JPS6319038B2 - - Google Patents

Info

Publication number
JPS6319038B2
JPS6319038B2 JP56092268A JP9226881A JPS6319038B2 JP S6319038 B2 JPS6319038 B2 JP S6319038B2 JP 56092268 A JP56092268 A JP 56092268A JP 9226881 A JP9226881 A JP 9226881A JP S6319038 B2 JPS6319038 B2 JP S6319038B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
neutron absorbing
absorbing material
group
elements selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56092268A
Other languages
Japanese (ja)
Other versions
JPS57207896A (en
Inventor
Isao Ikuta
Noboru Ishihara
Tateo Tamamura
Tomio Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56092268A priority Critical patent/JPS57207896A/en
Publication of JPS57207896A publication Critical patent/JPS57207896A/en
Publication of JPS6319038B2 publication Critical patent/JPS6319038B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は中性子吸収用材料に関する。 近年、使用ずみ核燃料棒の貯蔵プールにおける
遮蔽材に用いるすぐれた中性子吸収材が望まれて
おり、要求される性質としては、第一に均一な中
性子吸収能、第二に耐食性、第三に強度があげら
れる。 従来はこのような中性子吸収材として、オース
テナイトステンレス製のものを使用しているが、
その中性子吸収能は3.2cm2/100g程度であり、能
力としては小さい。 周知のようにB(ホウ素)は中性子吸収能が高
く、中性子吸収用材料に広く用いられている。例
えばB4CとAl(アルミニウム)の複合板は775cm2
100gという高い吸収能を持つ。しかしこれは材
質がもろく、曲げ加工が困難で耐食性も悪いとい
う欠点を有する。またステンレス鋼にBを添加し
て中性子吸収能を増加させる試みも見られ、7.1
原子量(以下atという)%のBを添加して中性子
吸収能66cm2/100gを得ている。しかし、これ以
上B量を増すと圧延性が悪くなり実用化できな
い。 これを解決する手段としてBを含むステンレス
材を粉末化して焼結する試みもなされているが、
加工性の点から19.4at%が限度である。 またBを含むステンレス粉とBを含まないステ
ンレス粉を混合焼結する場合は、Bを含まないス
テンレスが結合材として機能することから総合量
としてB量を34at%まで高めることができる。し
かし、この場合はBを含む粒子と含まない粒子が
結合しているものであり、Bが偏在しミクロ的に
は中性子吸収能が不均一なものとなる。 このように従来の鉄鋼中及びNi中にB添加量
を約9.2at%以上増していくと、もろくなり加工
できなくなるが、Bを含む溶融金属を液体の状態
のまま超急冷凝固(冷却速度が約106℃/S)さ
せることにより上記金属は非晶質材となり、強度
及び靭性が大きい薄板が得られ、この薄板中のB
の分布も全く均一であることが知られている。 しかしながら非晶質合金に含むことができるB
量は従来30at%以下であり、実用的には10〜20at
%のBを含むことが通常である。Ni系非晶質合
金はFe系非晶質合金に比べ、Bの含有量を多く
することができるが、Bが30at%以上になると、
強度がほとんどないものしか得られなかつた。 また30at%以下の非晶質合金薄板(厚さ30μm)
を上記貯蔵プールに用いる場合には中性子吸収能
が450cm2/100g以下であるため4枚以上の薄板を
圧着しなければ中性子吸収能として不十分であ
る。ところが非晶質合金板は弾性限が高いため、
このような多数枚を長尺のまま重ねて連続圧着す
ることは難かしいという問題がある。これは圧着
には板材相互が均一に接触し、かつ高い圧着圧力
が加えられる必要があるが、非晶質合金板は弾性
係数が極めて高いために、被圧着枚数が増加する
とそれだけ1つの接触面当りの印加圧力が減少
し、十分な圧着強度が得られなくなるからであ
る。 本発明の目的は中性子吸収能が大きく、ミクロ
的にも均一でしかも耐食性にすぐれた中性子吸収
用材料を提供するにある。 発明者らは鋭意研究を重ねた結果、Bを含有す
る非晶質合金にPを少量添加すると、30%以上の
Bを含有しても良好な強度を有する非晶質合金が
得られることを見出し本発明に到達した。 すなわち本願第1の発明はホウ素30.5〜33原子
量%、リン0.5〜2.5原子量%、残部ニツケル及び
不可避不純物の非晶質合金からなることを特徴と
する中性子吸収用材料である。 また、本願第2の発明は、ホウ素30.5〜33原子
量%、リン0.5〜2.5原子量%、クロム1〜5原子
量%、残部ニツケル及び不可避不純物の非晶質合
金からなることを特徴とする中性子吸収用材料で
ある。 さらに本願第3の発明は、ホウ素30.5〜33原子
量%、リン0.5〜2.5原子量%、残部ニツケル及び
不可避不純物の非晶質合金板とステンレス鋼板と
のクラツド材とからなることを特徴とする中性子
吸収用材料である。 本発明においては、ニツケル系非晶質合金とす
ると、鋼系など他の種類の非晶質合金に比べてB
含有量を多くしても加工性の低下が少なく、好ま
しい。この場合、Pの含有量は0.5〜2.5at%とす
ることが好ましい。第1図に示すようにNi―B
