JPS58123511A - Detector of focus - Google Patents

Detector of focus

Info

Publication number
JPS58123511A
JPS58123511A JP718182A JP718182A JPS58123511A JP S58123511 A JPS58123511 A JP S58123511A JP 718182 A JP718182 A JP 718182A JP 718182 A JP718182 A JP 718182A JP S58123511 A JPS58123511 A JP S58123511A
Authority
JP
Japan
Prior art keywords
concave mirror
focus
variation
plastic
contrast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP718182A
Other languages
Japanese (ja)
Inventor
Toshihiko Karasaki
敏彦 唐崎
Yasuhiro Nanba
靖弘 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP718182A priority Critical patent/JPS58123511A/en
Publication of JPS58123511A publication Critical patent/JPS58123511A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter

Abstract

PURPOSE:To obtain a detector of focus at a low cost which eliminates a lowering of the accuracy in focus detection owing to temp. variation, by using a concave mirror which is formed on a plastic substrate having the almost fixed wall thickness in an image foramtion optical system. CONSTITUTION:A reflected surface 3 of a concave mirror 2 is faced to the side of an object 5 to be photographed and is fitted to the inner part of a case 4 and the front surface part 6 of case 4 is opened in a detector of focus 1. The focus of the miror 2 is positioned in the vicinity of the center of the apperture part 6, and a projected part 9 provided to a lever 8 which is turned by making a shaft 7 as a fulcrum is positioned. A photodiode to detect a contrast is stuck on the projected part 9. The concave mirror 2 is made by plastic molding and the thicknes of a substrate is made constant so that the shape resembles at the time of expansion and contraction owing to the temp. variation. The variation of focus position owing to expansion and contraction is very small as compared with the case in change of the refractive index in plastic lenses.

Description

【発明の詳細な説明】 技術’5)野 本発明は、結像面上の像のコントラストの最大点を検知
して結像光学系の合焦位置を検出する、カメラの自動焦
点調節装置に適した焦点検出装置に関する。
Detailed Description of the Invention Technique '5) Field The present invention is suitable for an automatic focusing device for a camera that detects the point of maximum contrast of an image on an imaging plane to detect the focal position of an imaging optical system. The present invention relates to a focus detection device.

従来技術 従来、結像光学系の結像面上の像のコントラストを検出
する手段として、例えば、隣り合わせて並べた微小なホ
トダイオード2個を対として、この対を平面上に多数設
け、これを光学系の結像面に配し、各対をなす2個のホ
トダイオードが出力する信号レベルの差の絶対値のそれ
ぞれを足し合わせ、その和が最大となる点を求めるよう
にしたものが提案されている。
Prior Art Conventionally, as a means for detecting the contrast of an image on the imaging surface of an imaging optical system, for example, a large number of pairs of two minute photodiodes arranged next to each other are provided on a plane, and these are optically A system has been proposed in which the absolute values of the differences in signal levels output by two photodiodes in each pair are added together, and the point where the sum is maximum is found. There is.

本発明は、このようなコントラスト検出手段を利用シて
、コンパクトカメラに組み込むのに適した、焦点検出モ
ジュールを構成しようとするものである。一方、焦点検
出に三角測距の原理を適用した焦点検出モジュールが公
知である。この公知ノモシュールの光学系にはプラスチ
ックレンズが用いられている。そこで、コントラド検出
形式の焦点検出装置をモジュール化するに当っても、そ
の光学系にプラスチックレンズを利用することが考えら
れる。ところが、プラスチックは、ガラスに比べ湿度変
化に対して屈折率が大きく変化すもそこで、プラスチッ
クレンズを用いたとすると、温度変化に応じて合焦位置
が変化し、したがってこの温度変化に対する補償なしに
は、このモジュールが組み込まれるカメラの撮影レンズ
の合焦精度が保証されないことになる。しかし、温度補
償のための手段を構しようとすれば、ガラスレンズを用
いる代りにプラスチックレンズを用いてコスト低減化を
図ろうとする目的そのものが成り立たなくなってしまう
The present invention utilizes such a contrast detection means to construct a focus detection module suitable for being incorporated into a compact camera. On the other hand, a focus detection module that applies the principle of triangulation to focus detection is known. A plastic lens is used in the optical system of this known Nomosur. Therefore, when converting a contrado detection type focus detection device into a module, it is conceivable to use a plastic lens in its optical system. However, the refractive index of plastic changes significantly with changes in humidity compared to glass, so if a plastic lens is used, the focal position will change in response to temperature changes, and therefore, it will not be possible to compensate for this temperature change without compensating for it. , the focusing accuracy of the camera lens in which this module is installed cannot be guaranteed. However, if a means for temperature compensation were to be provided, the purpose of reducing costs by using a plastic lens instead of a glass lens would be defeated.

