JPS58120765A - Heat resistant steel - Google Patents

Heat resistant steel

Info

Publication number
JPS58120765A
JPS58120765A JP87582A JP87582A JPS58120765A JP S58120765 A JPS58120765 A JP S58120765A JP 87582 A JP87582 A JP 87582A JP 87582 A JP87582 A JP 87582A JP S58120765 A JPS58120765 A JP S58120765A
Authority
JP
Japan
Prior art keywords
steel
weldability
creep rupture
rupture strength
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP87582A
Other languages
Japanese (ja)
Inventor
Hirokazu Tokoro
博和 野老
Masayuki Yamada
政之 山田
Mitsuo Kawai
光雄 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP87582A priority Critical patent/JPS58120765A/en
Publication of JPS58120765A publication Critical patent/JPS58120765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To enhance the weldability of a 12Cr steel while maintaining the heat resistance and creep rupture strength by adding a specified small amount of Ca to the steel. CONSTITUTION:This heat resistant 12Cr steel with superior weldability suitable for use as a material for the casing and various valves of a steam turbine has a composition consisting of 0.05-0.25% C, 0.05-0.5% Si, 0.1-0.8% Mn, 8.0- 16.0% Cr, 0.3-1.2% Mo, 0.05-0.5% V, 0.1-1.0% Ni, 0.01-0.3% Nb, 0.01-0.1% N, 0.0001-0.01% Ca and the balance Fe. Ca improves the weldability of the steel, and it is added in the form of a Ca mother alloy such as a Ca-Si alloy or an Ni-Ca alloy.

Description

【発明の詳細な説明】 この発明は蒸気タービンのケーシングや6種バルブ材な
どの用途ζ二連した溶接性(:すぐれた耐熱鋼(二関す
る。
DETAILED DESCRIPTION OF THE INVENTION This invention is a heat-resistant steel with excellent weldability for applications such as steam turbine casings and Class 6 valve materials.

従来より蒸気タービンのケーシングヤ各種パルプ材には
比較的高温強度にすぐれているlCr−IMO−〇。2
5V耐熱鋼が広く使用されている。しかし最近では蒸気
タービンの大型化、蒸気温度の高温化が丁すみ、ケーシ
ングや壱種バルブ類には、より高温強度のすぐれている
クリープ破断強さの高い12C!r糸鋼が使用されつつ
ある。はとんどのケーシングおよびバルブ類は、大屋の
鋳造製品であり製造時には必然的(二欠陥が発生する。
Conventionally, lCr-IMO-0, which has relatively excellent high-temperature strength, has been used as pulp material for steam turbine casings. 2
5V heat-resistant steel is widely used. However, recently, as steam turbines have become larger and steam temperatures have become higher, 12C, which has higher creep rupture strength and superior high temperature strength, is used for casings and valves. r-thread steel is being used. Most casings and valves are Oya's cast products, so defects inevitably occur during manufacturing.

一般に、発生した欠陥は、使用#(二脆性破壊の起点と
ならぬよう補修溶接される。しかし120r糸鋼は、割
れ感受性が大きく、溶接の際に予熱が必要であるがター
ビンのケーシングやパルプのような拘束の大きい大型構
造物の溶接は、予熱だけで割れを防止できない場合も多
、い。
In general, defects that occur are repaired and welded to prevent them from becoming a starting point for brittle fracture. However, 120R thread steel is highly susceptible to cracking and requires preheating during welding, but it is used in turbine casings and pulp. When welding large structures that are subject to significant constraints, such as the welding process, it is often not possible to prevent cracking by preheating alone.

又、従来の120r糸鋼はC量を減少することにより溶
接性は改善されるがクリープ破断強さは低下してしまう
欠点がある。すなわち溶接性とクリープ破断強さは相反
する性質である。このため大部化、高温化に対処する(
=は高いクリープ破断強さと優れた溶接性との両者を葦
ね備えた耐熱鋼が要求される。
Furthermore, although the weldability of conventional 120R thread steel is improved by reducing the amount of C, it has the disadvantage that its creep rupture strength decreases. In other words, weldability and creep rupture strength are contradictory properties. For this reason, it is necessary to deal with larger parts and higher temperatures (
= requires a heat-resistant steel that has both high creep rupture strength and excellent weldability.

