effect due to Mn8 precipitates. . Also AJLN
9, it was concluded that with MnS, it is difficult to shorten the heat retention time of a high-temperature slab due to an increase in the solid solution temperature. The most effective method is to combine S as a compound with another element that is harmless in terms of magnetic properties.
Moreover, we tried to select elements whose solid solution temperature is high for the compound. In other words, most of the S is combined with other elements, and the concentration of [S] that can exist as Mn8 is reduced to substantially 0.
.. Rare earth elements and Ca are known as elements that fix 8 in molten steel, which is a method of suppressing the S content to 0.006% or less. An experiment similar to Experiment I was conducted. Table 2 shows the components of each slab and some of the experimental results.

第2表で認められるように、Caまたは希土類元素を溶
鋼中に投入してSを固定した鋼塊は、保熱時間を30分
以内に短縮することが可能となった。
As seen in Table 2, steel ingots in which S was fixed by introducing Ca or rare earth elements into molten steel were able to shorten the heat retention time to within 30 minutes.

第2表 申)保熱温度 11001:’ ここで希土類元素添加の方法としては、50qbのCe
を含有し、残りは主としてLm、 Nd、 Sm等の希
土類元素からなるンツシ二メタルを溶鋼中に投与する方
法を用いた。
Table 2) Heat retention temperature 11001:' Here, as a method of adding rare earth elements, 50qb of Ce
A method was used in which metals were added into molten steel, with the remainder mainly consisting of rare earth elements such as Lm, Nd, and Sm.

次に本発明において成分組成を限定する理由を説明する
Next, the reason for limiting the component composition in the present invention will be explained.

8iは磁気特性を向上させるに必要な元素であるが、1
.5 %より少ないと所望の磁気特性が得られず、一方
4.0%より多いと冷延性が著しく劣化して実用化でき
ないのでSiは1.i〜4.0%の範囲内にする必要が
ある。
8i is an element necessary to improve magnetic properties, but 1
.. If it is less than 5%, the desired magnetic properties cannot be obtained, while if it is more than 4.0%, the cold rollability will deteriorate significantly and it cannot be put to practical use. It is necessary to keep it within the range of i to 4.0%.

鳩は熱間脆性を改善するのに寄与する元素であるが、0
.1%より少ないと前記改善が得られず、一方1.5 
%を越えると製鋼段階でC量を低減することが困難とな
るので、鳩は0.1〜1.5%の範囲内にする必要があ
る。
Pigeon is an element that contributes to improving hot brittleness, but 0
.. If it is less than 1%, the above improvement cannot be obtained;
%, it becomes difficult to reduce the amount of C at the steel manufacturing stage, so it is necessary to keep it within the range of 0.1 to 1.5%.

Pは特別な処理を施さなければ、鋼中に不可避的に含有
される元素であり、また、磁気特性に対して少量ならば
悪影響を及はさないが、0.1係を越えると粒成長性を
損うので、Pは0.1%以下にする必要がある。
P is an element that is unavoidably contained in steel unless special treatment is applied, and it does not have a negative effect on magnetic properties in small amounts, but if it exceeds a factor of 0.1, it may cause grain growth. P must be kept at 0.1% or less since it impairs the properties.

Cは0.008 %より多いと保熱時間を短縮すること
ができないので、Cはo、oos%以下にする必要があ
る。
If the C content exceeds 0.008%, the heat retention time cannot be shortened, so the C content must be at most 0.00%.

虹は0.2%より少ないと保熱時間を短縮することがで
きず、一方2%より多いと冷間圧電性が悪くなるので、
紅は0.2〜2.0%の範囲内にする必要がある。
If Niji is less than 0.2%, it will not be possible to shorten the heat retention time, while if it is more than 2%, cold piezoelectricity will deteriorate.
Red should be within the range of 0.2 to 2.0%.