系においてPを0.5〜2.5at%の範囲内で添加する
ことによりB量を30.5〜33.0at%まで増加しても
非晶質合金を得ることができるからである。P量
がこれ以下でもこれ以上でも含有可能なB量は低
下する。 また本願第2の発明においては、BとPの他
に、Crを含有している。Crを含有することによ
つて合金の耐食性が向上するからである。ニツケ
ル系非晶質合金においては、Crの含有量として
は1〜5at%が好ましい。5at%以上では第1表に
示すように合金が非晶質化しにくくなる。非晶質
化の程度が低くなると耐食性及び強度が急速に劣
化するようになる。また1at%以下では耐食性が
低下する。
The present invention relates to neutron absorbing materials. In recent years, there has been a demand for excellent neutron absorbing materials for use as shielding materials in storage pools for used nuclear fuel rods, and the required properties include firstly uniform neutron absorbing ability, secondly corrosion resistance, and thirdly strength. can be given. Traditionally, austenitic stainless steel has been used as such neutron absorbing material, but
Its neutron absorption capacity is about 3.2 cm 2 /100g, which is small. As is well known, B (boron) has a high neutron absorption ability and is widely used in neutron absorption materials. For example, a composite board of B 4 C and Al (aluminum) is 775 cm 2 /
It has a high absorption capacity of 100g. However, this material has the drawbacks of being brittle, difficult to bend, and having poor corrosion resistance. There have also been attempts to increase the neutron absorption capacity by adding B to stainless steel, and 7.1
A neutron absorption capacity of 66 cm 2 /100 g was obtained by adding B in an atomic weight (hereinafter referred to as at)%. However, if the amount of B is increased more than this, the rolling properties deteriorate and it cannot be put to practical use. As a means of solving this problem, attempts have been made to powder and sinter stainless steel materials containing B, but
The limit is 19.4at% from the viewpoint of processability. Furthermore, when a stainless steel powder containing B and a stainless steel powder not containing B are mixed and sintered, the B content can be increased to 34 at% as a total amount since the stainless steel not containing B functions as a binder. However, in this case, particles containing B and particles not containing B are combined, and B is unevenly distributed, resulting in microscopically non-uniform neutron absorption ability. In this way, if the amount of B added to conventional steel or Ni is increased by about 9.2 at% or more, it becomes brittle and cannot be processed. (approximately 10 6 °C/S), the above metal becomes an amorphous material, and a thin plate with high strength and toughness is obtained.
It is known that the distribution of is also completely uniform. However, B can be included in amorphous alloys.
Conventionally, the amount is less than 30at%, and in practical terms it is 10 to 20at%.
