JPS58120755A - Material for absorbing neutron - Google Patents

Material for absorbing neutron

Info

Publication number
JPS58120755A
JPS58120755A JP274582A JP274582A JPS58120755A JP S58120755 A JPS58120755 A JP S58120755A JP 274582 A JP274582 A JP 274582A JP 274582 A JP274582 A JP 274582A JP S58120755 A JPS58120755 A JP S58120755A
Authority
JP
Japan
Prior art keywords
amorphous
neutron
boron
absorbing
neutron absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP274582A
Other languages
Japanese (ja)
Inventor
Isao Ikuta
生田 勲
Kiyoshi Ishihara
石原 「あ」
「峰」村 哲郎
Tetsuo Minemura
Tateo Tamamura
玉村 建雄
Osamu Asai
治 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP274582A priority Critical patent/JPS58120755A/en
Publication of JPS58120755A publication Critical patent/JPS58120755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To make microscopically the resulting material for absorbing neutrons uniform and to enhance the neutron absorbing power and corrosion (crevice corrosion) resistance by preparing an amorphous Ni alloy contg. P, B and a specified amount or more of Cr. CONSTITUTION:This material for absorbing neutrons is made of an amorphous Ni alloy contg. P, B and >5 atomic% Cr. For example, the alloy consists of, by atom, about 0.5-2.5% P, about 15-25% B, about 15-25% Cr and the balance Ni. Since this material does not cause crevice corrosion, claddig is not required. For example, this material 4 for absorbing neutrons is used only by attaching to the outside of a square pipe 2, so sheets of the material 4 are easily superposed on each other, the neutron absorbing power is enhanced, and the density of a rack is increased.

Description

【発明の詳細な説明】 本発明は中性子吸収能が高く、強度、耐食性にすぐれた
中性子吸収材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a neutron absorbing material that has high neutron absorbing ability, excellent strength, and corrosion resistance.

近年使用済核燃料棒の貯蔵プールにおける遮へい材に用
いるすぐれた中性子吸収材が望まれており、要求される
性質とじてに均一な中性子吸収能、耐食性及び強度がめ
げられる。
In recent years, there has been a demand for excellent neutron absorbing materials for use as shielding materials in storage pools for spent nuclear fuel rods, and the required properties include uniform neutron absorbing ability, corrosion resistance, and strength.

従来はオーステナイト製の角筒を使用しているが、その
中性子吸収能は3.2c117100g程度であり、能
力としては小さい。一方、B4CとAIの複合板は77
5cd/100#という高い吸収能を持つが、材質がも
ろく、曲げ加工が困難で耐食性も悪い。さらにステンレ
ス鋼にボロンを添加して中性子吸収能を増加させる試み
も見られ7.lat%のボロンを添加して中性子吸収能
66j/ioog’を得ている。しかし、これ以上ボロ
ン鰍を増すと圧延性が悪くなり実用化できない。これt
解決する手段としてボロンを含むステンレス材?粉末化
して焼結する試みもなされているが、加工性の点から1
9.4at%が限度である。またボロンを含むステンレ
ス粉とボロンを含まないステンレス粉を混合焼結する場
合に結合材としてボロン金倉まないステンレスが有効に
働くため総合蓋としてボロンtt34at%まで高める
ことができる。しかし、この場合の材料はボロンを含む
粒子と含まない粒子が結合するわけでおり、ミクロ的に
は中性子吸収能が不均一(ボロンが偏析している丸め)
であり問題となっている。
Conventionally, a rectangular tube made of austenite has been used, but its neutron absorption capacity is about 3.2c117100g, which is small. On the other hand, the composite board of B4C and AI is 77
It has a high absorption capacity of 5cd/100#, but the material is brittle, difficult to bend, and has poor corrosion resistance. Furthermore, attempts have been made to add boron to stainless steel to increase its neutron absorption capacity7. A neutron absorption capacity of 66j/ioog' is obtained by adding lat% of boron. However, if the boron content is increased any further, the rollability deteriorates and it cannot be put to practical use. This is t
Stainless steel material containing boron as a solution? Attempts have been made to pulverize and sinter, but from the viewpoint of processability,
The limit is 9.4 at%. In addition, when stainless steel powder containing boron and stainless steel powder not containing boron are mixed and sintered, stainless steel without boron works effectively as a binder, so boron TT can be increased to 34 at% as a total lid. However, in this case, the material is a combination of particles that contain boron and particles that do not, and the neutron absorption ability is microscopically uneven (rounded where boron is segregated).
This is a problem.

