JPS58123203A - Dual-conductor spiral antenna - Google Patents

Dual-conductor spiral antenna

Info

Publication number
JPS58123203A
JPS58123203A JP642482A JP642482A JPS58123203A JP S58123203 A JPS58123203 A JP S58123203A JP 642482 A JP642482 A JP 642482A JP 642482 A JP642482 A JP 642482A JP S58123203 A JPS58123203 A JP S58123203A
Authority
JP
Japan
Prior art keywords
radiated
waves
wave
antenna
polarized wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP642482A
Other languages
Japanese (ja)
Other versions
JPH0231883B2 (en
Inventor
Noriyuki Akaha
赤羽 紀之
Akio Oga
大賀 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP642482A priority Critical patent/JPS58123203A/en
Publication of JPS58123203A publication Critical patent/JPS58123203A/en
Publication of JPH0231883B2 publication Critical patent/JPH0231883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To improve the axis-ratio characteristic of a circular polarized wave radiated at a low frequency in an operation frequency band by using two different-length conductors and arranging their outer circumferential terminal parts at asymmetrical positions about the center. CONSTITUTION:An electromagnetic wave radiated from an antenna has a circular polarized wave component radiated while propagating in current band area and a linear polarized wave component radiated by a current in a standing wave state. A spiral conductor 2' is shorter than a spiral conductor 1 and positioned asymmetrically about a center 7 as compared with an outer circumferential terminal part 5. Waves 10, 11, and 12 corresponding to a non-node part of the standing wave are asymmetrical with waves 10'', 11'', and 12'' about the center 7. Therefore, radiated waves by the conductors 1 and 2' have planes of polarization as shown by arrows 20 and 20'' and are linear polarized wave components different in time and space from each other. When those linear polarized wave components are put together, the standing wave on the conductors decreases in amplitude and an electromagnetic field having the same rotational direction with the circular polarized wave is produced.

Description

【発明の詳細な説明】 超広帯域アンテナとして利用される、例えば絶縁支持体
上に二条の導電体によって形成されるスパイラルアンテ
ナにおいて、これら二条の導線の長さと該導線の外周末
端部の位置とを選ぶことによってこれら導線から輻射さ
れる円偏波の円偏波率(以下円偏波め軸比という)を低
い周波数帯域において改善することを特徴とする二条ス
パイラルアンテナに関する。
Detailed Description of the Invention In a spiral antenna that is used as an ultra-wideband antenna and is formed of two conductive strips on an insulating support, for example, the length of these two conductive wires and the position of the outer peripheral end of the conductive wire are The present invention relates to a two-wire spiral antenna characterized in that the circularly polarized wave ratio (hereinafter referred to as circularly polarized wave axis ratio) of the circularly polarized wave radiated from these conductive wires is improved in a low frequency band by selecting these conductors.

従来の二条スパイラルアンテナ(以下アンテナと略称す
る)は長さの等しい二条の導線を中心から外周へ螺旋状
にすなわち渦巻状に構成したもので、外形は円燵状又は
平面状をなすものが多く、この渦巻の形状iζは対数渦
巻、アルキメデス渦巻および特殊なものでは角型の渦巻
等数多く、いずれも超広帯域アンテナとして利用されて
いる。これらアンテナの動作原理はすべて同一で例をア
ルキメデススパイラルアンテナにとって説明する。第1
図は従来の二乗スパイラルアンテナの実施例を示す平面
図である。第1図で8は円板状の絶縁支持体である。l
と2とは絶縁支持体8上に形成される4縁でそれぞれ中
心7に近い端部6と6′から始って、外周末端s5と5
′とに向い螺旋状に拡ろがり、端部6と6′および外周
末端部5と5′は中心7に対してそれぞれ対称の位置に
ある。また導線1と2とは全長を等しくしている。3は
給電線で導i11と2の端部6と6′とに接続され、そ
れぞれ電流4と4′とを導!v!11と2とに供給する
。導#lと2との中間部は一部を破−で示し省略する。
A conventional two-strand spiral antenna (hereinafter referred to as an antenna) consists of two conductive wires of equal length spiraling from the center to the outer periphery, and the outer shape is often circular or planar. There are many spiral shapes iζ, such as logarithmic spirals, Archimedean spirals, and special square spirals, all of which are used as ultra-wideband antennas. The operating principles of these antennas are all the same, and will be explained using an Archimedean spiral antenna as an example. 1st
The figure is a plan view showing an example of a conventional square spiral antenna. In FIG. 1, 8 is a disc-shaped insulating support. l
and 2 are four edges formed on the insulating support 8, starting from the ends 6 and 6', respectively, close to the center 7 and ending at the outer peripheral ends s5 and 5.
The ends 6 and 6' and the peripheral ends 5 and 5' are respectively symmetrical with respect to the center 7. Further, the conductive wires 1 and 2 have the same overall length. 3 is a feed line connected to ends 6 and 6' of conductors i11 and 2, conducting currents 4 and 4', respectively! v! 11 and 2. A part of the intermediate part between leads #1 and #2 is shown by a broken line and is omitted.

