JPS58122436A - Automatic temperature measuring device with high accuracy using electronic computer - Google Patents

Automatic temperature measuring device with high accuracy using electronic computer

Info

Publication number
JPS58122436A
JPS58122436A JP381682A JP381682A JPS58122436A JP S58122436 A JPS58122436 A JP S58122436A JP 381682 A JP381682 A JP 381682A JP 381682 A JP381682 A JP 381682A JP S58122436 A JPS58122436 A JP S58122436A
Authority
JP
Japan
Prior art keywords
standard
errors
resistor
electronic computer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP381682A
Other languages
Japanese (ja)
Inventor
Yasuo Kuraoka
倉岡 泰郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoxan Corp
Hokusan Co Ltd
Original Assignee
Hoxan Corp
Hokusan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoxan Corp, Hokusan Co Ltd filed Critical Hoxan Corp
Priority to JP381682A priority Critical patent/JPS58122436A/en
Publication of JPS58122436A publication Critical patent/JPS58122436A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/21Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit for modifying the output characteristic, e.g. linearising

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To measure the temp. of an object to be measured accurately by supplying the positive current and reverse current by a constant current source to a circuit for temp. measurement to offset components corresponding to thermoelectromotive force and correcting and operating the reading errors, full- scale errors, etc. of a voltmeter by a computer. CONSTITUTION:Electric currents of +1mA and -1mA are supplied to a circuit 8 for temp. measurement consisting of a standard platinum temp. measuring resistor 5, the 1st standard resistor 6 and the 2nd standard resistor 7 from a constant current source 4, and the values thereof are added to offset components corresponding to thermoelectromotive force. The reading errors, full- scale errors, etc. of a digital voltmeter are corrected by incorporating mathematical expressions to utilize a computer. Then, the errors to be produced result in quantization errors and the errors within the range of the accuracy of the standard platinum temp. measuring resistor and the accuracy of the standard resistors.

Description

【発明の詳細な説明】 本発明は標準白金測温抵抗体を用いた自動測温装置に関
する0 従来この種の装置にあっては、各種の工業用計器を用い
て測温かなされているが、当該計器自体の精度上から、
1/100℃以上の高精度で、被測温体の絶対温度を測
定しようとしても不1」能である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic temperature measuring device using a standard platinum resistance temperature detector. Conventionally, in this type of device, temperature has been measured using various industrial meters. , due to the accuracy of the instrument itself,
Even if one attempts to measure the absolute temperature of a temperature-measuring object with a high precision of 1/100° C. or higher, it is impossible.

すなわち高精度に温度を測定しようとする場゛合には、
ホイトストンブリッジ、ミューラーブリツジなどのブリ
ッジ測定回路を用いることができるが、このような装置
にあってはプリン7の性質上側温を自動化することが大
変困難となる。
In other words, when trying to measure temperature with high accuracy,
Although a bridge measuring circuit such as a Wheatstone bridge or a Mueller bridge can be used, it is very difficult to automate the side temperature measurement due to the nature of the pudding 7 in such a device.

そこで自動化のためディジタル電圧計を用いることが既
に知られているのであるが、当該電1計にはリーデング
エラー、フルスケールエラー、そして切捨て、切上げに
伴う量子化エラーと呼ばれる各種の測定誤差要素が存し
、現存最高精度のものにあっても、リーデングエラーが
:10.0034%、フルスケールエラーは2.3μV
(0,IVレンジ)、量子化エラーが0,1μV(01
vレンン)生ずる。
Therefore, it is already known to use digital voltmeters for automation, but these voltmeters have various measurement error elements called reading errors, full-scale errors, and quantization errors due to rounding down and rounding up. Even with the highest precision existing model, the reading error is 10.0034% and the full scale error is 2.3 μV.
(0, IV range), quantization error is 0,1μV (01
v Renn) occurs.