本発明の目的は中性子吸収能が大きく、ミクロ的にも均
一でしかも耐食性(隙間腐食)にすぐれた中性子吸収用
材料に関する。
The object of the present invention is to relate to a neutron absorbing material that has a large neutron absorbing ability, is microscopically uniform, and has excellent corrosion resistance (crevice corrosion).

一般的に中性子吸収能を高めるにはポロン添加量を増加
する方法がとられている。
Generally, increasing the amount of poron added is used to increase the neutron absorption capacity.

高密度ラックに要求される性質は均一な中性子吸収能が
高く、耐食性及び強度がすぐれていることである。従来
材は8 U 8304及びボラル(B、Cとアルミニウ
ムの粉末?混合し、焼結したものをアルミニウム板でサ
ンドインチし・たもの)が使用されている。8U830
4のボロン添加蓋は約9.2at%以下であり、これ以
上ではもろくなり加工できなくなる。したがって、中性
子吸収能が低い。またボラルは中性子吸収能は高いがミ
クロ的に不均一であるため均一な中性子吸収能が得られ
ない問題点をもっている。
The properties required for high-density racks are high uniform neutron absorption capacity, excellent corrosion resistance, and strength. Conventional materials used include 8U 8304 and Boral (a mixture of B, C and aluminum powder, sintered and sandwiched between aluminum plates). 8U830
The boron-added lid of No. 4 is about 9.2 at% or less, and if it exceeds this, it becomes brittle and cannot be processed. Therefore, the neutron absorption capacity is low. Further, although Boral has a high neutron absorption ability, it has a problem that uniform neutron absorption ability cannot be obtained because it is microscopically non-uniform.

本発明はこれらの問題点の解決策として非晶質合金に注
目した。一般的に非晶質合金は非晶質化するためにB、
p、c、siの1種またIfiz種以含む溶融金属を液
体状態のまま超急冷凝固(冷却速度が10@C/8)さ
せることKよって形成され1強度及び靭性が大きい薄板
が得られる。この薄板中のボロンの分布も超急冷でるる
ため全く均一である。
The present invention focuses on amorphous alloys as a solution to these problems. Generally, in order for amorphous alloys to become amorphous, B,
A thin plate with high strength and toughness is obtained by ultra-rapid solidification (cooling rate: 10@C/8) of a molten metal containing one of p, c, si or ifiz in a liquid state. The distribution of boron in this thin plate is also completely uniform because it is ultra-rapidly cooled.

非晶質合金に強度はすぐれているか薄板(10〜100
μm)であるため公知材のような構造材料としては使用
できない。したがって、ラックの構造は8U8304の
角筒の周囲に取付けて使用するようになる。この場合、
貯蔵プールの約55Cの純水と接触し、SUB 304
と非晶質合金及び非晶質合金薄板間(重ねて使用するた
め)に隙間が発生し、隙間腐食が問題になってくる。先
願(受付N05600003361  )では5US3
04に非晶質合金薄板をクラッドして使用するため隙間
がないため1〜5at%Cr@でも腐食は発生しなかっ
た。本発明ではクラッド(クラッド工程を除去し低コス
ト価をはかるため)しないで使用するため、必然的VC
q間が発生し、先願の組成では耐食性に問題点を生じた
(隙間がるると腐食は加速される)。そこで耐食性を向
上させるには単にCr1it増加すればよいと思われた
。しかし、Cr量を増加すると非晶質化されない現象が
生じた。
Amorphous alloys have excellent strength or thin plates (10 to 100
μm), so it cannot be used as a structural material like known materials. Therefore, the rack structure is such that it is attached around the 8U8304 rectangular tube. in this case,
In contact with approximately 55C pure water in the storage pool, SUB 304
A gap is created between the amorphous alloy and the amorphous alloy thin plate (because they are stacked), and crevice corrosion becomes a problem. The earlier application (reception number N05600003361) is 5US3
Since 04 was clad with an amorphous alloy thin plate and there was no gap, no corrosion occurred even with 1 to 5 at% Cr@. In the present invention, since it is used without cladding (to eliminate the cladding process and achieve low cost), the inevitable VC
This caused a problem in corrosion resistance in the composition of the previous application (corrosion is accelerated when a gap occurs). Therefore, it was thought that in order to improve the corrosion resistance, it would be sufficient to simply increase Cr1it. However, when the amount of Cr was increased, a phenomenon occurred in which amorphization was not achieved.