30は半径r=λ/2πなる円で、λは導線1と2とか
ら輻射する電磁波の波長である。31は波長λを少しづ
つ異にする半径に対応する円の群を示し電流バンド領域
と称せられる。波長λの電磁波は円30の円周2tFが
波長λに等しい部分で特に強く輻゛射され、輻射される
電磁波の偏波面は円偏波を呈する。給電線3からの電流
4と4′は電流バンド領域31の内側ではばとんど減衰
することなく、外側に向って進行し、電流バンド領域3
1においては輻射が強大に行われ、著しく減衰を受ける
。電流バンド領域を遭遇した後は小さな減衰を受けつつ
外局末端部5と5′とに達し、反射される。
30 is a circle with radius r=λ/2π, where λ is the wavelength of electromagnetic waves radiated from the conductive wires 1 and 2. Reference numeral 31 indicates a group of circles corresponding to radii that differ slightly in wavelength λ, and is called a current band region. The electromagnetic wave with the wavelength λ is radiated particularly strongly at a portion where the circumference 2tF of the circle 30 is equal to the wavelength λ, and the polarization plane of the radiated electromagnetic wave exhibits circular polarization. Currents 4 and 4' from the feeder line 3 are not attenuated at all inside the current band region 31, and proceed outwards,
1, the radiation is intense and is significantly attenuated. After encountering the current band region, it reaches the outer terminals 5 and 5' with small attenuation and is reflected.

アンテナ外径が十分に大きく、動作周波数帯域に対応す
るIEtItバンド領域がアンテナ外径まで十分余裕を
もっているときは外局末端部に達する電流はごく小さく
なり、!ヨとんど無視される。
When the outer diameter of the antenna is sufficiently large and the IEtIt band region corresponding to the operating frequency band has a sufficient margin up to the outer diameter of the antenna, the current reaching the terminal end of the outer station will be very small. It's completely ignored.

このような条件が成立する周波数帯域ではアンテナの輻
射特性は周波数変化に対して一定となるため広帯域アン
テナとして様々な用途に利用される。しかしながらこの
アンテナを航空機等に利用する場合には小型、軽量の要
求に応じてアンテナ外形に制約を受け、アンテナの外径
は制限される。このアンテナの外径は上述のように動作
周波数帯域の下限を制約する。すなわち電流バンド領域
31が次第に外周方向に移動してアンテナの外径に接近
すると外周末端部5と5′とに達して反射される電流が
無視できなくなるためである。梃に説明すると反射され
る電流によってアンテナ外周部に定在波が発生し、この
定在波によって直線偏波成分が生じ円偏波の軸比を悪化
させるものである。幸いなことにこの反射される電流に
よってはアンテナの他の特竺、例え゛ば利得、輻射指向
性および入力インピーダンス等は軸比特性はど、の影響
を受けない。
In a frequency band where such conditions are met, the antenna's radiation characteristics remain constant with respect to frequency changes, so it is used as a wideband antenna for various purposes. However, when this antenna is used in an aircraft or the like, the outer diameter of the antenna is restricted due to the requirement for small size and light weight. The outer diameter of this antenna limits the lower limit of the operating frequency band as described above. That is, as the current band region 31 gradually moves toward the outer circumference and approaches the outer diameter of the antenna, the current that reaches the outer circumferential ends 5 and 5' and is reflected cannot be ignored. To put it simply, the reflected current generates a standing wave on the outer periphery of the antenna, and this standing wave generates a linearly polarized wave component, which deteriorates the axial ratio of the circularly polarized wave. Fortunately, other characteristics of the antenna, such as gain, radiation directivity, and input impedance, are not affected by this reflected current, such as the axial ratio characteristics.