発明の目的 本発明は、」二連のような事情に鑑みてなされたもので
、温度変化に対する補償を:考慮する必要がなく、シか
も低コストで構成できる、コントラスト検出方式の焦点
検出モジュールを得ることを目的とするものである。
OBJECTS OF THE INVENTION The present invention has been made in view of the following two circumstances, and provides a focus detection module using a contrast detection method that does not require consideration of compensation for temperature changes and can be constructed at low cost. The purpose is to obtain.

要旨 本発明は、焦点検出モジュールにおける結像光学系に凹
面鏡を用い、この凹面鏡の結像領域にコントラスト検出
素子を配し、凹面鏡とコントラスト検出素子との間の距
離を、撮影レンズの焦点調節と連動して相対的に変化さ
せ得るように構成したことを主な特徴とする。このよう
な構成にすれば温度変化によりプラスチックの屈折率が
変化しても、この変化は凹面鏡の光学特性には直接関係
しないから凹面鏡にプラスチック成形品を用いることが
できる。
Summary The present invention uses a concave mirror in the imaging optical system in the focus detection module, arranges a contrast detection element in the imaging area of the concave mirror, and adjusts the distance between the concave mirror and the contrast detection element by adjusting the focus of the photographic lens. The main feature is that it is configured so that it can be changed relatively in conjunction with each other. With such a configuration, even if the refractive index of the plastic changes due to temperature changes, this change will not be directly related to the optical characteristics of the concave mirror, so a plastic molded product can be used as the concave mirror.

実施例 以下、実施例を示す図面に基づいて本発明の詳細な説明
する。第1図において本発明による焦点検出装置(1)
は、凹面鏡(2)の反射面(3)を被写体(5)側に向
けて、側面を遮光したケース(4)の奥部に配してあり
、ケース(4)の前面部(6)は開いである。この開1 0都(6)の中央付近に凹面鏡(2)の焦点か位置し、
この領域に軸(7)を支点にして回動するレバー(8)
に設けた突出部(9)が位置するようにしである。突出
部(9)には、コントラスト検出のためのホトダイオー
ド(10)が、受光面を凹面鏡(2)に向けて貼り付け
である。尚、突出部(9)は、例えばガラス板を用いた
a明構aとし、アモルファスシリコンにヨルホトダイオ
ードの受光面をガラス面と接触させるように貼り付ける
。アモルファスシリコンホトダイオードはその貼り付は
基板としてガラス板を用いることができるから、突出部
O)を透明なガラス板で構成でき、突出部(9)を介し
てホトダイオードに光を導き入れることができる。した
がって、ホトダイオードを保護する耐湿膜は、受光面背
部から覆うことができ、パッケージ化が不要となり、光
学的な不均一性により結像状態が悪化するということは
起らない。
EXAMPLES Hereinafter, the present invention will be described in detail based on drawings showing examples. In FIG. 1, a focus detection device (1) according to the present invention
is placed at the back of a case (4) with its sides shielded from light, with the reflective surface (3) of the concave mirror (2) facing the subject (5), and the front part (6) of the case (4) is It is open. The focus of the concave mirror (2) is located near the center of this opening (6),
A lever (8) that rotates around the shaft (7) in this area
The protrusion (9) provided at A photodiode (10) for contrast detection is attached to the protrusion (9) with its light receiving surface facing the concave mirror (2). The protrusion (9) is made of a glass plate, for example, and is attached to amorphous silicon so that the light-receiving surface of the diode comes into contact with the glass surface. Since an amorphous silicon photodiode can be attached using a glass plate as a substrate, the protrusion O) can be made of a transparent glass plate, and light can be introduced into the photodiode through the protrusion (9). Therefore, the moisture-resistant film that protects the photodiode can be covered from the back of the light-receiving surface, eliminating the need for packaging and preventing deterioration of the imaging state due to optical non-uniformity.

