JPS58121684A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58121684A
JPS58121684A JP275182A JP275182A JPS58121684A JP S58121684 A JPS58121684 A JP S58121684A JP 275182 A JP275182 A JP 275182A JP 275182 A JP275182 A JP 275182A JP S58121684 A JPS58121684 A JP S58121684A
Authority
JP
Japan
Prior art keywords
phosphorus
type
semiconductor device
layer
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP275182A
Other languages
Japanese (ja)
Inventor
Masami Naito
正美 内藤
Yoshiteru Shimizu
清水 喜輝
Kiyoshi Tsukuda
佃 清
Yoshio Terasawa
寺沢 義雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP275182A priority Critical patent/JPS58121684A/en
Publication of JPS58121684A publication Critical patent/JPS58121684A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8083Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To readily form a P-N junction vertical channel semiconductor device having excellent stopping efficiency in simple steps. CONSTITUTION:Dish-shaped P type layers 23 of reverse conductive type are formed by diffusing impurity in the surface part of an N type silicon wafer 21 of semiconductor substrate, an oxidized film 31 of the prescribed thickness is formed on the overall surface of the wafer, phosphorus glass 32 containing the prescribed density phosphorus is covered on the oxidized film, is then heat treated as prescribed, thereby diffusing the phosphorus contained in phosphorus glass through the film 31 in the wafer and manufacturing a vertical N-channel semiconductor device. The conductive type of a peripheral end having low impurity density of P type layer is inverted into N type by controlling the density of the phosphorus contained in the phsophorus glass, the thickness of the oxidized film and the heat treating conditions, and since the density of the phosphorus diffused in the silicon wafer is as high as toward the surface of the wafer, the inverted region in the vicinity of the surface is large, and becomes smaller toward the deeper part, thereby forming the layer 23 of the shape which provides excellent stopping efficiency.

Description

【発明の詳細な説明】 本発明は、半導体装置の製法に係シ、特Kpmチャンネ
ルを有する半導体装置の阻止効率の改良法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for improving the blocking efficiency of a semiconductor device having a Kpm channel.

一般に、チャンネル制御臘の半導体装置においては、半
導体素子のPN接合によ多形成される電界を制御すると
とKよって、素子の電圧・電流特性を制御している。こ
のような半導体装置にあって、大電流容量を具えるパワ
ー素子の場合は、主たる電流通路がウニへ面に対し垂直
な方向になるように形成され九、所謂縦形チャンネルの
ものが考案されている。
Generally, in a channel-controlled semiconductor device, the voltage and current characteristics of the device are controlled by controlling the electric field formed at the PN junction of the semiconductor device. In such a semiconductor device, in the case of a power element with a large current capacity, the main current path is formed in a direction perpendicular to the surface, and so-called vertical channel devices have been devised. There is.

このような半導体装置の一例として、第1図に示された
、静電−導型ト2ンジスタが知られている6図示された
ように、N導電形からなるベース層lの一方の表面部に
、皿形状のP導電形のゲート層2が形成されている。こ
のゲート層2が形成されてないベース層10表面部に、
抵抗接触させるためのN0層3を介してソース電極4が
設けられている。前記ベース層2の他面にはN0導電形
のドレン層5を介してドレン電極6が設けられている。
As an example of such a semiconductor device, the electrostatic conductive transistor shown in FIG. 1 is known.6 As shown in FIG. A dish-shaped P conductivity type gate layer 2 is formed on the surface. On the surface of the base layer 10 where the gate layer 2 is not formed,
A source electrode 4 is provided via an N0 layer 3 for resistive contact. A drain electrode 6 is provided on the other surface of the base layer 2 via a drain layer 5 of N0 conductivity type.

前記ゲート層2の表面にゲート電極7が設けられている
A gate electrode 7 is provided on the surface of the gate layer 2.