% of B is usually included. Ni-based amorphous alloys can have a higher B content than Fe-based amorphous alloys, but when B content exceeds 30at%,
All I could get was something with almost no strength. Also, amorphous alloy thin plate (thickness 30μm) of 30at% or less
When used in the storage pool, the neutron absorption capacity is less than 450 cm 2 /100g, so the neutron absorption capacity is insufficient unless four or more thin plates are crimped together. However, since the amorphous alloy plate has a high elastic limit,
There is a problem in that it is difficult to stack such a large number of long sheets and press them continuously. This is because crimping requires uniform contact between the plates and the application of high crimping pressure, but since amorphous alloy plates have an extremely high elastic modulus, as the number of crimped plates increases, the number of contact surfaces increases. This is because the applied pressure per contact decreases, making it impossible to obtain sufficient crimp strength. An object of the present invention is to provide a neutron absorbing material that has a large neutron absorbing capacity, is microscopically uniform, and has excellent corrosion resistance. As a result of intensive research, the inventors found that by adding a small amount of P to an amorphous alloy containing B, an amorphous alloy with good strength can be obtained even if it contains 30% or more of B. Heading The present invention has been arrived at. That is, the first invention of the present application is a neutron absorbing material comprising an amorphous alloy of 30.5 to 33 atomic percent boron, 0.5 to 2.5 atomic percent phosphorus, and the balance nickel and unavoidable impurities. Further, the second invention of the present application is a neutron absorbing material comprising an amorphous alloy containing 30.5 to 33 atomic weight % of boron, 0.5 to 2.5 atomic weight % of phosphorus, 1 to 5 atomic weight % of chromium, and the balance being nickel and unavoidable impurities. It is the material. Furthermore, a third invention of the present application is a neutron absorbing material comprising a cladding material of an amorphous alloy plate and a stainless steel plate containing 30.5 to 33 atomic weight % of boron, 0.5 to 2.5 atomic weight % of phosphorus, and the balance being nickel and unavoidable impurities. It is a material for use. In the present invention, when using a nickel-based amorphous alloy, compared to other types of amorphous alloys such as steel-based alloys, B
Even if the content is increased, there is little deterioration in processability, which is preferable. In this case, the content of P is preferably 0.5 to 2.5 at%. As shown in Figure 1, Ni-B
This is because by adding P in the range of 0.5 to 2.5 at% to the system, an amorphous alloy can be obtained even if the amount of B is increased to 30.5 to 33.0 at%. Whether the amount of P is less than this or more than this, the amount of B that can be contained decreases. Further, in the second invention of the present application, in addition to B and P, Cr is contained. This is because containing Cr improves the corrosion resistance of the alloy. In the nickel-based amorphous alloy, the Cr content is preferably 1 to 5 at%. If the content exceeds 5 at%, the alloy becomes difficult to become amorphous as shown in Table 1. As the degree of amorphization decreases, corrosion resistance and strength rapidly deteriorate. Moreover, if it is less than 1 at%, corrosion resistance decreases.

【表】 * ○;非晶質、×;結晶質を表わす。
さらに、本発明における非晶質合金において
は、B,P及びCrの他にSm,Gd,Eu,Rh,
Cd,In,Zr,Hf,Irの少なくとも1種又は2種
以上を含むことができる。これらの元素は中性子
吸収能が高いので、材料の中性子吸収能を高くす
ることができる。これらの添加量が合計で10at%
を超えると非晶質化になりにくくなることから、
これらの元素の添加量は合計で10at%以内とする
のが好ましい。 第1の発明においては、上述の組成からなる合
金は、溶解されたのち溶湯急冷法等の手段によつ
て急冷凝固され非晶質合金とされる。 本願第3の発明は、第1及び第2の発明の組成
を有する非晶質合金板とステンレス鋼板とのクラ
ツド材である。 非晶質合金を製造するには一般に急冷凝固させ
る必要があり、そのため製造された合金は一般に
薄板状、細線状又は粒状となる。例えば溶湯急冷
法によつて製造された非晶質合金板の厚さは通常
100μm以下の厚さであり、これ以上厚くなると冷
却速度が遅くなり結晶質になりやすい。このよう
に極薄の板は、それ自体では核燃料貯蔵ラツクな
どの遮蔽部材を組立てるのは難しい。 本願第3の発明においてはステンレス鋼板との
クラツド材とされているからステンレス鋼板の強
度、耐食性と、B含有非晶質合金の高い中性子吸
収能が組合わされ、特性の優れた中性子吸収材と
なる。 ステンレス鋼板としては、例えばオーステナイ
トステン鋼板が用いられる。これは、従来中性子
吸収材として使用されたものであり、強度、耐食
性等の特性が優れるとともに、使用実績にもとづ
く信頼性も高い。又このステンレス鋼板がBを含
有するものであれば一層中性子吸収能が高くなり
好ましい。 非晶質合金板とステンレス鋼板との接着には例
えば圧着法等の手段を用いることができる。 この非晶質合金板のB含有量が多くなると中性
子吸収能が高くなるから、非晶質合金板の積層枚
数も少なくて足りる。また、圧着法で接着する場
合、積層枚数が少なければ、高い圧着強度が得ら
れるようになる。 以下実施例について説明する。 実施例 1 第2表に示した成分をもつ種々のB含有合金を
石英ノズル中で1300℃で溶解し、これを周速30
m/secで回転中のロールの表面に、噴出圧力0.5
Kg/cm2で噴射し、厚さ30μm、幅150mm、長さ50m
のテープを製造した。 これらのテープの中性子吸収能、引張強さ及び
耐食性について測定した結果を第2表に示す。な
お引張強さはアムスラー型試験機を用いて測定し
た。また耐食性試験は、70℃の水中に2400時間浸
漬したときの腐食の発生程度を観察することによ
つて行つた。
[Table] * ○: Amorphous, ×: Crystalline.