円偏波の軸比を急化させる原因となる反射され□11箋 る電流を減衰さ′@″6c′!−力゛可能7あt’L4
f動作局      ;波数帯域の下限を拡げることが
できるので従来いくつかの考案が提供されている。例え
ば導線lと2との外局末端部に無反射終端器を設けたり
、吸収体を装荷したり、ジグザグ構造としたりする試み
である。しかし、これらの試みは製、作コストを高、く
するわりにば顕著な効果が望めず、軸比以外の他の特性
に影響するという欠陥があった。
Attenuates the reflected current that causes the axial ratio of circularly polarized waves to steepen.
f operating station; several ideas have been proposed in the past because they can widen the lower limit of the wave number band. For example, attempts have been made to provide non-reflection terminators at the outer ends of conductors 1 and 2, load absorbers, or create a zigzag structure. However, these attempts have had the drawback of not being able to expect significant effects despite the high manufacturing costs and affecting other properties other than the axial ratio.

本発明はスパイラルアンテナを構成する二条の導線の長
さを相異る憂さに保ち、外周末端部を中心に対して非対
称位置に配置するという簡単な処置によって動作周波数
帯域の低い周波数帯域で輻射される円11[の軸比特性
を改善し、アンテナの動作可能周波a帝域を拡大するこ
とができる二条スパイラルアンテナを提供すること、を
目的とする。
The present invention eliminates radiation in the low frequency band of the operating frequency band by keeping the lengths of the two conductive wires that make up the spiral antenna at different lengths and by arranging the outer peripheral ends asymmetrically with respect to the center. It is an object of the present invention to provide a two-strand spiral antenna that can improve the axial ratio characteristics of the circle 11 and expand the operable frequency range of the antenna.

本発明によれば上記低い周波数帯域における軸比特性を
著しく改善した円偏波が得られ、従来のものと同一の周
波数で円偏波の同=の軸比を有するアンテナに比べ、よ
り小聾薯量な二条スパイラルアンテナを得ることかでき
る。
According to the present invention, circularly polarized waves with significantly improved axial ratio characteristics in the above-mentioned low frequency band can be obtained, and compared to conventional antennas having the same axial ratio of circularly polarized waves at the same frequency, the antenna has a smaller deafness. It is possible to obtain a large two-strand spiral antenna.

次に図面にもとづき本発明になる二条スパイラルアンテ
ナの実施例を従来のものを対比しンテナの導層上の定在
波へを示す説明図である。
Next, based on the drawings, it is an explanatory diagram illustrating standing waves on the conductive layer of the antenna, comparing an embodiment of the double-strand spiral antenna according to the present invention with a conventional one.

上述のようにアンテナから輻射される電磁波は電流バン
ド領域を進行しつつ輻射さ4る円偏波成分と導線の外周
末端部で反射される反射波と外周末端部へ向う進行波の
合一により発生する定住波状態の電流によって輻射され
る直線偏波成分とが存産する。第2図に振巾を矢印の長
さに対応し工示す波はこのような定在波である。
As mentioned above, the electromagnetic waves radiated from the antenna propagate through the current band region and are generated by the combination of the radiated circularly polarized wave component, the reflected wave reflected at the outer end of the conductor, and the traveling wave toward the outer end. There is a linearly polarized wave component radiated by the generated stationary wave state current. The waves whose amplitudes correspond to the lengths of the arrows in Figure 2 are such standing waves.