このように構成される静電誘導盤トランジスタにおいて
、ゲート電極7とソース電極4に逆バイアス電圧を印加
することによ〕、ソース電極4とドレン電極6関に流れ
る電流を阻止させることができる。これは、ベース層1
とゲート層2に印加された電圧により生ずる電界作用に
よって、図中点線によって示した領域8近傍(即ち、テ
ヤンネル領域)に形成される、ポテンシャルの山ないし
空乏層によってキャリヤの流れが防げられるためである
。この場合の電流阻止効率は、チャンネル領域の水平方
向の巾が狭いほど良いことが知られている。
In the electrostatic induction disk transistor constructed as described above, by applying a reverse bias voltage to the gate electrode 7 and the source electrode 4, it is possible to prevent current from flowing between the source electrode 4 and the drain electrode 6. This is base layer 1
This is because the flow of carriers is prevented by a potential peak or depletion layer formed near the region 8 (i.e., Tejannel region) indicated by the dotted line in the figure due to the electric field effect caused by the voltage applied to the gate layer 2. be. It is known that the current blocking efficiency in this case is better as the width of the channel region in the horizontal direction is narrower.

しかしながら、従来の拡散法によシゲート層2を形成す
るものにあっては、不純物が水平方向にも拡散されるた
め、ベース層1とゲート層2とのPN接合面9の断面は
皿状になる。したがって、チャンネル領域の巾がソース
電極4領域の巾に比して広くなってしまい、阻止効率が
悪くなるという欠点を有していた。
However, in the case where the silicate layer 2 is formed by the conventional diffusion method, the impurities are also diffused in the horizontal direction, so the cross section of the PN junction surface 9 between the base layer 1 and the gate layer 2 is dish-shaped. Become. Therefore, the width of the channel region becomes wider than the width of the source electrode 4 region, resulting in a disadvantage that the blocking efficiency deteriorates.

上記の欠点を改曳するものとして、従来、エピタキシャ
ル成長法によって前記PN接合面の側面を沿直に形成さ
せ、チャンネル領域の巾を狭くする方法が考案されてい
る。第2図および第3図にその従来例が示されている。
In order to overcome the above-mentioned drawbacks, a method has conventionally been devised in which the side surfaces of the PN junction surface are formed vertically by epitaxial growth to narrow the width of the channel region. A conventional example thereof is shown in FIGS. 2 and 3.

第2図においては、まず、N導電形のベース層11Aの
表面部にP導電形のゲート層12Aが拡散によυ形成さ
れ、次に、その面にN導電形のベース層11Bをエピタ
キシャル成長させ、さらに、 P導電形のゲート層12
Bが拡散によ多形成されたものである。この方法によれ
ば、ペース層11内に形成されるゲート層12の形状が
改善されるので、チャンネル領域の巾を狭くすることが
できる。tた、第3図においては、N導電形シリコンか
らなるベース層13の表面に、異方性エツチングにょシ
所望とする断面が矩形状の溝を形成し、エピタキシャル
成長によって、その溝を填めるようにP導電形シリコン
のゲート層14を形成させたものである。したがって、
この方法によれば、任意の巾にチャンネル領域の巾をコ
ント四−ルできる。
In FIG. 2, first, a P-conductivity type gate layer 12A is formed on the surface of an N-conductivity type base layer 11A by diffusion, and then an N-conductivity type base layer 11B is epitaxially grown on that surface. , furthermore, a gate layer 12 of P conductivity type.
B is formed by diffusion. According to this method, the shape of the gate layer 12 formed in the space layer 11 is improved, so that the width of the channel region can be narrowed. In addition, in FIG. 3, a groove with a desired rectangular cross section is formed on the surface of the base layer 13 made of N-conductivity type silicon by anisotropic etching, and the groove is filled by epitaxial growth. A gate layer 14 of P conductivity type silicon is formed therein. therefore,
According to this method, the width of the channel region can be controlled to an arbitrary width.