Sは0.0034より、・、・::多いと保熱時間を短
縮することができないので、Sはo、oo396以下に
する必要がある。但しs量が0.003%から0.01
596の間では8@に応じてCaまたを1希土類元素(
原子番号57〜71)のなかから選ばれるいずれか1種
または2@以とを2種以上の場合は合計量で0.003
96から0.03%添加して8を固定することにより、
本発明の保熱時間短縮効果を発揮させることができる。
If S is greater than 0.0034, the heat retention time cannot be shortened, so S needs to be 396 or less. However, if the amount of s is 0.003% to 0.01
Between 596 and 8@, Ca or 1 rare earth element (
Atomic numbers 57 to 71) or 2 or more selected from atomic numbers 57 to 71) in the case of two or more, the total amount is 0.003
By adding 0.03% from 96 to fix 8,
The heat retention time shortening effect of the present invention can be exhibited.

Sがo、 ots 4以上の場合は鋼中の介在物が多量
となり、磁気特性上好ましくない。Caまたは希土類元
素を溶鋼へ添加するには、転炉へ投入する方法、真空脱
ガス時に溶鋼容器あるφは取鍋に投入する方法、連続鋳
造の鋳込み時にタンデイツシに投入する方法等の何れを
も用いることができる。
When S is o, ots 4 or more, there will be a large amount of inclusions in the steel, which is unfavorable in terms of magnetic properties. Ca or rare earth elements can be added to molten steel by any of the following methods. Can be used.

本発明において製造条件を限定する理由を説明する。The reason for limiting the manufacturing conditions in the present invention will be explained.

連続鋳造された高温スラブの保熱温度は第1図に示され
るように900−1150 Cの温度域が有効であるの
で900〜1150Cとする。保熱時間については、ス
ラブ長101%が鋳造される時間が約10分間であるの
で、30分を越える保熱時間を採用することは操業能率
を低下させるため、保熱時間を30分以内とする。また
スラブ温度が高い程熱間圧延性は良いので、900〜1
150Cに保熱後ただちに熱間圧延を行うこととする。
The heat retention temperature of the continuously cast high-temperature slab is set at 900 to 1150 C, since the temperature range of 900 to 1150 C is effective as shown in FIG. Regarding the heat retention time, since it takes about 10 minutes to cast 101% of the slab length, adopting a heat retention time of more than 30 minutes will reduce operational efficiency, so the heat retention time should be kept within 30 minutes. do. In addition, the higher the slab temperature, the better the hot rolling properties.
Hot rolling is performed immediately after heating at 150C.

次に本発明を実施例について比較例と比較しつつ説明す
る。
Next, the present invention will be explained by comparing examples with comparative examples.

実施例 転炉で溶製し、真空脱ガス処理を行い、各種成分を第3
表のH,I、J、に、Lのように調整した溶鋼を連続鋳
造でスラブとした。
Example: Molten in a converter, subjected to vacuum degassing treatment, and various components were removed from the third
Molten steel prepared as shown in H, I, J and L in the table was continuously cast into slabs.

こζで希土類元素添加は50%のCeを含有し、残りは
主としてLa、Nd、Pr等の希土類元素からなるオツ
シュメタルを溶鋼中に投与し、添加量の確認はCe量を
分析し、その値を2倍して希土類元素の合計量とした。
In this ζ, the addition of rare earth elements contains 50% Ce, and the rest is mainly composed of rare earth elements such as La, Nd, Pr, etc.Otsush metal is added to the molten steel, and the amount of addition is confirmed by analyzing the amount of Ce and checking its value. was doubled to obtain the total amount of rare earth elements.

この高温スラブを1104)Cまで冷却したとき、断熱
材を載せ、20分間保熱し、その後ただちに熱延し、厚
み2.01の熱延板に仕上げた。この熱延板を900C
で2分間の焼準後酸洗し、冷間圧延で0.50−の厚さ
にし、950Cで3分間の脱炭焼鈍(雰囲気H370q
b%N2304、露点60%)を施して最終製品とし、
磁気特性の調査を行った。その結果を第4表に示す。な
お、脱炭焼鈍後のC含有量はφずれも0.00A al
b以下であり、磁気特性に及ぼす影響は極めて少なφも
のである。またH、I、J、Nの鋼塊記号の4のは本発
明によって成分調整を行った実施例であり、 K、L、
Mは比較例である。
When this high-temperature slab was cooled to 1104)C, a heat insulating material was placed on it, the slab was kept warm for 20 minutes, and then immediately hot-rolled to produce a hot-rolled plate with a thickness of 2.01. This hot-rolled plate is heated to 900C
After normalizing for 2 minutes at
b%N2304, dew point 60%) to make the final product,
We investigated the magnetic properties. The results are shown in Table 4. In addition, the C content after decarburization annealing has a φ deviation of 0.00A al
b or less, and the influence on magnetic properties is extremely small. In addition, steel ingot symbols 4, H, I, J, and N are examples in which the composition was adjusted according to the present invention, and K, L,
M is a comparative example.