従って上記のディジタル電圧計による標準白金側温抵抗
体を用いた従来装置により温度を測定jれば、0℃での
測定の場合、標準白金側温抵抗体(標準pt  )の精
度は±0.001℃であり、当該標準ptの感度は約1
00mΩ/deg程度であるかも1mAの測定電流で1
00μV/degとなり、また標準ptの0℃での抵抗
は25.5Ω程度であるから、ディジタル電圧計におけ
る測定誤差は、フルスケールニラ−が25.5 (Ω)
X 1 (mA)X±0.0034(%)=±0.86
7μVとなり、リーデングスケールエラー、量子化エラ
ーが前記の通り夫々±2.3μV、±0.1μVである
から、誤差計±3.267μVとなり、従つてその精度
は±3.267/100すなわち±0.03267d9
gとなり、ディジタルミ圧、i1による誤差だけでも3
/100〜4/100u  となるのであって、さらに
この種測温装置では定電流源のドリフトや絶対値からの
ずれ、そして測定系内にあ2て生ずる熱起電力に基づく
誤差要因があり、これらは通常前記ディジタル電圧計に
よる誤差よりも大きい事が多い。
Therefore, if the temperature is measured using the conventional device using the standard platinum side temperature resistance element using the digital voltmeter described above, the accuracy of the standard platinum side temperature resistance element (standard pt) is ±0. 001°C, and the sensitivity of the standard pt is approximately 1
It may be about 00mΩ/deg or 1 with a measurement current of 1mA.
00μV/deg, and the resistance of standard PT at 0℃ is about 25.5Ω, so the measurement error with a digital voltmeter is 25.5 (Ω) for full scale Nira.
X 1 (mA)X±0.0034(%)=±0.86
7μV, and the reading scale error and quantization error are ±2.3μV and ±0.1μV, respectively, as mentioned above, so the error meter is ±3.267μV, and therefore its accuracy is ±3.267/100, or ±0. .03267d9
g, and the error due to digital pressure and i1 alone is 3
/100~4/100u, and in addition, this type of temperature measuring device has error factors based on the drift of the constant current source, deviation from the absolute value, and thermoelectromotive force generated within the measurement system. These errors are usually larger than the errors caused by the digital voltmeter.

本発明は従来測温装置における上記の勿き誤差を可及的
に補正して、±0.00’7℃といった高精度の自動測
温を可能にしようとするもので\これを以下図示の実施
例によって詳記する。
The present invention aims to correct the above-mentioned unnecessary errors in conventional temperature measurement devices as much as possible to enable highly accurate automatic temperature measurement of ±0.00'7℃. This will be explained in detail by way of examples.

図中(11はマイクロコンピュータ等による電子計算機
を示し、当該計算機filには順次実線で示されている
計測ラインL1によって、ディ/タル電圧計(21、ス
キャナー(3)が接続され′Cし)ると勘に1定電流源
(4)に標準白金側温抵抗体(5)、第1標準抵抗(6
)、第2標準抵抗(7)を直列接続して形成された測温
用回路(8)が設けられ、前記スキャナー(3)は上記
の標準白金測温抵抗体(5)、第1標準抵抗(6)、第
2標準抵抗(7)の各両端子に接続してあり、さらに前
記電子計算機11)は、図中破線で示した制御ラインL
2によって、上記のディジタル電圧計(2)、スキャナ
ー(3)、定電流源(4)と人々接続されており、既知
の如く前記標準白金側温抵抗体(5)、第1標準抵抗(
6)、第2標準抵抗(7)は被測定体Aに浸漬されるこ
と\なる。
In the figure (11 indicates an electronic computer such as a microcomputer, and a digital voltmeter (21) and a scanner (3) are connected to the computer fil by a measurement line L1 sequentially shown as a solid line). Intuitively, I connected the standard platinum temperature resistor (5) to the first constant current source (4), and the first standard resistor (6).
), a second standard resistor (7) connected in series, and a temperature measuring circuit (8) formed by connecting the above-mentioned standard platinum temperature measuring resistor (5), the first standard resistor (7) in series, and the scanner (3) (6) is connected to both terminals of the second standard resistor (7), and the electronic computer 11) is connected to the control line L shown by the broken line in the figure.
2 is connected to the digital voltmeter (2), scanner (3), constant current source (4), and as is known, the standard platinum temperature resistance element (5), the first standard resistance (
6) The second standard resistor (7) is immersed in the object A to be measured.