本発明は耐隙間腐食性にすぐれたCrt含有し。The present invention contains Cr which has excellent crevice corrosion resistance.

しかも非晶質化されていること1に%徴とする中性子吸
収材でるる。
Moreover, it is a neutron absorbing material that is characterized by being amorphous.

第1図はN 1−2−5 P−B−Cr系による非晶質
化に影響を及ぼすBとCrの関係でるる。製造条件は石
英製ノズルを用い、周速30?PI/8eCで回転中の
ロールの表面に溶融した上記金属を噴出した。Pの含有
ith矢願に順じ、0.5〜25at%で最大ボロン含
有が得られており、ここでは2.5at%Pを採用した
。○印は非晶質が得られた場合で、・印は非晶質と結晶
質が混在している場合で、X印は非晶質化されず結晶質
の場合を示す。Cr添加量の増加によってB含有量が低
下し、20!Lt%CrでOB含有量は約25at%で
あり、B含有ilハ約gat%に減少しているため、中
性子吸収能も低下し、不利になると思われる。
FIG. 1 shows the relationship between B and Cr, which influence amorphization due to the N 1-2-5 P-B-Cr system. The manufacturing conditions are a quartz nozzle and a circumferential speed of 30? The molten metal was ejected onto the surface of a rotating roll at PI/8eC. In accordance with the P content request, maximum boron content has been obtained at 0.5 to 25 at%, and 2.5 at% P was adopted here. The mark ○ indicates a case where an amorphous substance is obtained, the mark ・ indicates a case where amorphous and crystalline substances are mixed, and the mark X indicates a case where a crystalline substance is obtained without becoming amorphous. As the amount of Cr added decreases, the B content decreases to 20! Since the OB content is about 25 at% in Lt%Cr, and the B-containing IL is reduced to about gat%, the neutron absorption ability is also reduced, which is considered to be disadvantageous.

しかし本発明材はクラッドする必要がないため薄板の重
ね合わせが容品であるため、枚数を増加させることによ
って十分カバーでき、むしろ枚数を増加させることによ
って中性子吸収能が大になる効果がでてくる。
However, since the material of the present invention does not require cladding and consists of overlapping thin plates, sufficient coverage can be achieved by increasing the number of sheets.In fact, increasing the number of sheets has the effect of increasing the neutron absorption capacity. come.

第2図は製造した薄板の自由凝固面の面粗さを測定した
結果を示す。1列としてN i −2,S P−20B
−20Cr系を示す。面粗さは最大約15μmもめる。
FIG. 2 shows the results of measuring the surface roughness of the free-solidifying surface of the produced thin plate. N i -2, S P-20B as one row
-20Cr system is shown. The surface roughness is reduced by a maximum of approximately 15 μm.

Cr含有敏が約5it%位までは面粗さは良好でおるが
Cr含有量の増加につれて図のように悪くなる傾向にる
る。面粗さが悪いと薄板を重ね合せて使用する場合占積
率が悪くなるので好ましくない。この面粗さを向上させ
るためpeを添加してみた。第3図はその結果を示す。
The surface roughness is good until the Cr content is about 5 it%, but as the Cr content increases, it tends to get worse as shown in the figure. If the surface roughness is poor, the space factor will deteriorate when thin plates are used in a stacked manner, which is not preferable. In order to improve this surface roughness, PE was added. Figure 3 shows the results.