第2図(2)と(6)とは導線1と2の定在波を示し、
第1図と同一のものは同村号を用いる。波10と11と
12および波10’と11’と12′とはそれぞれ定在
暉の腹の部分である。導111と2とは同一の長さで外
局末端部は中心7に対して対象の位置にあるために定在
波の腹の位置もまた中心7に対して対象の位置にある。
Figure 2 (2) and (6) show standing waves in conductors 1 and 2,
If the village is the same as in Figure 1, the same village name will be used. Waves 10, 11, and 12 and waves 10', 11', and 12' are the antinodes of the standing wave, respectively. Since the leads 111 and 2 have the same length and the outer ends are at symmetrical positions with respect to the center 7, the positions of the antinodes of the standing waves are also symmetrical with respect to the center 7.

この定在波の腹の部分からの輻射波は定在波アンテナの
性質上、tべて同相で、合成すると矢印20と矢印20
′とで示す方向の偏波面を持つ直線偏波成分となる。す
なわち導線1と2から輻射される直線偏波成分はベクト
ル加算され、2倍の振巾をもつ直−偏波成分となるため
、著しい円偏波の軸比の悪化が発生する。このように従
来のアンテナにおいては定在波電流が直線偏波成分を発
生するために円偏波の軸比が悪化するが、定在波による
輻射電磁波が電流バンド領域の進行波による輻射円偏波
と同じ回転方向となる円偏波となるような手段を用いれ
ば円偏波の軸比感化は避けられる。これか本発明の着眼
点である。
Due to the nature of the standing wave antenna, the radiation waves from the antinode of the standing wave are all in phase, and when combined, the waves shown by arrow 20 and arrow 2
It becomes a linearly polarized wave component with a plane of polarization in the direction shown by . That is, the linearly polarized wave components radiated from the conductors 1 and 2 are vector-added to become a directly polarized wave component with twice the amplitude, resulting in a significant deterioration of the axial ratio of the circularly polarized wave. In this way, in conventional antennas, the axial ratio of circularly polarized waves deteriorates because the standing wave current generates linearly polarized wave components, but the radiated electromagnetic waves due to the standing waves are circularly polarized radiated by the traveling waves in the current band region. The axial ratio sensitivity of circularly polarized waves can be avoided by using means that generates circularly polarized waves in the same direction of rotation as the waves. This is the focus of the present invention.

第3図は本発明醗こなる二条スパイラルアンテナ4#上
の定在波分布の説明図である。wJ3図^は第2図四と
全く同一図面で尋麿1の定在波分布を示し第3図(6)
と比較、のために示すものである。第3図(6)は第2
図(6)に示す導@2の定在波が外周末ass’が中心
角度0だけ移動した位置にある 外周末端部5“)と来
るように導線2の長さを短かくした状態、すなわち!3
図内の外周末端部5に比較して中心7に対して非対称位
置に来るようにした導* 2 /の定在波分布を示した
ものである。定在波め腹の部分を示す波10と11と1
2は波10”と11“と12”に対して何れも中心7に
対して非対称位置に在る。4#11と2′による輻射波
は上述のように矢印20と矢印20“で示す方向の偏波
面を持ち相互に時間的および空間的に異なる直線偏波成
分となる。今中心7を原点として導線1の矢印20の方
向をX軸とする直交座標を選び輻射方向を2軸とすると
、z軸上の無限遠点での電界は次式で表わせる。
FIG. 3 is an explanatory diagram of the standing wave distribution on the two-strand spiral antenna 4# according to the present invention. wJ3 Figure ^ is exactly the same drawing as Figure 2 4 and shows the standing wave distribution of Hiromaro 1 Figure 3 (6)
It is shown for comparison. Figure 3 (6) is the second
The state in which the length of the conductor 2 is shortened so that the standing wave of the conductor @2 shown in Figure (6) is at the position where the outer peripheral end ass' is moved by the center angle 0, i.e. !3
This figure shows the standing wave distribution of the conductor * 2 / which is located at an asymmetrical position with respect to the center 7 compared to the outer peripheral end 5 in the figure. Waves 10, 11, and 1 indicate the antinode of a standing wave.
2 are located at asymmetrical positions with respect to the center 7 with respect to waves 10", 11" and 12". The radiated waves by #4 #11 and 2' are directed in the directions indicated by arrows 20 and 20" as described above. They are linearly polarized components that are temporally and spatially different from each other. Now, if we choose orthogonal coordinates with the center 7 as the origin and the direction of the arrow 20 of the conducting wire 1 as the X-axis, and the radiation direction as the two axes, the electric field at an infinite point on the z-axis can be expressed by the following equation.