そこで上記測温装置により温度測定を行なえ・ば、まず
定電流源(4)により測温用回路(8)に1mAが一方
向に流れ、当該正電流時における標準白金測温抵抗体(
5)、第1標準抵抗(6)、第2標準抵抗(7)の端子
電圧が、スキャナー(3)の走査にょっ、てディジタル
電圧計(2)により測定され、当該測定電圧の絶対値た
る夫々Vφ十、vl+、V2+ が電子計算機11.1
に導入され、次いで測温用回路(8)には前記正電流と
は逆方向の逆電流(−1mA)が流されること\なり、
これにより各抵抗(5)、f6) 、+71の端子電圧
が測定され、当該測定電圧の絶対値たる夫々Vφ−、V
、、V2−が前同様にして電子計算機(,11に導入さ
れる。
Therefore, when temperature measurement is performed using the above-mentioned temperature measuring device, first, 1 mA flows in one direction through the temperature measuring circuit (8) by the constant current source (4), and at the time of the positive current, the standard platinum resistance thermometer (
5) The terminal voltages of the first standard resistor (6) and the second standard resistor (7) are measured by the digital voltmeter (2) during scanning by the scanner (3), and the absolute value of the measured voltage is Vφ10, vl+, and V2+ are respectively electronic computer 11.1
, and then a reverse current (-1 mA) in the opposite direction to the positive current is passed through the temperature measuring circuit (8),
As a result, the terminal voltage of each resistor (5), f6), +71 is measured, and the absolute value of the measured voltage is Vφ-, V
, , V2- is introduced into the electronic computer (,11) in the same manner as before.

そして上記の如き測知情報を得た電子計算機+11によ
り以下のような演算が行なわれるのである0 すなわち前記の如く測定系のエラーには、(イ)ディジ
タル電圧計のリーデングエラー(ロ) ディジタル電圧
計のフルスケールエラーCI今  ディジタル電圧計の
量子化エラーに)定電流源のエラー (ホ)測定系の熱起電力によるエラー (ハ)標準白金側温抵抗体の精度 (ト)標準抵抗の精度 がちり、上記エラー中Hの量子化ニジ−と(ハ)の標準
白金側温抵抗体精度そして(ト)の標準抵抗積度につい
ては、これを回避し得ないめで、本発明では上記エラー
中(イ)仲)(ハ)(ホ)のエラーを、補正するのであ
る。
Then, the electronic computer+11 that has obtained the above measurement information performs the following calculations.In other words, as mentioned above, errors in the measurement system include (a) reading error of the digital voltmeter, and (b) digital voltage. Quantization error of digital voltmeter) Error of constant current source (e) Error due to thermal electromotive force of measurement system (c) Accuracy of standard platinum side temperature resistor (g) Accuracy of standard resistance However, in the above errors, regarding the quantization error in H, the accuracy of the standard platinum side temperature resistor in (c), and the standard resistance product in (g), this cannot be avoided. It corrects the errors in (b) middle), (c), and (e).

そこで上記電子計算機(1)による演算によって、1 
f ”tfi + 十V$ −/ 2 =Vφ’ 、V
1++Vl /2=V1 ’、v2++v2−/2−■
2′ナル平均値計算を行なわせることにより、上記(ハ
)測定系の熱起電力によるエラーを相撃により除去する
ことができる。
Therefore, by calculation by the electronic computer (1), 1
f ”tfi + 10 V$ −/2 = Vφ', V
1++Vl/2=V1', v2++v2-/2-■
By performing the 2'-null average value calculation, the error caused by the thermoelectromotive force in the measurement system (c) can be eliminated by counterattack.