しかしながら、上述のエピタキシャル成長法によって、
チャンネル領域の巾を狭く形成するという方法にあって
は、いずれもエピタキシャル成長やエツチングなどの工
程が増えるので、製造価格が上昇するうえに歩留シも悪
くなるという欠点を有していえ。
However, by the epitaxial growth method described above,
All of the methods of forming the width of the channel region narrowly require additional steps such as epitaxial growth and etching, which have the drawbacks of increasing manufacturing costs and decreasing yield.

本発明の目的は、縦形チャンネルを有するPN接合の半
導体装置にあって、阻止効率に優れるPN接合形状のも
のを簡単な工程で容易に形成することができる半導体装
置の製法を提供することにある。
An object of the present invention is to provide a method for manufacturing a PN junction semiconductor device having a vertical channel, which can easily form a PN junction shaped semiconductor device with excellent blocking efficiency through simple steps. .

本発明は、−導電形の半導体基体の表面部に不純物拡散
によって断面皿形の反対導電形層を形成する工程を含む
縦形チャンネルPN接合形の半導体装置の製法において
、前記反対導電形層の周端縁の領域に不純物を選択的に
ドープして該領域の導電形を反転する工程を付加するこ
とによシ、阻止効率に優れるPNiNi枕形状する半導
体装置を製造しようとするものである。
The present invention provides a method for manufacturing a vertical channel PN junction type semiconductor device including a step of forming an opposite conductivity type layer having a dish-shaped cross section on the surface of a conductivity type semiconductor substrate by impurity diffusion. The present invention attempts to manufacture a PNiNi pillow-shaped semiconductor device with excellent blocking efficiency by adding a step of selectively doping impurities to the edge region and inverting the conductivity type of the region.

即ち、本発明は、通常の拡散によ多形成される皿形の反
対導電形層の周端縁領域は、横方向拡散によって生ずる
ものであるから、不純物濃度の低い領域となっているこ
とに鑑みなされたものである。つtJ+、皿形の反対導
電形層にあって、不純物濃度の高い領域には影響を及ぼ
すことのなり適切なドープ条件によって、選択的に不純
物濃度の低い周端縁領域の導電形を反転させようとする
ものである。
That is, the present invention is based on the fact that the peripheral edge region of the dish-shaped opposite conductivity type layer formed by normal diffusion is a region with a low impurity concentration because it is produced by lateral diffusion. This was done in consideration of the situation. tJ+, the conductivity type of the peripheral edge region with low impurity concentration can be selectively reversed by appropriate doping conditions, since it does not affect the region with high impurity concentration in the dish-shaped layer of the opposite conductivity type. This is what we are trying to do.

以下、本発明を実施例に基づいて説明する。Hereinafter, the present invention will be explained based on examples.

本発明の一実施例としての縦形Nチャンネルの半導体装
置の製法につ−て説明する。
A method for manufacturing a vertical N-channel semiconductor device as an embodiment of the present invention will be described.

半導体基体であるN形シリコンウェハの表面部に不純物
拡散によって皿形の反対導電形であるP形層を形成し、
このウェハ全表面に所定厚の酸化膜を設け、この酸化膜
上に所定の低濃度のリンを含むリンガラスを被着させた
後、所定の熱処理を行うことによって、前記酸化膜を介
してリンガラスに含まれるリンを前記ウェハ内に拡散さ
せることによシ、縦形Nチャンネルの半導体装置を製造
するものである。
A dish-shaped P-type layer of the opposite conductivity type is formed on the surface of an N-type silicon wafer, which is a semiconductor substrate, by impurity diffusion.
An oxide film of a predetermined thickness is provided on the entire surface of this wafer, and after a phosphorus glass containing a predetermined low concentration of phosphorus is deposited on the oxide film, a predetermined heat treatment is performed to allow phosphorus to pass through the oxide film. A vertical N-channel semiconductor device is manufactured by diffusing phosphorus contained in the glass into the wafer.