Furthermore, in the amorphous alloy of the present invention, in addition to B, P and Cr, Sm, Gd, Eu, Rh,
It can contain at least one or two or more of Cd, In, Zr, Hf, and Ir. Since these elements have high neutron absorption ability, the neutron absorption ability of the material can be increased. The total amount of these additions is 10at%
Since it becomes difficult to become amorphous when it exceeds
The total amount of these elements added is preferably within 10 at%. In the first invention, the alloy having the above-mentioned composition is melted and then rapidly solidified into an amorphous alloy by means such as a molten metal quenching method. The third invention of the present application is a cladding material of an amorphous alloy plate and a stainless steel plate having the compositions of the first and second inventions. The production of amorphous alloys generally requires rapid solidification, so the produced alloys are generally plate-like, wire-like, or granular. For example, the thickness of an amorphous alloy plate manufactured by the molten metal quenching method is usually
The thickness is less than 100 μm; if it becomes thicker, the cooling rate slows down and it tends to become crystalline. Such extremely thin plates are difficult to assemble by themselves into shielding members such as nuclear fuel storage racks. In the third invention of the present application, since it is used as a clad material with a stainless steel plate, the strength and corrosion resistance of the stainless steel plate and the high neutron absorption ability of the B-containing amorphous alloy are combined, resulting in a neutron absorbing material with excellent properties. . As the stainless steel plate, for example, an austenitic stainless steel plate is used. This material has been conventionally used as a neutron absorbing material, and has excellent properties such as strength and corrosion resistance, as well as high reliability based on actual use. Further, it is preferable that the stainless steel plate contains B, since the neutron absorption capacity will be further increased. For example, a pressure bonding method or the like can be used to bond the amorphous alloy plate and the stainless steel plate. As the B content of this amorphous alloy plate increases, the neutron absorption capacity increases, so the number of laminated amorphous alloy plates may also be small. In addition, when adhering by a pressure bonding method, the smaller the number of laminated sheets, the higher the bonding strength can be obtained. Examples will be described below. Example 1 Various B-containing alloys having the components shown in Table 2 were melted at 1300°C in a quartz nozzle, and melted at a peripheral speed of 30°C.
A jet pressure of 0.5 is applied to the surface of a roll rotating at m/sec.
Spray at Kg/ cm2 , thickness 30μm, width 150mm, length 50m
tape was manufactured. Table 2 shows the results of measuring the neutron absorption capacity, tensile strength, and corrosion resistance of these tapes. Note that the tensile strength was measured using an Amsler type testing machine. Corrosion resistance tests were conducted by observing the extent of corrosion when immersed in water at 70°C for 2400 hours.

【表】 第2表により、本発明の実施例に係る非晶質合
金は従来材に比べ、中性子吸収能及び引張強さが
格段に優れていることが認められる。また、腐食
性も優れている。 また、実施例に係るテープをオーステナイトス
テンレス鋼に圧着し、中性子吸収能が高いととも
に、強度、耐食性に優れたクラツド材が得られ
た。 以上詳述したように、第1及び第2の発明に係
る中性子吸収用材料は、Bを多量かつ均質に含有
することができ、中性子吸収能が高いとともに強
度、耐食性に優れる。また本願第3の発明に係る
中性子吸収材は、該中性子吸収用材料の優れた特
性と、ステンレス鋼の強度と耐食性を兼ね備えた
ものであり、中性子遮蔽性、強度及び耐食性に優
れ、かつ信頼性も高い。
[Table] From Table 2, it is recognized that the amorphous alloys according to the examples of the present invention have significantly superior neutron absorption ability and tensile strength compared to conventional materials. It also has excellent corrosivity. In addition, the tape according to the example was crimped onto austenitic stainless steel to obtain a cladding material with high neutron absorption capacity, excellent strength and corrosion resistance. As described in detail above, the neutron absorbing materials according to the first and second inventions can contain a large amount of B homogeneously, have high neutron absorbing ability, and have excellent strength and corrosion resistance. Further, the neutron absorbing material according to the third invention of the present application combines the excellent properties of the neutron absorbing material with the strength and corrosion resistance of stainless steel, and has excellent neutron shielding properties, strength and corrosion resistance, and is reliable. It's also expensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNi―P―B系の非晶質形成範囲組成
を示す図である。
FIG. 1 is a diagram showing the amorphous formation range composition of the Ni-P-B system.