凹面鏡Q)は、プラスチック成形されるが、温度変化に
よる膨張収縮に際L1その前後での形が相似するように
、基板の厚みを一定にし、その表面又は裏面に形成する
。膨張収縮による焦点位置の変動は、プラスチックレン
ズにおける屈折率変化の場合と比較して極めて小さい。
The concave mirror Q) is molded from plastic, and is formed on the front or back surface of the substrate with a constant thickness so that the shape before and after L1 is similar when it expands and contracts due to temperature changes. Fluctuations in focal position due to expansion and contraction are extremely small compared to changes in refractive index in plastic lenses.

又、凹面鏡は、ホトダイオードアレイの前面にわたって
所望の結 5− 像性能が得られるよう、非球面になっている。
The concave mirror is also aspheric to provide the desired imaging performance across the front surface of the photodiode array.

レバー (8)の支点(7)の反対部(11)は、撮影
レンズ鏡胴(12)に設けたピン(13)と係合する溝
(14)が切ってあり、撮影レンズ(15)が光軸方向
に沿って前後に移動すると、これに連動してレバー(8
)は、支点(7)の周りを若干の角度ではあるが回動す
る。との回動により、光電素子(10)の受光面は凹面
鏡(2)の光軸に沿って、前後に移動する。尚、厳密に
は光電素子(10)は円運動をするが実用上の支障は生
じない。かくして、撮影レンズの移動に連動して光電素
子(l O)は凹面鏡Q)による結像を光軸方向に走査
する。尚凹面鏡し)にはレバー(8)の突出部(9)に
よって陰にならない開口部O)を通過する被写体光が入
射することはもち論である。
The opposite part (11) of the lever (8) to the fulcrum (7) is cut with a groove (14) that engages with a pin (13) provided on the photographic lens barrel (12), so that the photographic lens (15) When you move back and forth along the optical axis direction, the lever (8
) rotates around the fulcrum (7), albeit at a slight angle. Due to the rotation, the light receiving surface of the photoelectric element (10) moves back and forth along the optical axis of the concave mirror (2). Strictly speaking, the photoelectric element (10) moves in a circular motion, but this does not cause any practical problems. Thus, in conjunction with the movement of the photographing lens, the photoelectric element (lO) scans the image formed by the concave mirror Q) in the optical axis direction. It goes without saying that the subject light passing through the opening O) which is not shaded by the protrusion (9) of the lever (8) enters the concave mirror (O).

撮影レンズ鏡胴(12)は、不図示のフィルムチャージ
機構に連動して、近接距離点にセットされ、焦点調節時
にバネ(16)により遠距離点に向けて駆動される。一
方、撮影レンズ鏡胴(12)の駆動を停止するための手
段として、該鏡胴側には鋸歯部07)を有する可動片結
合バー(18)が設けてあり、鋸歯 6− 部(17)に対して電磁石(19)の可動片(20)が
臨ませである。可動片(20)は、電磁石(19)の励
磁が遮断されると、バネ(21)により回動して鋸歯部
(17)に落ち込み可動片結合バー(18)の移動を停
止する。
The photographing lens barrel (12) is set at a close distance point in conjunction with a film charging mechanism (not shown), and is driven toward a far distance point by a spring (16) during focus adjustment. On the other hand, as a means for stopping the driving of the photographic lens barrel (12), a movable piece coupling bar (18) having a sawtooth section (07) is provided on the lens barrel side. The movable piece (20) of the electromagnet (19) faces towards it. When the excitation of the electromagnet (19) is interrupted, the movable piece (20) is rotated by the spring (21) and falls into the sawtooth portion (17), stopping the movement of the movable piece coupling bar (18).

こうして撮影レンズ(15)は電磁石(19)の作動の
タイミングに応じた位置に調定される。
In this way, the photographing lens (15) is adjusted to a position corresponding to the timing of activation of the electromagnet (19).