本発明は上記要望を満足すべくなされたもので、120
r糸鋼の特徴である耐熱性およびクリープ破断強さを低
下させることなく溶接性を向上させた蒸気タービンのケ
ーシングや6種バルブに好適な耐熱鋼を提供することを
目的とする。この発明に係る低合金鋼はXt囁でC!0
.05〜0.25%、810.05〜0−5チ、Mn0
.1〜0.8%、Or&0−16.0%、Mo0.3−
1.2q6. ’1’0.05〜0,5九11i0.1
〜1.0−1N℃0.01−Q、3東夏0.01〜0.
1チ。
The present invention has been made to satisfy the above-mentioned needs, and has 120
The object of the present invention is to provide a heat-resistant steel suitable for steam turbine casings and Class 6 valves, which has improved weldability without reducing the heat resistance and creep rupture strength, which are characteristics of R-thread steel. The low alloy steel according to this invention is C! 0
.. 05~0.25%, 810.05~0-5chi, Mn0
.. 1-0.8%, Or&0-16.0%, Mo0.3-
1.2q6. '1'0.05~0,5911i0.1
~1.0-1N℃0.01-Q, 3 East Summer 0.01-0.
1ch.

Ca0.0001=0.01%、残部7sかうなるもの
であり、各成分元素の限定理由について説明すると下記
のとうりである。
Ca0.0001=0.01%, and the remainder is 7s.The reason for limiting each component element is as follows.

Cは、焼入性を向上させるとともに、VやMo、Orな
どの炭化物生成元素と化合して高温におけるクリープ破
断強さを向上させるものでちる。このため少なくとも0
.0556以上必要である。そして0.25’1Gを超
えると炭化物が粗大化して靭性な劣化させるとともに溶
接性を著しく劣下させる。81およびKnは、脱酸剤、
脱硫剤として添加されるものであり十分な脱酸、脱硫を
行なうためには、それぞれs 10−05チ以上、 M
nα1s以上を必要とする。
C improves hardenability and improves creep rupture strength at high temperatures by combining with carbide-forming elements such as V, Mo, and Or. Therefore, at least 0
.. 0556 or more is required. If it exceeds 0.25'1G, the carbides become coarse and toughness deteriorates, and weldability is significantly deteriorated. 81 and Kn are deoxidizers,
It is added as a desulfurizing agent, and in order to perform sufficient deoxidation and desulfurization, it must be added at least s 10-05cm, M
nα1s or more is required.

また、SlとMnの多量の添加は、靭性を劣下させるた
めその上限を810.5%、 Mn0.8%とした。 
crは焼入性を向上させ、引張強さ、クリープ破断強さ
を確なるとともにクリープ破断強さが劣下する。MOは
焼もどし軟化抵抗を増し、焼入性、靭性な改善するため
に0.3−以上必要である。しかし1.2−を超えると
炭化物が多量に符出生成して靭性な劣下させる。VはC
と化合し工黴細な炭化物を析出しクリープ破断強さを向
上させるために必要な元素で0.05%以上必要である
。しかし0.5%を超えると炭化物が粗大化し、靭性か
劣下することおよび溶接が困難になることからこの範囲
とした。Mlは焼入性および靭性な向上させる元素であ
り0.1−以上必要であるが、1.0%を超えると、そ
の効果は飽和することからこの範囲とした。It)は、
結晶粒を微細化し靭性な改善する元素で0.01%以上
必要である。しかし0.316を超えると製造時に偏析
を生じ、靭性な劣化させるため0.3%を上限とした。
Furthermore, since addition of large amounts of Sl and Mn deteriorates toughness, the upper limits were set at 810.5% and Mn at 0.8%.
Cr improves hardenability, ensures tensile strength and creep rupture strength, and deteriorates creep rupture strength. MO is required to be 0.3 or more in order to increase resistance to temper softening and improve hardenability and toughness. However, if it exceeds 1.2-, a large amount of carbides will be produced and the toughness will deteriorate. V is C
It is an element necessary for combining with metal to precipitate fine carbide and improving creep rupture strength, and is necessary in an amount of 0.05% or more. However, if it exceeds 0.5%, the carbides become coarse, the toughness deteriorates, and welding becomes difficult, so this range was chosen. Ml is an element that improves hardenability and toughness and is required to be at least 0.1%, but if it exceeds 1.0%, the effect is saturated, so it was set in this range. It) is
It is an element that refines crystal grains and improves toughness and is required in an amount of 0.01% or more. However, if it exceeds 0.316, segregation will occur during manufacturing and the toughness will deteriorate, so the upper limit was set at 0.3%.

Nはクリープ破断強さを向上させる元素で0.011以
上必要であり、O−1%を超えると、靭性および溶接性
を要くするためこの範囲とした。
N is an element that improves creep rupture strength and is required to be 0.011 or more, and if it exceeds O-1%, toughness and weldability are required, so this range was set.