rB、= te、(A −coa (ωt+φ1) +
cos # * Acos(ωt+φ2))・・・+1
1 1ト;y=l=y(UI IF  @  Acos (
*  t  +φ2) ) ・ ・(2)ここで旧 、
E は電界成分、論1、陽、はXg      y y軸方向巣位ベクトル、Aは振巾、ωは角速度φ1とφ
dま励振位相、0は第3図(81に示す角度である。式
(1)と(2)から電林級分■1と旧 により形成され
る円偏波の軸比Al(は次のように計算される。電界成
分ちと旧、との相対位相差が間亀であるからφ=01−
=Δφと表わす。
rB, = te, (A − coa (ωt+φ1) +
cos # * Acos (ωt+φ2))...+1
1 1t;y=l=y(UI IF @ Acos (
* t + φ2) ) ・ ・(2) Here, the old ,
E is the electric field component, Theory 1, positive is the Xg y y-axis direction vector, A is the amplitude, and ω is the angular velocity φ1 and φ
d is the excitation phase, 0 is the angle shown in Figure 3 (81). From equations (1) and (2), the axial ratio Al (of the circularly polarized wave formed by the Denrin class ■1 and old is the following It is calculated as follows.Since the relative phase difference between the electric field components and the former is a gap, φ=01−
=Δφ.

l      2 式<37でAR=1と置くとm II −) can 
Δφ=O−−(4)式(4)なる方程式を得る。式(3
)において−=0のとき、すなわち対称配置のときは無
限大の軸比となり、#〜0とすると急速に軸比が良くな
ることが説明さ゛れる。また式(4)を解くことで、あ
る特定の周波数ではほとんど完全な円偏波とすることも
可能である。従って4疎1と2′に定在波が存在しても
、非対称配置とすること(こよって、導線lと2′から
輻射される直線1波成分を合成することにより、′NL
flLバンド領域から輻射される円偏波と同じ回転方向
をもつ電磁界を構成できるという効果が得られる。また
導111と2′を流れる高周波電流は外周末端部5と5
“で反射し、反射する電流の位相差も逆向きに近づくこ
とになり、導I!■と隣り合う導1ii2 ’との間で
閉じてしまう・電気力11か多くなるため、有害な輻射
が発生し難くなることが定性的に解る。すなわち4巌1
と2′は非対称配置によってその導線上の定在波振巾は
小さくなるという効果を生ずる。このような理由から円
偏波の軸比を動作周波数帯域の下限において大きく改善
できる。これまではアンテナを使用する状態が広帯域で
の動作が望まれる場合について説明してきたが、導線1
と2の非対称配置を選択することによって狭帯域での動
作も可能で希望周波数で最良の軸比を示すようにするこ
とができる。
If we set AR=1 in l 2 formula < 37, m II −) can
Δφ=O--(4) The equation (4) is obtained. Formula (3
), it is explained that when -=0, that is, when the arrangement is symmetrical, the axial ratio becomes infinite, and when #~0, the axial ratio rapidly improves. Furthermore, by solving equation (4), it is possible to obtain almost completely circularly polarized waves at a certain specific frequency. Therefore, even if there are standing waves in the four sparse 1 and 2', the arrangement should be asymmetrical (therefore, by combining the linear 1 wave components radiated from the conductors l and 2', 'NL
The effect is that it is possible to configure an electromagnetic field having the same rotation direction as the circularly polarized wave radiated from the flL band region. In addition, the high frequency current flowing through the conductors 111 and 2' is
The phase difference of the reflected current approaches the opposite direction, and the conductor I!■ and the adjacent conductor 1ii2' become closed.The electric force 11 increases, causing harmful radiation. It can be seen qualitatively that it becomes difficult to occur.In other words, 4 Gan 1
and 2' have the effect that the standing wave amplitude on the conductor becomes small due to their asymmetrical arrangement. For these reasons, the axial ratio of circularly polarized waves can be greatly improved at the lower limit of the operating frequency band. So far, we have explained the situation in which the antenna is used when wideband operation is desired, but the conductor 1
By selecting an asymmetrical arrangement of and 2, it is possible to operate in a narrow band and to exhibit the best axial ratio at the desired frequency.