従って、本実施例の製法によれば、リンガラスに含まれ
るリンの濃度と、酸化膜の厚さと、熱処理条件とを適切
なものに制御することによって、皿形に形成され7’h
P形層の不純物濃度の高い領域は影響されずに、P形層
の不純物濃度が低い周端縁領域の導電形を反転させてN
形にすることができ、しかも、シリコンウェハ内に拡散
されるリンの濃度はウニ八表面に近いほど高いことから
、表面付近の反転領域は大きく深部に至るにしたがい小
さくなシ、第4図に示されるように、極めて喪好な阻止
効率を与える形状のP形層23を形成することができる
Therefore, according to the manufacturing method of this example, by controlling the concentration of phosphorus contained in the phosphorus glass, the thickness of the oxide film, and the heat treatment conditions to appropriate values, it is possible to form a dish-shaped product for 7'h.
The region with high impurity concentration of the P-type layer is not affected, and the conductivity type of the peripheral edge region with low impurity concentration of the P-type layer is inverted, and the N
Moreover, since the concentration of phosphorus diffused into the silicon wafer is higher the closer it is to the surface, the inversion region is large near the surface and becomes smaller as it goes deeper, as shown in Figure 4. As shown, a P-type layer 23 can be formed with a shape that provides very good blocking efficiency.

また、本実施例によれば、酸化膜を通してリンガラス中
のリンをウェハに拡散させているので、低濃度ドープ量
の制御性に優れ、且つエピタキシャル成長法や異方性エ
ツチングなどの製法を用いることなく、単なる熱拡散に
よるだけでよいことなどから、極めて容易に所望形状の
PN接合を製造することができ、製造価格を大きく低減
させることができる。
Furthermore, according to this example, since the phosphorus in the phosphorus glass is diffused into the wafer through the oxide film, the controllability of the low concentration doping amount is excellent, and manufacturing methods such as epitaxial growth and anisotropic etching can be used. PN junctions having a desired shape can be manufactured extremely easily, and the manufacturing cost can be greatly reduced, since only thermal diffusion is required.

なお、酸化膜は上記したようにドープ量を制御するため
のものであるが、リンガラスのリン濃度および熱処理条
件を適切なものとすれば、酸化膜を必要としないことは
言うまでもない。
Although the oxide film is used to control the doping amount as described above, it goes without saying that the oxide film is not required if the phosphorus concentration of the phosphorus glass and the heat treatment conditions are appropriate.

さらに本発明を図示実施例に基づいて詳細に説明する。Further, the present invention will be explained in detail based on illustrated embodiments.

第5図囚〜[F]に、本発明を静電誘導型ダイオードに
適用した実施例の工程が示されている。
Figures 5-5 show the steps of an embodiment in which the present invention is applied to a static induction diode.