第3表 以上本発明によれば、鉄損の低い無方向性電磁鋼板を製
造することができる。
Table 3 and above According to the present invention, a non-oriented electrical steel sheet with low iron loss can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉄損W2O15Qと保熱時間@)との関係を示
す図、第2図は保熱温度(C)と保熱時間(分)との関
係を示す図である。
FIG. 1 is a diagram showing the relationship between iron loss W2O15Q and heat retention time @), and FIG. 2 is a diagram showing the relationship between heat retention temperature (C) and heat retention time (minutes).

Claims (1)

【特許請求の範囲】 t、  8j1.5〜4%、Mn 0.1〜1.5%、
 P 0.1%以下、紅0.2〜2’!、80.003
’1以下、CG、 00B係以下、残部実質的にFeよ
りなる連続鋳造スラブを通常の熱延工程、冷態工程を経
て無方向性電磁鋼板を裏、造する方法において1.連続
鋳造されたままの高温スラブを900−1150Cの温
度範囲内に保熱して、保熱時間を30分以内KN限し、
直ちに熱間圧延を施すことを特徴とする鉄損の低い無方
向性、電磁鋼板の製造方法。 ユ   8i  1.5〜4%、 Mn0.1〜1.5
 %、 P  0.1 %以下、I’t10.2〜2%
、co、oos%以下、80.003〜0.015%、
Ca、希土類元素のうちから選ばれる何れか少なくとt
illを0.003〜0.03%、残部実質的にFeよ
りなる連続鋳造スラブを通常の熱延工程、冷鷺工程を経
て無方向性電磁鋼板を製造する方法において、連続鋳造
されたままの高温スラブを900〜1150 Cの温度
範囲内に保熱して、保熱時間を30分以内に制限し、直
ちに熱間圧延を施すことを特徴とする鉄損の低い無方向
性電磁鋼板の製造方法。
[Claims] t, 8j 1.5-4%, Mn 0.1-1.5%,
P 0.1% or less, red 0.2-2'! ,80.003
1. In a method of producing a non-oriented electrical steel sheet through a normal hot rolling process and a cold process, a continuously cast slab of 1 or less, CG, 00B or less, and the remainder substantially consists of Fe. Heat the continuously cast high-temperature slab within the temperature range of 900-1150C, and limit the heat retention time to within 30 minutes,
A method for producing a non-oriented electrical steel sheet with low iron loss, characterized by immediately hot rolling. Yu8i 1.5-4%, Mn0.1-1.5
%, P 0.1% or less, I't10.2-2%
, co, oos% or less, 80.003 to 0.015%,
Ca, one selected from rare earth elements, at least t
In the method of manufacturing a non-oriented electrical steel sheet by subjecting a continuously cast slab consisting of 0.003 to 0.03% ill and the remainder substantially Fe to a normal hot rolling process and a cold heron process, A method for producing a non-oriented electrical steel sheet with low iron loss, characterized by retaining a high temperature slab within a temperature range of 900 to 1150 C, limiting the heat retention time to 30 minutes or less, and immediately hot rolling. .
JP607382A 1982-01-20 1982-01-20 Manufacture of nonoriented electrical steel sheet Pending JPS58123825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP607382A JPS58123825A (en) 1982-01-20 1982-01-20 Manufacture of nonoriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP607382A JPS58123825A (en) 1982-01-20 1982-01-20 Manufacture of nonoriented electrical steel sheet

Publications (1)

Publication Number Publication Date
JPS58123825A true JPS58123825A (en) 1983-07-23