こ\で上記演算で得られたVφ′、v工′、■2′は下
記の式で表わすことができる。
Here, Vφ', vk', and 2' obtained by the above calculation can be expressed by the following equations.

■φ′= ρφVφ十ηφ・・・・・・fi1式Vl’
 = ρI  Vl +11”” (2)式V2’ =
  7)2  V2 +12  ”” f31式上式に
あってスキャナー(3)による走査が短時間であればρ
φ=ρ1−ρ2=ρ、ηφ2ηl=η2=η とみなす
ことができ、ρ=1−(gl 4 E2 )でE□はデ
ィジタル電圧計のリーディングエラーを、E2は定電流
源のエラーを示しており、またη=E3でE3はディジ
タル電圧計のフルスケールエラーを示している。
■φ'= ρφVφ1ηφ・・・・・・fi1 formula Vl'
= ρI Vl +11"" (2) Formula V2' =
7) 2 V2 +12 ”” f31 In the above equation, if the scanning by scanner (3) is short, then ρ
It can be regarded as φ=ρ1−ρ2=ρ, ηφ2ηl=η2=η, where ρ=1−(gl 4 E2 ), E□ indicates the reading error of the digital voltmeter, and E2 indicates the error of the constant current source. Also, η=E3, where E3 indicates the full scale error of the digital voltmeter.

そして前記(1)〜(3)式中、v′、■1′、■2′
φ は既述の如く測知導入されており” 1 、V2・は既
知の値であるから当該式による連立方程式を解くことに
ニジρとηを求めることができ、かくてEl、E2、E
3のエラーを電子計算機il+が算出し得ること\なる
から、測定系の熱起電力を相殺したVφ′、■1′、■
2′から、さらにE□、E2、E3のエラーを補正した
測定結果を得ることができる。
In the above formulas (1) to (3), v', ■1', ■2'
Since φ has been introduced as described above, and V2 is a known value, ρ and η can be found by solving the simultaneous equations using this equation, and thus El, E2, and E
Since the electronic computer il+ can calculate the error of 3, Vφ', which cancels out the thermoelectromotive force of the measurement system, ■1', ■
2', it is possible to obtain measurement results in which the errors of E□, E2, and E3 are further corrected.