次に第2図のブロック回路を参照して光電素子(10)
の出力処理回路について説明する。第2図において、ホ
トダイオード(PRl) 、 (PLI) 、−(PR
n) 、(PLn)は第1図の凸部(9)に配される光
電素子(10)を構成するもので、対をなす素子(PR
i、)と(PL i)は、それぞれの出力の差の絶対値
に応した信号を出力する絶対値回路(Dl)に導びかれ
ている。ただ1=1=1゜2、・nである。絶対値回路
(Dl)の各出力は加算回路に入力されて、各出力の和
が求められる。次いで、加算回路(22)の出力は最大
値検知回路(24)に入力される。最大値検知回路(2
4)は、加算回躍23)の出力が最大値に達してから下
降しはじめる時点に信号を出力する。この出力信号に応
答して電磁石駆動回路(25)は、電磁石(19)の励
磁を遮断する。
Next, referring to the block circuit in Fig. 2, the photoelectric element (10)
The output processing circuit will be explained. In Fig. 2, photodiodes (PRl), (PLI), -(PR
n) and (PLn) constitute the photoelectric element (10) arranged on the convex part (9) in Fig. 1, and the paired element (PR
i, ) and (PL i) are led to an absolute value circuit (Dl) that outputs a signal corresponding to the absolute value of the difference between their respective outputs. Just 1=1=1°2, ・n. Each output of the absolute value circuit (Dl) is input to an adder circuit, and the sum of each output is determined. The output of the adder circuit (22) is then input to the maximum value detection circuit (24). Maximum value detection circuit (2
4) outputs a signal at the point in time when the output of addition circuit 23) reaches the maximum value and then begins to fall. In response to this output signal, the electromagnet drive circuit (25) cuts off the excitation of the electromagnet (19).

撮影に際しては、不図示のファインダを通してピントを
合わせたい被写体に焦点検出装置(1)の光軸を向け、
レリーズボタンを一段階押し下げる。
When photographing, aim the optical axis of the focus detection device (1) at the subject you want to focus on through a viewfinder (not shown),
Press the release button down one step.

この押し下げにより撮影レンズ(15)はフィルム面(
22)の方向に移動しはしめ、これに連動して凸部(9
)ヒの光電素子(10)も凹面鏡(2)の方に移動する
This pushing down causes the photographic lens (15) to move onto the film surface (
22) and tightens, and in conjunction with this, the convex part (9
) The photoelectric element (10) also moves towards the concave mirror (2).

この移動過程において、光電素子(10)の受光面上の
結像が最もシャープになった時、つまり結像のコントラ
ストが最も大きくなったとき加算回路(23)の出力は
最大となる。これが最大値検知回路(24)により検知
され、その結果電磁石(19)の励磁が遮断される。こ
の撮影レンズ移動において、受光素子(10)の移動量
は、撮影レンズの移動量に比例し、かつ縮小されている
。この縮小比に応じて凹面鏡に応じたフィルム面(2腫
撮影レンズ(15)との間の相対位置変化と、凹面鏡0
)とコントラスト検出素子(10)との間の相対位置変
化は幾何光学的に見て比例関係にはなく、レバー(8)
で規制される両光学系の相対位置は正確には対応しない
。しかしX簡易型のカメラとしては十分に実用できる。
During this movement process, when the image formed on the light-receiving surface of the photoelectric element (10) becomes the sharpest, that is, when the contrast of the image becomes the greatest, the output of the adder circuit (23) becomes maximum. This is detected by the maximum value detection circuit (24), and as a result, the excitation of the electromagnet (19) is cut off. In this movement of the photographic lens, the amount of movement of the light receiving element (10) is proportional to the amount of movement of the photographic lens, and is reduced. Depending on this reduction ratio, the relative position change between the film surface (2 tumor photographing lens (15)) and the concave mirror 0
) and the contrast detection element (10) are not in a proportional relationship from a geometric optics point of view;
The relative positions of both optical systems regulated by do not correspond exactly. However, it is fully practical as an X-type camera.

さらに、撮影レンズ15の焦点調節機構とコントラスト
検出素子移動機構との間の連動系にカム機構を導入する
ことにより両光学系の焦点位置の光学的対応関係の精度
を高めることは容易である。また、実施例では、凹面鏡
(2)に対して光電素子(10)の方を移動させたが、
逆に凹面鏡の方を移動させるようにしてもよい。
Furthermore, by introducing a cam mechanism into the interlocking system between the focus adjustment mechanism of the photographic lens 15 and the contrast detection element moving mechanism, it is easy to improve the accuracy of the optical correspondence between the focal positions of both optical systems. Furthermore, in the example, the photoelectric element (10) was moved relative to the concave mirror (2), but
Conversely, the concave mirror may be moved.