第5図に示されるように1同図囚においてN0導電形基
板21上に抵抗率が約40Ω国で、厚さが約13μmの
N形層22をエピタキシャル成長させる0次に、酸化膜
をマスクとし、BNを拡散源としてボロンを950Cの
温度条件下で90分間の熱処理によって選択的に被着さ
せた後、温度1150Gにて約300分間ドライブイン
拡散させることによって、同図■に示されるような、接
合深さ約8μmのP形層23が形成される。このとき、
同図(B勺に示されるように、P形層23どうしがつな
がって形成されても支障はない、このように形成された
ウニへ面に、同図0に示されるようにシリコン酸化膜3
1を約0.2μm厚、及びリン濃度約6%のリンガラス
膜32を約0.35μm厚にCVD法によって積層する
0次に、この状態で窒素雰囲気にて温度1100r、6
00分間の熱処理を施す、これによシ、ウニ八表面にお
いては、前記ホルン拡散時におけるマスクの拡散窓にほ
ぼ相当する領域を除くP形層23がN形に反転され、同
図(ロ)に示された、P形層23が形成される。次に、
図(ト)に示されるように、例えば、At−8iからな
るアノード電極33、およびCr−Ni−Agからなる
カソード電極34を設け、チップにペレタイズレパッケ
ージに封入することによシ完成される。
As shown in FIG. 5, an N-type layer 22 having a resistivity of about 40 Ω and a thickness of about 13 μm is epitaxially grown on a N0 conductivity type substrate 21 using an oxide film as a mask. , Boron was selectively deposited using BN as a diffusion source by heat treatment for 90 minutes at a temperature of 950C, and then drive-in diffusion was performed at a temperature of 1150G for about 300 minutes, as shown in (■) in the same figure. , a P-type layer 23 with a junction depth of about 8 μm is formed. At this time,
There is no problem even if the P-type layers 23 are connected to each other, as shown in FIG.
A phosphorus glass film 32 having a thickness of about 0.2 μm and a phosphorus glass film 32 having a phosphorus concentration of about 6% is deposited to a thickness of about 0.35 μm using the CVD method.
Heat treatment is performed for 00 minutes. As a result, the P-type layer 23 on the surface of the sea urchin, except for the area approximately corresponding to the diffusion window of the mask during the horn diffusion, is inverted to the N-type layer 23, as shown in FIG. A P-type layer 23 is formed as shown in FIG. next,
As shown in FIG. .

このよりなPN接合素子の阻止特性は、前述したように
、チャンネルの巾によって異なってくる。
The blocking characteristics of this stiff PN junction element vary depending on the width of the channel, as described above.

そこで、従来例に相当する第5図■のチャンネル巾を図
示のよ−うにWlとし、本実施例によシ羨遺された第5
図(ハ)のチャンネル巾を図示のようにW。
Therefore, the channel width in FIG.
Change the channel width in Figure (C) to W as shown.

と定め、このW、とW、をともに約2μmに形成して、
阻止特性の比較実験を行った。その結果、いずれも順方
向電圧降下は0.75 Vであつ九のに対し、逆方向特
性に関しては、従来例に相当する同図■の形状のものは
、数Vの逆電圧で数mA〜数十mAの漏れ電流が流れて
しまいほとんど針圧がなかったが、本実施例の同図0の
形状のものは、100vの逆電圧に対し漏れ電流が1μ
A以下であシ耐圧性に優れ丸ものであった。
, and both W and W are formed to have a thickness of about 2 μm,
A comparative experiment of blocking properties was conducted. As a result, the forward voltage drop in all cases was 0.75 V, whereas in terms of reverse characteristics, the conventional example with the shape (■) in the same figure had a reverse voltage drop of several mA to several mA at a reverse voltage of several V. A leakage current of several tens of mA flowed and there was almost no stylus force, but in this example, the shape shown in the figure 0 has a leakage current of 1μ for a reverse voltage of 100V.
It had a rating of A or lower and had excellent pressure resistance and was round.

このことから、本実施例によれば、前記実施例の効果に
加えて、耐圧性に優れ、阻止特性の改善された静電誘導
盤ダイオードを、簡単な製法によp実現させることがで
きるという効果がある。
Therefore, according to this example, in addition to the effects of the previous example, an electrostatic induction board diode with excellent voltage resistance and improved blocking characteristics can be realized by a simple manufacturing method. effective.

第6図および第7図にはそれぞれ本発明の適用された他
の実施例が示されている。なお、図中、第5図図示実施
例と同一符号の付されたものは、同一材料、同一機能を
有するものである。
6 and 7 respectively show other embodiments to which the present invention is applied. In addition, in the drawings, parts with the same reference numerals as those in the embodiment illustrated in FIG. 5 are made of the same materials and have the same functions.

第6図には、接合深さの浅いP形層24を有するバイポ
ーラ型の静電誘導盤ダイオードに適用された例が示され
ておシ、第7図には、第1図図示従来例で示したと同様
な静電誘導型トランジスタに適用された例が示されてい
る。
FIG. 6 shows an example applied to a bipolar electrostatic induction board diode having a P-type layer 24 with a shallow junction depth, and FIG. 7 shows the conventional example shown in FIG. An example of application to a static induction transistor similar to that shown is shown.