本発明は上記実施例によって具現される通り、マイクロ
コンピュータ等による電子計算機と、ディジタル電圧計
、スキャナー、定電流源とを夫々制御ラインにより接続
し、上記電子計算機には計測ラインにより順次上記のデ
ィジタル電圧計、スキャナーを接続すると共に、前記定
電流源には標準白金測温抵抗体、第1標準抵抗、第2標
準抵抗を直列に接続して測温用回路を形成し、当該測温
用回路に定電流源による正電流、逆電流を供給した際の
夫々につき、上記標準白金側温抵抗体、第1標準抵抗、
第2標準抵抗の端子電圧を、前記スキャナーの走査によ
ってう′イジタル電圧計により測知可能となし、当該測
知情報を前記電子計算機に導入して当該割算機により計
測ライン系における熱起電力分を相殺すると共に、ディ
ジタル電圧計のリーデングコーラー、フルスケールエラ
ーと定電圧電源のエラーとを補正演算して標準白金側温
抵抗体の抵抗値を算出して被測温体の温度を測知するよ
う構成したので、本発明に係る測温装置によれば、電子
計算機により自動的に測定結果が得られるのはもちろん
、そのエラーは前記(ハ)の量子化エラーと(へ)の標
準白◆測温抵抗体の精度および(ト)の標準抵抗の精度
による範囲内となり、これら=土0.001 deg (へ)mamma±0.001 deg(ト)・・・・
・標準抵抗の精度はIOPPM程度であるから、25Ω
のものを用いると、 25(Ω)Xi(mA)X±10(PPM)×2(台)
=0.5μv1 となるから、±0.001±0.001±0.005=
±0.007℃の精度で測定することが可能となる。
As embodied by the above-mentioned embodiment, the present invention connects an electronic computer such as a microcomputer, a digital voltmeter, a scanner, and a constant current source through control lines, and connects the computer to the electronic computer through a measurement line. A voltmeter and a scanner are connected, and a standard platinum resistance temperature detector, a first standard resistor, and a second standard resistor are connected in series to the constant current source to form a temperature measuring circuit. When a positive current and a reverse current are supplied from a constant current source to
The terminal voltage of the second standard resistor is made measurable by the digital voltmeter by scanning with the scanner, and the measured information is introduced into the electronic computer, and the thermoelectromotive force in the measurement line system is generated by the divider. At the same time, the reading caller of the digital voltmeter, the full scale error, and the error of the constant voltage power supply are corrected and calculated to calculate the resistance value of the standard platinum side temperature resistance element and measure the temperature of the temperature measured object. Therefore, according to the temperature measuring device according to the present invention, not only can measurement results be automatically obtained by an electronic computer, but also the errors are due to the quantization error in (c) above and the standard white in (f). ◆It is within the range depending on the accuracy of the resistance temperature sensor and the accuracy of the standard resistance (g), and these = 0.001 deg (g) mamma±0.001 deg (g)...
・The accuracy of standard resistance is about IOPPM, so 25Ω
When using one, 25 (Ω) Xi (mA) x ± 10 (PPM) x 2 (units)
=0.5μv1, so ±0.001±0.001±0.005=
It becomes possible to measure with an accuracy of ±0.007°C.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係る自動測温装置の一実施例を示すブロッ
クダイアグラムである。 +1)・・・・・電子計算機 [21−・・嗜・ディジタル電圧計 (3)・・・e・スキャナー (4)−・・・・定電圧源 (5)・・・・・標準白金測温抵抗体 (6)・・・・・第1標準抵抗、(7)・・・・・第2
標準抵抗(8)・e・・・測温用回路 特許出願人 代理人 弁理士  井 藤   誠
The figure is a block diagram showing one embodiment of an automatic temperature measuring device according to the present invention. +1)...Electronic computer [21-...Digital voltmeter (3)...E-scanner (4)-...Constant voltage source (5)...Standard platinum measurement Temperature resistor (6)...First standard resistance, (7)...Second
Standard resistance (8)・e...Temperature measurement circuit Patent applicant representative Patent attorney Makoto Ito

Claims (1)