第4図は二条スパイラルアンテナから輻射される円gI
a波の軸比と周波数の特性を示す説明図である。第4図
では縦軸に軸比、横軸に周波数(GH,)をとる。グラ
フ1jL)は従来のアンテナの特性を示し、グラフ(b
lは本発明になるアンテナの特性で周波数2G)I、近
辺で軸比が最小となるように構成したもの、グラフIc
Iは同じく本発明になるアンテナで広周波数帯域で動作
するように軸比が十坦となるように構成した場合の特性
を示す。グラフ(C1が示すようにこの動作周波数範囲
では100%近く動作可能燭波数範囲が拡大されている
。また多くの実厭の給米、本響を与えないことが硼めら
れ、式(1)と(2)の中に示される角度−は40ii
:から150度の間に蝦適値が存在する。
Figure 4 shows the circle gI radiated from the double spiral antenna.
FIG. 3 is an explanatory diagram showing the axial ratio and frequency characteristics of the a-wave. In FIG. 4, the vertical axis shows the axial ratio, and the horizontal axis shows the frequency (GH,). Graph 1jL) shows the characteristics of the conventional antenna, and graph 1jL) shows the characteristics of the conventional antenna.
l is the characteristic of the antenna according to the present invention, which is configured so that the axial ratio is minimized near the frequency 2G)I, and the graph Ic
Similarly, I shows the characteristics of an antenna according to the present invention configured to have a flat axial ratio so as to operate in a wide frequency band. As graph (C1) shows, in this operating frequency range, the operable wave number range has been expanded by nearly 100%.Also, it has been confirmed that many actual feeds do not cause the main effect, and formula (1) and the angle shown in (2) is 40ii
: There is a suitable value for shrimp between 150 degrees and 150 degrees.

また、二条スパイラルアンテナでは、アンテナ導線の断
線を測定する目的で、両導線を外局末端部で短絡部を設
杖ることがよく行われる。
Furthermore, in a two-strand spiral antenna, for the purpose of measuring disconnection of the antenna conductor, it is often done to provide a short circuit between both conductors at the end of the outer station.

このような場合には外周末端部での高周波電流の反射状
態が先に述べてきた開放の場合に比べて変化することに
なる。しかし、この場合にも、外周末端部の配置を上述
の如く中心に対して非対称とすることにより、やはり円
UA波の軸比を改善できることが確かめられている。
In such a case, the state of reflection of the high frequency current at the end of the outer periphery will change compared to the previously described open case. However, even in this case, it has been confirmed that the axial ratio of the circular UA wave can still be improved by arranging the outer peripheral end portion asymmetrically with respect to the center as described above.

このように本発明はアンテナ導線の外周末端部が開放、
短絡いずれの状態であっても適用することができる。
In this way, the present invention has a structure in which the outer peripheral end of the antenna conductor is open.
It can be applied to any short-circuit condition.