これらの第6図および第7図図示実施例においても、前
記実施例と同様な効果を得ることができた。
In the embodiments shown in FIGS. 6 and 7, the same effects as in the above embodiments could be obtained.

なお、上述したいずれの実施例においても、N形半導体
基体にP形層を形成させるPN接合Nチャンネルの半導
体装置について説明したが、同様なPチャンネル半導体
装置を形成させるにあ九っては、ドープさせる不純物源
の導電形を変えればよく、例えばリンガラスに変えてボ
ロンガラスなどを用い、ボロン濃度、酸化膜厚み及び熱
処理条件などのドープ量制御条件を適切に選定すること
により、同様に製造することができる。
In each of the above-mentioned embodiments, a PN junction N-channel semiconductor device in which a P-type layer is formed on an N-type semiconductor substrate has been described, but in order to form a similar P-channel semiconductor device, It is only necessary to change the conductivity type of the impurity source to be doped. For example, by using boron glass instead of phosphorus glass, and appropriately selecting doping amount control conditions such as boron concentration, oxide film thickness, and heat treatment conditions, it is possible to produce the same product. can do.

また、所望領域の導電形を反転させる丸めの不純物ドー
プにあっても、熱拡散などによる方法に限られるもので
はなく、イオン打込み法によっても適当なマスク又は打
込み量を制御することによって、上述の実施例と同様な
形状のPN接合半導体装置を実現することができる。
In addition, round impurity doping to invert the conductivity type of a desired region is not limited to methods such as thermal diffusion, but can also be performed by ion implantation using an appropriate mask or controlling the implantation amount as described above. A PN junction semiconductor device having a shape similar to that of the embodiment can be realized.

さらに、本発明は上記実施例に示された種類の半導体装
置に限られるものではなく、所謂チャンネルによって制
御特性を得る型の半導体装置であれば適用可能である。
Furthermore, the present invention is not limited to the type of semiconductor device shown in the above embodiments, but can be applied to any type of semiconductor device that obtains control characteristics through a so-called channel.

以上説明し友ように、本発明によれば、阻止効率に優れ
たPN接合形状の縦チャンネルの半導体装置を、簡単な
工程で容易に形成させることができることから、製造価
格を着るしく低減させ、且つ歩留シを改善させることが
できるという効果を有する。
As described above, according to the present invention, a vertical channel semiconductor device in the form of a PN junction with excellent blocking efficiency can be easily formed through simple steps, thereby significantly reducing the manufacturing cost. In addition, it has the effect of improving yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の静電誘導型トランジスタの断面図、第
2図および第3図はそれぞれ従来法により改善され九P
N接合形状の断面図、第4図は本発明の一実施例のPN
接合形状の断面図、第5図囚〜[F]は本発明の適用さ
れ九個の実施例の靜電鍔導型ダイオードの製造過程ごと
の断面図、第6図は本発明の適用された他の実施例のバ
イポーラ型静電誘導型ダイオードの断面図、第7図は本
発明の適用された他の実施例の靜電鰐導型トランジスタ
の断面図である。 21・・・N0導電形基板、22・・・N形層、23・
−P茅 ! 図 第 2 図 I 解 3 図 第 4 図 第5図 (3)               CD)!$ 6
  口 第7図
Figure 1 is a cross-sectional view of a conventional electrostatic induction transistor, and Figures 2 and 3 are nine pages each improved by the conventional method.
A cross-sectional view of the N-junction shape, FIG. 4 is a PN of an embodiment of the present invention.
Cross-sectional views of the junction shape, Figures 5-5F are cross-sectional views of each manufacturing process of nine embodiments of the electrostatic conduction type diode to which the present invention is applied, and Figure 6 is a cross-sectional view of the nine embodiments to which the present invention is applied. FIG. 7 is a cross-sectional view of a bipolar electrostatic induction diode according to an embodiment of the present invention, and FIG. 7 is a cross-sectional view of a static induction type transistor according to another embodiment of the present invention. 21...N0 conductivity type substrate, 22...N type layer, 23.
-P Kaya! Figure 2 Figure I Solution 3 Figure 4 Figure 5 (3) CD)! $6
Mouth Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1、−導電形の半導体基体の表面部に不純物拡散によっ
て断面皿形の反対導電形層を形成する工程を含む縦形チ
ャンネルPN接合形の半導体装置の製法において、前記
製法によ多形成され九前記反対導電形層の周端縁の領域
に不純物を選択的にドープして該領域の導電形を反転さ
せる工程を設けたことを特徴とする半導体装置の製法。
1. - A method for manufacturing a vertical channel PN junction type semiconductor device including a step of forming an opposite conductivity type layer having a dish-shaped cross section on a surface portion of a conductivity type semiconductor substrate by impurity diffusion. 1. A method for manufacturing a semiconductor device, comprising the step of selectively doping an impurity into a peripheral edge region of a layer of an opposite conductivity type to invert the conductivity type of the region.
JP275182A 1982-01-13 1982-01-13 Manufacture of semiconductor device Pending JPS58121684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP275182A JPS58121684A (en) 1982-01-13 1982-01-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP275182A JPS58121684A (en) 1982-01-13 1982-01-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58121684A true JPS58121684A (en) 1983-07-20