(aは、溶接性を改善する為に有効な元素であり、0.
0001チ程度でその効果を十分発揮する。しかし0.
01%を超えるとその効果が飽和するばかりでなく靭性
も劣化さセるため上限な(LO1*とした。本発明鋼へ
1/)Cia(1)転動は、Ca−81合金、N1−c
a金合金その他の母合金の形で行なわれてもその効果は
同じである。
(a is an element effective for improving weldability, and 0.
The effect is fully demonstrated at about 0001chi. But 0.
If it exceeds 0.01%, not only the effect will be saturated but also the toughness will deteriorate. c.
The effect is the same even if it is performed in the form of a gold alloy or other master alloy.

次に、本発明に係る耐熱鋼について実施例をもって詳細
に説明する。
Next, the heat-resistant steel according to the present invention will be explained in detail using examples.

試料として第1表に示す組成の鋼を高周波誘導溶解炉を
使用して溶製した。
Steel samples having the compositions shown in Table 1 were melted using a high frequency induction melting furnace.

第1表 これらの試料は、1050℃の温度に加熱し、オーステ
ナイト化した後空冷した。次いで720’Cの温度に加
熱し12時間保持した後、炉中冷却を行なった・ 試験は、595℃でクリープ破断試験を行ないクリープ
破断強さを求めた。また溶接性を調べるため、スリン1
ffi拘束割れ試験片を用い予熱温度を変え溶接を行な
い溶接熱影響部断面の平均割れ事を求めた。溶接条件は
、溶接電流160ム、アーク電圧25v、溶接速度19
0〜200 ml m、溶接棒は急影響部の割れを調査
するためと一ド割れの生じにくい軟鋼低水素糸被覆アー
ク溶接棒を使用した。
Table 1 These samples were heated to a temperature of 1050°C to austenitize and then air cooled. Next, it was heated to a temperature of 720'C, held for 12 hours, and then cooled in a furnace.A creep rupture test was conducted at 595C to determine the creep rupture strength. In addition, in order to examine weldability, Surin 1
Using ffi restrained cracking test pieces, welding was performed while changing the preheating temperature, and the average cracking in the cross section of the weld heat affected zone was determined. Welding conditions were: welding current 160m, arc voltage 25v, welding speed 19.
0 to 200 ml m, a mild steel low-hydrogen thread-coated arc welding rod was used to investigate cracks in the acutely affected zone, and was resistant to cracking.

溶接割れの観察は、溶接後48峙間以上経過したのち断
面を研磨、腐食し行なった。
Weld cracks were observed by polishing and corroding the cross section after 48 seconds or more after welding.

第1114:比較例−1(fl141a)、2 (fa
ll)ml )、3(曲線C)および実施例−2(曲!
1d)のクリープ破断試験の結果を182表にはスリッ
ト溢拘束溶接割れ試験結果を示す。
No. 1114: Comparative example-1 (fl141a), 2 (fa
ll) ml), 3 (curve C) and Example-2 (song!
Table 182 shows the results of the slit overflow restraint weld cracking test.

上久下党ら 第2表 第2図には、平均割れ率50−になるときの実施例−1
(@線θ)および比較例−1(曲線で)における予熱温
度とC量との関係を示す第1図から明らかなように実施
例−2のクリープ破断強さは比較例とほぼ同等であり十
分なりリープ破断強さを有していることがわかる。第2
表から明らかなように実施例の溶接性は十分優れており
、例えばatの少ない比破例−1の予熱温度2001:
での平均割れ率が1396であるのζ二対し、atの多
い実施例3は796と小さい値であり、良好な溶接がで
きることがわかる。また第2因から本発明鋼は0量を高
くしても割れ率が少ない。すなわち溶接性に優れ、クリ
ープ破断強さの高いものである。
Table 2, Figure 2 of Kamikugeto et al. shows Example-1 when the average cracking rate is 50-.
As is clear from Figure 1, which shows the relationship between preheating temperature and C content in (@ line θ) and Comparative Example-1 (curve), the creep rupture strength of Example-2 is almost the same as that of Comparative Example. It can be seen that it has a sufficient leap rupture strength. Second
As is clear from the table, the weldability of the examples is sufficiently excellent, for example, the preheating temperature of comparative example-1 with less at:
The average cracking rate in Example 3 is 1396, which is 1396, whereas in Example 3, which has a large amount of at, it is a small value of 796, indicating that good welding can be performed. Furthermore, due to the second factor, the steel of the present invention has a low cracking rate even if the zero content is increased. That is, it has excellent weldability and high creep rupture strength.