以上説明したように本舛−はスパイラノげンテナを構成
する二条の導1の長さを相異る長さに保ち、外周末端部
を中心に対して非対称位置に配置するという簡単な処置
によって動作周波数帯域の低い周波数帯域で輻射される
円偏波の軸比特性を改善し、アンテナの動作可能周波数
帯域を拡大することができる二条スパイラルアンテナを
提供することができる。
As explained above, this system operates by a simple procedure of keeping the lengths of the two conductors 1 that make up the spiral antenna at different lengths and arranging the outer peripheral ends asymmetrically with respect to the center. It is possible to provide a two-strand spiral antenna that can improve the axial ratio characteristics of circularly polarized waves radiated in a low frequency band and expand the operable frequency band of the antenna.

尚本発明に従来から用いられている円偏波の軸比改善手
段を併用することも可能で、更に曳好な軸比を得ること
ができる。また本発明は平面対数スパイラルアンテナや
平面角型スパイラルアンテナは勿論、円鐘形スパイラル
アンテナ等二条の導線をもつスパイラルアンテナの全て
に適用することができる。
It should be noted that it is also possible to use the present invention in combination with conventionally used means for improving the axial ratio of circularly polarized waves, and an even better axial ratio can be obtained. Furthermore, the present invention can be applied not only to planar logarithmic spiral antennas and planar rectangular spiral antennas, but also to all spiral antennas having two conductive wires, such as a bell-shaped spiral antenna.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の二条スパイラルアンテナの一実施例を示
す平面図、第2図は従来の二条スパイラルアンテナ41
i!上の定在波分布の説明図、第3図は本発明になる二
条スパイラルアンテナパイラルアンテナから輻射される
円偏波の軸比と周波数の特性を示す説明図である。 1と2と2′・・・導線、3・・・給電線、4と4′、
・・・電流、5と5′と5″・・・外局末端部、6と6
′・・・端部;7・・・中心、8・・・絶縁支持体、1
0と11と12と10′と と11 ’A12 ’と10’と11’と12’・・1
波、20と20′と20 ’ jL a、f@、矢印、
30−・・円、31・・・電流バンド領域、特許出願人
 株式会社 東 京 計 器隼10 $4f!!U /jljJ屹航C(tHx) 13
FIG. 1 is a plan view showing an example of a conventional two-strand spiral antenna, and FIG. 2 is a conventional two-strand spiral antenna 41.
i! The above explanatory diagram of the standing wave distribution and FIG. 3 are explanatory diagrams showing the axial ratio and frequency characteristics of the circularly polarized wave radiated from the double-strand spiral antenna according to the present invention. 1 and 2 and 2'... conductor wire, 3... power supply line, 4 and 4',
...Current, 5 and 5' and 5''...External end, 6 and 6
'... End; 7... Center, 8... Insulating support, 1
0 and 11 and 12 and 10' and 11 'A12' and 10' and 11' and 12'...1
Wave, 20 and 20' and 20' jL a, f@, arrow,
30-...Yen, 31...Current band area, Patent applicant Tokyo Keiki Hayabusa 10 $4f! ! U /jljJ屹行C(tHx) 13

Claims (1)

【特許請求の範囲】[Claims] 中心から外周に向って啜旋状に拡がる二条の導線によっ
て構成されるスパイラルアンテナにおいて、筆記二条の
導線のそれぞれが全兼を異にしかつ専一の外周末端部の
位置が上記中心に対して非対称な位置にあるととを特徴
とする二条スパイラルアンテナっ
In a spiral antenna composed of two conductive wires that extend spirally from the center to the outer periphery, each of the two conductive wires has a different purpose, and the position of the exclusive outer peripheral end is asymmetrical with respect to the center. A two-striped spiral antenna characterized by a
JP642482A 1982-01-19 1982-01-19 Dual-conductor spiral antenna Granted JPS58123203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP642482A JPS58123203A (en) 1982-01-19 1982-01-19 Dual-conductor spiral antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP642482A JPS58123203A (en) 1982-01-19 1982-01-19 Dual-conductor spiral antenna