Family

ID=11628394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP607382A Pending JPS58123825A (en) 1982-01-20 1982-01-20 Manufacture of nonoriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPS58123825A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2643387A1 (en) * 1989-02-23 1990-08-24 Nippon Kokan Kk PROCESS FOR MANUFACTURING NON-ORIENTED MAGNETIC STEEL STRIP
US5009726A (en) * 1988-03-04 1991-04-23 Nkk Corporation Method of making non-oriented silicon steel sheets having excellent magnetic properties
US5062906A (en) * 1988-03-07 1991-11-05 Nkk Corporation Method of making non-oriented electrical steel sheets
AU672522B2 (en) * 1993-09-11 1996-10-03 Hoesch Federn Gmbh Optimisation process for internal tension distribution in spring elements
JP2014195818A (en) * 2013-03-29 2014-10-16 Jfeスチール株式会社 Method of producing hot-rolled steel sheet for non-oriented electromagnetic steel sheet and method of producing non-oriented electromagnetic steel sheet
US9446913B2 (en) 2012-09-28 2016-09-20 Mitsubishi Heavy Industries, Ltd. Powder conveyance device and char recovery apparatus
US9834733B2 (en) 2012-12-27 2017-12-05 Mitsubishi Heavy Industries, Ltd. Char removal pipe
WO2023095637A1 (en) * 2021-11-25 2023-06-01 Jfeスチール株式会社 Method for producing hot-rolled steel sheet for non-oriented electromagnetic steel sheet and method for producing non-oriented electromagnetic steel sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009726A (en) * 1988-03-04 1991-04-23 Nkk Corporation Method of making non-oriented silicon steel sheets having excellent magnetic properties
US5062906A (en) * 1988-03-07 1991-11-05 Nkk Corporation Method of making non-oriented electrical steel sheets
FR2643387A1 (en) * 1989-02-23 1990-08-24 Nippon Kokan Kk PROCESS FOR MANUFACTURING NON-ORIENTED MAGNETIC STEEL STRIP
AU672522B2 (en) * 1993-09-11 1996-10-03 Hoesch Federn Gmbh Optimisation process for internal tension distribution in spring elements
US9446913B2 (en) 2012-09-28 2016-09-20 Mitsubishi Heavy Industries, Ltd. Powder conveyance device and char recovery apparatus
US9834733B2 (en) 2012-12-27 2017-12-05 Mitsubishi Heavy Industries, Ltd. Char removal pipe
JP2014195818A (en) * 2013-03-29 2014-10-16 Jfeスチール株式会社 Method of producing hot-rolled steel sheet for non-oriented electromagnetic steel sheet and method of producing non-oriented electromagnetic steel sheet
WO2023095637A1 (en) * 2021-11-25 2023-06-01 Jfeスチール株式会社 Method for producing hot-rolled steel sheet for non-oriented electromagnetic steel sheet and method for producing non-oriented electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
JP4613748B2 (en) Manufacturing method of electrical steel sheet
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
CN110100023B (en) Oriented electrical steel sheet and method for manufacturing the same
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JPS58123825A (en) Manufacture of nonoriented electrical steel sheet
JPH07116510B2 (en) Non-oriented electrical steel sheet manufacturing method
EP0503680B1 (en) Oriented silicon steel sheets and production process therefor
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP3993689B2 (en) Strain relief annealing method for laminated core
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2746631B2 (en) High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JP2001049351A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JP2005256019A (en) Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic
JPH042645B2 (en)
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JP2634801B2 (en) High magnetic flux density directional silicon iron plate with excellent iron loss characteristics
JPS60190521A (en) Manufacture of nonoriented electrical steel sheet
JP2001262289A (en) NONORIENTED SILICON STEEL SHEET EXCELLENT IN MAGNETIC PROPERTY IN &gt;=1 kHz FREQUENCY REGION
JP4626046B2 (en) Method for producing semi-processed non-oriented electrical steel sheet
JP3443150B2 (en) Method for producing grain-oriented silicon steel sheet
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JP3300034B2 (en) Method for producing oriented silicon steel sheet with extremely high magnetic flux density
TW202321470A (en) Method for producing hot-rolled steel sheet for non-oriented electromagnetic steel sheet and method for producing non-oriented electromagnetic steel sheet