F・添加量約15at%→以上で面粗さが向上すること
を見出した。第4図は1例としてNi−2,5P−20
B−20Cr−20F e系の面粗さを測定した結果を
示す。Feの添加で面粗さが向上する効果がでてくる。
It has been found that the surface roughness is improved when the amount of F added is about 15 at% or more. Figure 4 shows Ni-2,5P-20 as an example.
The results of measuring the surface roughness of B-20Cr-20Fe series are shown. Addition of Fe has the effect of improving surface roughness.

しかし、第5図に示すようにFeの添加量が約30&t
%以上になると非晶質化が困難になるのでpeの含有量
1ti 30 a t%以下が望ましい。
However, as shown in Figure 5, the amount of Fe added is approximately 30&t.
% or more, it becomes difficult to make it amorphous, so the content of pe is desirably 1ti 30 at % or less.

表IHN i−2,5P−20B−Cr系及びNi−7
−5P−20Fe−20B−Cr系のCr添加量を変化
させた場合の中性子吸収能、引張強さ及び隙間腐食を測
定した結果である。比較材として従来材の中性子吸収能
及び引張強さも示した。隙間腐食条件F′i2枚の5U
S304間に非晶質合金薄板を10枚重ね合せはさみ込
み、85Cの純水中でaooo時間浸漬試験した。この
結果、A1及びA7の試料に一部さびが発生した。これ
UCr含有量がともVc10!Lt%と低いためである
Table IHN i-2, 5P-20B-Cr system and Ni-7
These are the results of measuring the neutron absorption capacity, tensile strength, and crevice corrosion when changing the amount of Cr added in the -5P-20Fe-20B-Cr system. The neutron absorption capacity and tensile strength of conventional materials are also shown for comparison. Crevice corrosion condition F'i 2 sheets 5U
Ten amorphous alloy thin plates were stacked and sandwiched between S304 and subjected to an immersion test in 85C pure water for an aooo hour. As a result, some rust occurred in samples A1 and A7. This UCr content is Vc10! This is because it is as low as Lt%.

Cr含有量15at%以上では両組酸系で全く隙間腐食
が観察されず良好な結果が得られた。墓5及び410の
試料tricr含有量が限界を越したため非晶質化され
ず取扱中ボロボロに破壊するほど脆い材料となったため
、その特性を測定することができなかった。これらの結
果から、使用する環境に対し特にCr含有敞は15〜2
5at%が望ましい。
When the Cr content was 15 at % or more, no crevice corrosion was observed in both acid systems, and good results were obtained. Since the tricr content of the samples in Graves 5 and 410 exceeded the limit, the materials were not amorphous and were so brittle that they crumbled to pieces during handling, so their properties could not be measured. From these results, it is clear that the Cr content is 15 to 2, especially for the environment in which it is used.
5 at% is desirable.

本発明の第一の効果は隙間腐食が発生しないのでクラッ
ドする必要はなく、単に第7図の角筒2の外周に本発明
材の中性子吸収材41に取付けるだけよいので、中性子
吸収材薄板の重ね合せが容易なため中性子吸収能が向上
し、ラックの高密度化が得られる効果がある。第2の効
果hpeを含有するN1−pe−P−E3−cr系の本
発明材を使用することによって薄板の面粗さが向上する
ことは庵ちろんでるるが、原料11CF e −Bの使
用が可能になり、原料費がpeを含まないN1−P−B
−Cr系よりも約1/4コストが大巾に低下する(Fe
−BのコストはNBの約1/7であるため)。
The first effect of the present invention is that crevice corrosion does not occur, so there is no need for cladding, and it is sufficient to simply attach the neutron absorbing material 41 of the present invention to the outer periphery of the rectangular tube 2 shown in FIG. Because stacking is easy, the neutron absorption capacity is improved and the rack can be densified. Second Effect It is obvious that the surface roughness of the thin plate is improved by using the N1-pe-P-E3-cr-based material of the present invention containing hpe, but the use of the raw material 11CF e -B N1-P-B is now possible, and the raw material cost does not include PE.
-The cost is drastically reduced by about 1/4 compared to the Cr type (Fe
- Since the cost of B is about 1/7 of that of NB).