以上述べたように本発明に係る耐熱鋼は従来のものとく
らべ溶接性がはるかに優れ、クリープ破断強さも十分高
いため高温で使用されるケーシングおよびパルプ類への
適用はきわめて有用である。
As described above, the heat-resistant steel according to the present invention has much better weldability than conventional steels and has sufficiently high creep rupture strength, so it is extremely useful for application to casings and pulps used at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクリープ破断試験結果を示す曲線図、gJ2図
は平均割れ皐5096になるときの予熱温度とC量の関
係を示す肉練図。 (7317)代理人 弁理士 則 近 憲 佑(他1名
) 第  1 図 埴前垢内 (hヒ) 第2図 ex<%)
FIG. 1 is a curve diagram showing the creep rupture test results, and gJ2 diagram is a kneading diagram showing the relationship between the preheating temperature and the amount of C when the average cracking is 5096. (7317) Agent: Patent attorney Noriyuki Chika (and 1 other person) Figure 1: Hanazaki Kenuchi (h-hi) Figure 2: ex<%)

Claims (1)

【特許請求の範囲】[Claims] 重量−でCα05〜0.25%、 slo、05−0.
5%、MnO,1”Q−8%、Or&0−16.0%、
 Moα3−1.2%、 Vα05−0.5噂、 Ni
Q、1−1.051゜NbO,0l−(L3%、MO,
01−0,1%、 C!a O,0001−o−o t
*、残部F’sからなる事を特徴とした耐熱鋼。
Cα05-0.25% by weight, slo, 05-0.
5%, MnO, 1"Q-8%, Or&0-16.0%,
Moα3-1.2%, Vα05-0.5 rumor, Ni
Q, 1-1.051°NbO,0l-(L3%, MO,
01-0,1%, C! a O,0001-o-o-t
*, A heat-resistant steel characterized by the remainder being F's.
JP87582A 1982-01-08 1982-01-08 Heat resistant steel Pending JPS58120765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP87582A JPS58120765A (en) 1982-01-08 1982-01-08 Heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP87582A JPS58120765A (en) 1982-01-08 1982-01-08 Heat resistant steel

Publications (1)

Publication Number Publication Date
JPS58120765A true JPS58120765A (en) 1983-07-18

Family

ID=11485840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP87582A Pending JPS58120765A (en) 1982-01-08 1982-01-08 Heat resistant steel

Country Status (1)

Country Link
JP (1) JPS58120765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222027A (en) * 1986-03-25 1987-09-30 Nippon Chiyuutankou Kk Manufacture of heat resisting rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222027A (en) * 1986-03-25 1987-09-30 Nippon Chiyuutankou Kk Manufacture of heat resisting rotor
JPH05450B2 (en) * 1986-03-25 1993-01-06 Nippon Chutanko Kk

Similar Documents

Publication Publication Date Title
EP0930127B1 (en) Welding materials for high-Cr steels
KR102237487B1 (en) Wire rod for welding rod and method for manufacturing thereof
WO2000036173A1 (en) Steel for boiler excellent in butt seam weldability and electroseamed steel pipe for boiler using the same
JPS5946300B2 (en) Steel for cold forging with excellent machinability and its manufacturing method
JPH0353367B2 (en)
JPS58120765A (en) Heat resistant steel
JP7478821B2 (en) Wire rod for welding rod and its manufacturing method
JPS59179718A (en) Manufacture of turbine rotor
JP4002389B2 (en) Rotating welded joint of mild steel or 490 MPa class steel excellent in fatigue strength and method for producing the same
JPH09122972A (en) Coated electrode for high-cr ferrite heat resisting steel
JPS5953653A (en) Very thick steel for low temperature use with superior toughness at weld zone
JPH02145749A (en) Turbine rotor
JPS58133353A (en) Casing for steam turbine
JPH08165541A (en) Cast steel material for steam turbine casing or pressure vessel
JPH10225792A (en) Tig welding material for austenitic heat resistant steel excellent in high temperature strength
JPS58157594A (en) Method for welding high strength steel materials
JPH01298135A (en) High and low pressure-integrated type steam turbine rotor
JPS61180693A (en) Welding method of high-ductility austenite stainless steel
JPH0239565B2 (en)
JPH10251811A (en) Steam turbine rotor material for high temperature use
JPS5993857A (en) High chromium cast steel with superior strength at high temperature and superior toughness
JPH05125490A (en) Deposition hardening type stainless steel
JPH022942B2 (en)
JPH03264647A (en) Overlay stainless clad steel which is made of low-alloy steel for high-temperature and high-pressure service as base metal and has excellent peeling resistance
JPS5943853A (en) High tension cast steel for centrifugal casting