効果 以」=説明したように、結像のコントラストを検出して
焦点検出を行う焦点検出装置の結像光学系に肉厚がはソ
一定のプラスチック基村上に形成された凹面鏡を用いる
ようにしたことにより、温度変化による焦点検出精度の
低下を招くことのない低コストの焦点検出装置を得るこ
とができる。
As explained above, a concave mirror formed on a plastic substrate with a constant wall thickness is used in the imaging optical system of the focus detection device that detects the contrast of the image and detects the focus. By doing so, it is possible to obtain a low-cost focus detection device that does not cause a decrease in focus detection accuracy due to temperature changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す概略斜視図、第
2図は本発明の焦点検出装置に用いられる焦点検出回路
の構成を示すブロック図である。 = 9− 1・・無点検′出装置、2・・・凹面鏡、1o・・・光
電素子、15・・撮影レンズ。 出願人 ミノルタカメラ株式会礼 10−
FIG. 1 is a schematic perspective view showing the configuration of an embodiment of the present invention, and FIG. 2 is a block diagram showing the configuration of a focus detection circuit used in the focus detection device of the present invention. = 9- 1. Non-inspection detection device, 2. Concave mirror, 1o. Photoelectric element, 15. Photographing lens. Applicant: Minolta Camera Co., Ltd. 10-

Claims (1)

【特許請求の範囲】 1、厚みが略一定になるよう表裏の形状を略等し ・く
形成した基材上に形成した凹面鏡を、撮影レンズと同じ
方向を向くように配し、該凹面鏡の結像領域にコントラ
スト検出素子を゛設け、撮影レンズの焦点調節に応じて
凹面鏡とコントラスト検出素子との間の相対距離を変化
させる連動機構を備えた焦点検出装置。 2コントラスト検出素子はガラス基板上に受光面を接し
て貼付された複数のアモルファスシリコンホトダイオー
ドから成る特許請求の範囲第10項記載の焦点検出装置
。 3、凹面鏡は、コントラスト検出素子の受光面上
[Claims] 1. A concave mirror formed on a base material whose front and back sides are approximately equal in shape so that the thickness is approximately constant, is arranged so as to face the same direction as the photographing lens, and the concave mirror is A focus detection device includes a contrast detection element in an imaging region and an interlocking mechanism that changes the relative distance between the concave mirror and the contrast detection element in accordance with focus adjustment of a photographic lens. 11. The focus detection device according to claim 10, wherein the contrast detection element comprises a plurality of amorphous silicon photodiodes attached on a glass substrate with their light-receiving surfaces in contact with each other. 3. The concave mirror is placed on the light receiving surface of the contrast detection element.
JP718182A 1982-01-19 1982-01-19 Detector of focus Pending JPS58123511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP718182A JPS58123511A (en) 1982-01-19 1982-01-19 Detector of focus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP718182A JPS58123511A (en) 1982-01-19 1982-01-19 Detector of focus

Publications (1)

Publication Number Publication Date
JPS58123511A true JPS58123511A (en) 1983-07-22

Family

ID=11658892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP718182A Pending JPS58123511A (en) 1982-01-19 1982-01-19 Detector of focus

Country Status (1)

Country Link
JP (1) JPS58123511A (en)

Similar Documents

Publication Publication Date Title
US4469939A (en) Distance measuring apparatus
US4828383A (en) Range-finding optical system
JPS6044643B2 (en) focus detection device
US4907026A (en) Light projection system for automatic focus detection
US6774945B1 (en) Focusing apparatus for image recording system
US4922281A (en) Distance measuring device for automatic focusing camera
JPH05260360A (en) Auto focus ccd camera for photogrammetry
US4566773A (en) Focus detecting device
JPS58123511A (en) Detector of focus
US4533226A (en) Still or motion picture camera
JP2002333574A (en) Digital camera
US4723142A (en) Focus detecting device
US5845159A (en) Optical apparatus
JPH0210514Y2 (en)
JP2001174687A (en) Movable lens position detector
JPH09265040A (en) Focus detector
JPS61134716A (en) Focusing point detector
US4974009A (en) Focus detecting device and photographing apparatus provided with the same
JPS63235908A (en) Focus detector
JPS61129610A (en) Focus detector
JPS63235906A (en) Focus detector
JPS63235907A (en) Focus detector
JPH03119333A (en) Photographing device
JPS61230109A (en) Automatic focusing device
JPS6240410A (en) Optical system having focus detecting device