Publications (2)

Publication Number Publication Date
JPS58123203A true JPS58123203A (en) 1983-07-22
JPH0231883B2 JPH0231883B2 (en) 1990-07-17

Family

ID=11637992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP642482A Granted JPS58123203A (en) 1982-01-19 1982-01-19 Dual-conductor spiral antenna

Country Status (1)

Country Link
JP (1) JPS58123203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008031751B3 (en) * 2008-07-04 2009-08-06 Batop Gmbh Photo-conductive antenna for material analysis in terahertz spectral range, has lens array comprising flat-convex lenses, whose focal points are found at surface between beginnings of spiral arms in center of antenna rows
EP2466686A1 (en) 2010-12-15 2012-06-20 Philipps-Universität Marburg Antenna for transmitting and receiving GHz and or THz radiation with optimised frequency characteristics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3241148A (en) * 1960-04-04 1966-03-15 Mcdonnell Aircraft Corp End loaded planar spiral antenna
US3358288A (en) * 1963-07-04 1967-12-12 Csf Wide band spiral antenna with reflective cavities of varied sizes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3241148A (en) * 1960-04-04 1966-03-15 Mcdonnell Aircraft Corp End loaded planar spiral antenna
US3358288A (en) * 1963-07-04 1967-12-12 Csf Wide band spiral antenna with reflective cavities of varied sizes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008031751B3 (en) * 2008-07-04 2009-08-06 Batop Gmbh Photo-conductive antenna for material analysis in terahertz spectral range, has lens array comprising flat-convex lenses, whose focal points are found at surface between beginnings of spiral arms in center of antenna rows
EP2466686A1 (en) 2010-12-15 2012-06-20 Philipps-Universität Marburg Antenna for transmitting and receiving GHz and or THz radiation with optimised frequency characteristics
WO2012080105A1 (en) 2010-12-15 2012-06-21 Philipps Universität Marburg Antenna for transmitting and receiving ghz and/or thz radiation with an optimized frequency characteristic

Also Published As

Publication number Publication date
JPH0231883B2 (en) 1990-07-17

Similar Documents

Publication Publication Date Title
US3454951A (en) Spiral antenna with zigzag arms to reduce size
Nakano et al. A spiral antenna backed by a conducting plane reflector
EP0198578B1 (en) Dual polarised sinuous antennas
US3633210A (en) Unbalanced conical spiral antenna
PL180885B1 (en) Toroidal antenna
WO2000069022A1 (en) Circular-polarized antenna
US9899731B1 (en) Octofilar antenna
US3624658A (en) Broadband spiral antenna with provision for mode suppression
Suh A comprehensive investigation of new planar wideband antennas
KR101927708B1 (en) Microstrip Balun-fed four-arm Sinuous Antenna
JPH046125B2 (en)
JPS6330006A (en) Helical antenna
US3137002A (en) Spiral antenna with arms of different lengths for polarization change
JP5139919B2 (en) Cross dipole antenna
JP4287492B1 (en) Antenna device
JPS58123203A (en) Dual-conductor spiral antenna
US4315264A (en) Circularly polarized antenna with circular arrays of slanted dipoles mounted around a conductive mast
JPS5943607A (en) Directive antenna element
Kim et al. Miniaturized four-arm log-periodic toothed antenna with wide bandwidth
US3587106A (en) Broad band antennas having spiral windings
US4725848A (en) Constant beamwidth spiral antenna
JPH0229007A (en) Antenna system
Shanmugam Investigations and Performance of a Cavity backed Novel modified Balun free Archimedean Spiral Antenna and Planar Array Implementation
RU2628300C2 (en) Antenna grid of elliptic polarization
Baum Some planar geometries for small antennas with switched oscillators for thz mesoband radiators