このことは原子力の場合、1プラン)K付き第6図に示
した燃料貯蔵ラックの使用t#−を出力によって左右さ
れるがおおよそ800MWで560体必要でるる。した
がって、原料費が1/4に低下することは美大な経済性
が得られる効果がでてくる。
In the case of nuclear power, the use of fuel storage racks (t#-) shown in Figure 6 with K in one plan depends on the output, but for approximately 800 MW, 560 racks are required. Therefore, reducing the raw material cost to 1/4 has the effect of achieving great economic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1dN i−2,5P−B−Cr系材の非晶質形
成範囲を示す図、第2図にN i −2,5P−208
−20Cr系材の自由凝固面の面粗さを示す図。 第3図t!Ni−15P−20B−200r−re系材
の自由凝固面の面粗さを示す図、第4図はN1−Z5P
−20B−20Cr−20Fe系材の自由凝固面の面粗
さを示す図、第5図はN1−Z5 P−20B−200
r−Fe系材の非晶質形成範囲ケ示す図、第6図は従来
の高密度ラックの外形図、第7図は本発明の中性子吸収
用非晶質薄板を角筒に取付けた断面図を示す。 1・・・上部補強材、2・・・角筒、3・・・下部補強
材。 図面の浄書(内容に変更なし) J1!1  目 /θ    /、5”     2θ    2S30
B(At’/−) 、l¥2 図 図面の浄書(内容に変更なし) Fe(at’/−) /gfi 図面の浄書ζ内容に変更なし) /ρ     15    2θ     25   
   .10e<td%) 茅2 月 ′47 目 手続補正書く方式) %式% 事件の表示 昭和57年 特許願第  2745  号発明の名称 中性子吸収用材料 補正をする者 41グ)関係  特許出願人 (I  所 東京都千代田区丸の内−丁目5番1号名 
 #(51O+株式会社 日 立 製 作 所代表者 
三 1)勝 茂 代   理   人 居  所  東京都千代田区丸の内−丁目5番1号補正
の対象 図面
Fig. 1 shows the amorphous formation range of 1dN i-2,5P-B-Cr-based material, Fig. 2 shows the range of amorphous formation of N i-2,5P-208
- A diagram showing the surface roughness of a free solidifying surface of a 20Cr-based material. Figure 3 t! A diagram showing the surface roughness of the free solidification surface of Ni-15P-20B-200r-re based material, Figure 4 is N1-Z5P
-20B-20Cr-20Fe-based material diagram showing surface roughness of free solidification surface, Figure 5 is N1-Z5 P-20B-200
A diagram showing the range of amorphous formation of r-Fe-based materials, Figure 6 is an external view of a conventional high-density rack, and Figure 7 is a cross-sectional view of the neutron-absorbing amorphous thin plate of the present invention attached to a rectangular tube. shows. 1... Upper reinforcing material, 2... Square tube, 3... Lower reinforcing material. Engraving of the drawing (no changes to the contents) J1! 1st/θ /, 5” 2θ 2S30
B (At'/-), l ¥2 Engraving of drawings (no change in content) Fe (at'/-) /gfi Engraving of drawings ζNo change in content) /ρ 15 2θ 25
.. 10e<td%) 茅2月'47 目Proceedings Amendment Writing Method) % Formula % Display of the Case 1982 Patent Application No. 2745 Name of Invention Person who makes amendment for neutron absorbing material 41g) Related Patent Applicant (I Address: 5-1 Marunouchi, Chiyoda-ku, Tokyo
#(51O+Hitachi, Ltd. representative)
3 1) Osamu Katsu Shigeyo Residence 5-1 Marunouchi-chome, Chiyoda-ku, Tokyo Drawings subject to amendment

Claims (1)