Family

ID=11538046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP275182A Pending JPS58121684A (en) 1982-01-13 1982-01-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58121684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066619A (en) * 2006-09-11 2008-03-21 Rohm Co Ltd Junction field-effect transistor and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996682A (en) * 1973-01-16 1974-09-12
JPS5068480A (en) * 1973-10-19 1975-06-07
JPS5311572A (en) * 1976-07-19 1978-02-02 Handotai Kenkyu Shinkokai Method of making semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996682A (en) * 1973-01-16 1974-09-12
JPS5068480A (en) * 1973-10-19 1975-06-07
JPS5311572A (en) * 1976-07-19 1978-02-02 Handotai Kenkyu Shinkokai Method of making semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066619A (en) * 2006-09-11 2008-03-21 Rohm Co Ltd Junction field-effect transistor and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US4242691A (en) MOS Semiconductor device
US5468654A (en) Method of manufacturing an insulated gate bipolar transistor
JP2519369B2 (en) Semiconductor device
EP0091686B1 (en) Semiconductor device having a diffused region of reduced length and method of fabricating the same
US5218226A (en) Semiconductor device having high breakdown voltage
KR930002594B1 (en) Manufacturing method of semiconductor device
US3252003A (en) Unipolar transistor
US3316131A (en) Method of producing a field-effect transistor
EP0426252B1 (en) A semiconductor device and method of manufacturing a semiconductor device
JPH041510B2 (en)
JP2001060685A (en) High breakdown-strength transistor
JP4838976B2 (en) Method for forming MOSFET semiconductor device
JP2501810B2 (en) Vertical MOSFET
JPS58121684A (en) Manufacture of semiconductor device
JP2513640B2 (en) Conduction modulation type MOSFET
JPH0888357A (en) Lateral igbt
JPH09162422A (en) Planar semiconductor device
JPS6123669B2 (en)
JPH05121425A (en) Bipolar electrostatic-induction transistor
JPS639386B2 (en)
JPH029137A (en) Manufacture of magnetically arranged vertical double-diffusion type power mosfet having very small source/drain region
JPH0472670A (en) Insulated-gate bipolar transistor
JPS60253268A (en) Semiconductor device
JPS6024595B2 (en) Semiconductor devices and injection logic semiconductor integrated circuits
CN115498012A (en) Semiconductor device including field stop region