【特許請求の範囲】[Claims] マイクロコンピュータ等による電子計算機と、ディジタ
ル電圧計、スキャナー、定電流源とを夫々制御ラインに
より接続し、上記電子計算機には計測ラインにより順次
上記のディジタル電圧゛計、スキャナーを接続すると共
〜に、前記定電 ゛流源には標準白金測温抵抗体、第1
標準抵抗、第2標準抵抗を直列に接続して測温用回路を
形成し、当該測温用回路に定電流源による正電流、逆電
流を供給した際の夫々につき、上記標準白金側温抵抗体
、第1標準抵抗、第2標準抵抗の端子電圧を、前記スキ
ャナーの走査によってディジタル電圧計により測知可能
となし、当該測知情報を前記電子計算機に導入して当該
計算機にエリ計測ライン系における熱起電力分を相殺す
ると共に、ディジタル電圧計のリーデングエラー、フル
スケールエラーと定電圧電源のニジ−とを補正演算して
標準白金側温抵抗値を算出して被測温体の温度を測知す
るようにした電子計算機を用いた高精度自動測温装置。
An electronic computer such as a microcomputer, a digital voltmeter, a scanner, and a constant current source are connected through control lines, and the digital voltmeter and scanner are sequentially connected to the electronic computer through measurement lines, and... The constant current source includes a standard platinum resistance thermometer and the first
A temperature measurement circuit is formed by connecting a standard resistor and a second standard resistance in series, and when a positive current and a reverse current are supplied from a constant current source to the temperature measurement circuit, respectively, the above standard platinum side temperature resistance The terminal voltages of the main body, the first standard resistor, and the second standard resistor can be measured by a digital voltmeter by scanning with the scanner, and the measured information is introduced into the computer and an Eri measurement line system is introduced into the computer. In addition to canceling the thermal electromotive force component in A high-precision automatic temperature measurement device that uses an electronic computer to measure temperature.
JP381682A 1982-01-13 1982-01-13 Automatic temperature measuring device with high accuracy using electronic computer Pending JPS58122436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP381682A JPS58122436A (en) 1982-01-13 1982-01-13 Automatic temperature measuring device with high accuracy using electronic computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP381682A JPS58122436A (en) 1982-01-13 1982-01-13 Automatic temperature measuring device with high accuracy using electronic computer

Publications (1)

Publication Number Publication Date
JPS58122436A true JPS58122436A (en) 1983-07-21

Family

ID=11567707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP381682A Pending JPS58122436A (en) 1982-01-13 1982-01-13 Automatic temperature measuring device with high accuracy using electronic computer

Country Status (1)

Country Link
JP (1) JPS58122436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210966A (en) * 1985-03-15 1986-09-19 Matsushita Electric Ind Co Ltd Highly accurate resistance measuring equipment
US5655841A (en) * 1992-07-01 1997-08-12 Whessoe Varec, Inc. Error-compensated temperature measuring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210966A (en) * 1985-03-15 1986-09-19 Matsushita Electric Ind Co Ltd Highly accurate resistance measuring equipment
JPH0518064B2 (en) * 1985-03-15 1993-03-10 Matsushita Electric Ind Co Ltd
US5655841A (en) * 1992-07-01 1997-08-12 Whessoe Varec, Inc. Error-compensated temperature measuring system

Similar Documents

Publication Publication Date Title
US3688581A (en) Device for correcting the non-linear variation of a signal as a function of a measured magnitude
US11327099B2 (en) High-precision resistance measurement system and method combining micro-differential method and ratiometric method
JPH02266258A (en) Measurement of ph and specific ion density
JPH02136754A (en) Method and apparatus for measuring fine electrical signal
KR20100035138A (en) Temperature measuring circuit in a flowmeter
JPH04248472A (en) Method of measuring resistance value
JPS58122436A (en) Automatic temperature measuring device with high accuracy using electronic computer
US2834937A (en) Conductivity bridges
JP2011179818A (en) Resistive voltage divider device for calibrating resistance ratio meter and calibration method using the device
JPH04305168A (en) Method for correcting error and measuring quantity of electricity
SU1288611A1 (en) Resistance meter
JPS6314784B2 (en)
KR100862094B1 (en) Rate error measurement a method and rate error measurement a equipment for binary scale rate increase
SU1126884A1 (en) Meter of electric values (its versions)
US3495169A (en) Modified kelvin bridge with yoke circuit resistance for residual resistance compensation
RU2025675C1 (en) Device for measuring temperature and temperature difference
SU708174A1 (en) Temperature difference measuring device
SU651265A1 (en) Percentage potentiometer
Malarić et al. Scaling of resistance standards in the primary electromagnetic laboratory of Croatia
SU872948A2 (en) Strain gauge device
JPS5937710Y2 (en) temperature measuring device
SU983553A1 (en) Measuring converter
JP2512934B2 (en) Temperature measurement circuit
SU725044A1 (en) Arrangement for measuring ohmic resistance of electric part
JPH0233965B2 (en)