【特許請求の範囲】 1、 リン及びホウ素と5原子%を越えるクロムとを含
有する非晶質合金からなることを特徴とする中性子吸収
用材料。 2 前記非晶質合金に、リン0.5〜2..5原子%、
ホウ累15〜25原子%、クロム15〜25%原子%を
含み、残部ニッケルからなる特許請求の範囲第1項に記
載の中性子吸収用材料。 3、前記ニッケル合金は鉄30原子%以下を含有する特
許請求の範囲第2項に記載の中性子吸収用材料。
[Claims] 1. A neutron absorbing material comprising an amorphous alloy containing phosphorus, boron, and more than 5 at % of chromium. 2. Phosphorus is added to the amorphous alloy from 0.5 to 2. .. 5 atom%,
The neutron absorbing material according to claim 1, which contains 15 to 25 at. % of boron, 15 to 25 at. % of chromium, and the balance is nickel. 3. The neutron absorbing material according to claim 2, wherein the nickel alloy contains 30 atomic percent or less of iron.
JP274582A 1982-01-13 1982-01-13 Material for absorbing neutron Pending JPS58120755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP274582A JPS58120755A (en) 1982-01-13 1982-01-13 Material for absorbing neutron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP274582A JPS58120755A (en) 1982-01-13 1982-01-13 Material for absorbing neutron

Publications (1)

Publication Number Publication Date
JPS58120755A true JPS58120755A (en) 1983-07-18

Family

ID=11537882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP274582A Pending JPS58120755A (en) 1982-01-13 1982-01-13 Material for absorbing neutron

Country Status (1)

Country Link
JP (1) JPS58120755A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111696A (en) * 1984-06-13 1986-01-20 ウエスチングハウス エレクトリック コ−ポレ−ション Neutron absorbent material element and nuclear fuel transfervessel
JPS62211592A (en) * 1986-03-13 1987-09-17 住友特殊金属株式会社 Composite material for shielding neutron
FR2804538A1 (en) * 2000-01-28 2001-08-03 Siemens Ag PROCESS FOR THE PREPARATION OF A NEUTRON ABSORBING ELEMENT

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111696A (en) * 1984-06-13 1986-01-20 ウエスチングハウス エレクトリック コ−ポレ−ション Neutron absorbent material element and nuclear fuel transfervessel
JPS62211592A (en) * 1986-03-13 1987-09-17 住友特殊金属株式会社 Composite material for shielding neutron
FR2804538A1 (en) * 2000-01-28 2001-08-03 Siemens Ag PROCESS FOR THE PREPARATION OF A NEUTRON ABSORBING ELEMENT

Similar Documents

Publication Publication Date Title
US5634989A (en) Amorphous nickel alloy having high corrosion resistance
US5493592A (en) Nuclear-reactor fuel rod with double-layer cladding tube and fuel assembly containing such a fuel rod
KR101801861B1 (en) amorphous iron-based alloy and radiation shielding composite material by manufactured using the same
JPS59184882A (en) Nuclear fuel rod
JPS58120755A (en) Material for absorbing neutron
EP0533073B1 (en) Structural elements for a nuclear reactor fuel assembly
US3663366A (en) Shroud for a fuel assembly in a nuclear reactor
JP2015017806A (en) Neutron shielding material and spent fuel storage facility using the neutron shielding material
JPS5979196A (en) Neutron absorbing material
JPH01168833A (en) Boron-containing titanium alloy
JP2853133B2 (en) Cladding plate for structural members of nuclear fuel containers with excellent heat dissipation
JPS6338553A (en) Aluminum alloy having superior thermal neutron absorbing power
JPS6319038B2 (en)
JPS5841390A (en) Nuclear fuel storage rack
JPS5835252B2 (en) Corrosion-resistant aluminum alloy for structural use with excellent neutron shielding effect
CA1168769A (en) Fuel rod for a nuclear reactor
JPS58120754A (en) Material for absorbing neutron
JP3128620B2 (en) Neutron absorbing alloy
JP3789678B2 (en) Thermal neutron shielding material and manufacturing method thereof
JPH09318788A (en) Nuclear fuel storage rack
JPS6039594A (en) Storage rack for used fuel
US2902362A (en) Plutonium-uranium alloy
JPS61144597A (en) Square cylindrical body for absorbing neutron
JPH10226848A (en) Neutron absorbing alloy
JPH0461060B2 (en)