Claims (1)

【特許請求の範囲】 1 ホウ素30.5〜33原子量%、リン0.5〜2.5原子
量%、残部ニツケル及び不可避不純物の非晶質合
金からなることを特徴とする中性子吸収用材料。 2 特許請求の範囲第1項において、前記非晶質
合金がサマリウム、カドリニウム、ユーロピウ
ム、ロジウム、カドミウム、インジウム、ジルコ
ニウム、ハフニウム及びイリジウムからなる群よ
り選ばれた1種又は2種以上の元素を含むことを
特徴とする中性子吸収用材料。 3 特許請求の範囲第2項において、前記非晶質
合金の前記群より選ばれた1種又は2種以上の元
素の含有量が、10原子量%以下であることを特徴
とする中性子吸収用材料。 4 ホウ素30.5〜33原子量%、リン0.5〜2.5原子
量%、クロム1〜5原子量%、残部ニツケル及び
不可避不純物の非晶質合金からなることを特徴と
する中性子吸収用材料。 5 特許請求の範囲第4項において、前記非晶質
合金がサマリウム、カドリニウム、ユーロピウ
ム、ロジウム、カドミウム、インジウム、ジルコ
ニウム、ハフニウム及びイリジウムからなる群よ
り選ばれた1種又は2種以上の元素を含むことを
特徴とする中性子吸収用材料。 6 特許請求の範囲第5項において、前記非晶質
合金の前記群より選ばれた1種又は2種以上の元
素の含有量が、10原子量%以下であることを特徴
とする中性子吸収用材料。 7 ホウ素30.5〜33原子量%、リン0.5〜2.5原子
量%、残部ニツケル及び不可避の不純物の非晶質
合金板と、ステンレス鋼板とのクラツド材とから
なることを特徴とする中性子吸収用材料。 8 特許請求の範囲第7項において、前記非晶質
合金板がクロム1〜5原子量%を含んでなること
を特徴とする中性子吸収用材料。 9 特許請求の範囲第8項において、前記非晶質
合金がサマリウム、カドリニウム、ユーロピウ
ム、ロジウム、カドミウム、インジウム、ジルコ
ニウム、ハフニウム及びイリジウムからなる群よ
り選ばれた1種又は2種以上の元素を含むことを
特徴とする中性子吸収用材料。 10 特許請求の範囲第9項において、前記非晶
質合金の、前記群より選ばれた1種又は2種以上
の元素の含有量が、10原子量%以下であることを
特徴とする中性子吸収用材料。
[Scope of Claims] 1. A neutron absorbing material comprising an amorphous alloy of 30.5 to 33 atomic percent boron, 0.5 to 2.5 atomic percent phosphorus, and the remainder nickel and unavoidable impurities. 2. In claim 1, the amorphous alloy contains one or more elements selected from the group consisting of samarium, cadrinium, europium, rhodium, cadmium, indium, zirconium, hafnium, and iridium. A neutron absorbing material characterized by: 3. The neutron absorbing material according to claim 2, wherein the content of one or more elements selected from the group in the amorphous alloy is 10 atomic percent or less. . 4. A neutron absorbing material comprising an amorphous alloy of 30.5 to 33 atomic weight % boron, 0.5 to 2.5 atomic weight % phosphorus, 1 to 5 atomic weight % chromium, and the remainder nickel and inevitable impurities. 5. In claim 4, the amorphous alloy contains one or more elements selected from the group consisting of samarium, cadrinium, europium, rhodium, cadmium, indium, zirconium, hafnium, and iridium. A neutron absorbing material characterized by: 6. The neutron absorbing material according to claim 5, wherein the content of one or more elements selected from the group in the amorphous alloy is 10 atomic percent or less. . 7. A neutron absorbing material comprising an amorphous alloy plate containing 30.5 to 33 atomic weight % of boron, 0.5 to 2.5 atomic weight % of phosphorus, the balance being nickel and unavoidable impurities, and a cladding material of a stainless steel plate. 8. The neutron absorbing material according to claim 7, wherein the amorphous alloy plate contains 1 to 5 atomic percent of chromium. 9 In claim 8, the amorphous alloy contains one or more elements selected from the group consisting of samarium, cadrinium, europium, rhodium, cadmium, indium, zirconium, hafnium, and iridium. A neutron absorbing material characterized by: 10 The neutron absorbing material according to claim 9, wherein the content of one or more elements selected from the group in the amorphous alloy is 10 atomic percent or less. material.
JP56092268A 1981-06-17 1981-06-17 Neutron absorbing material Granted JPS57207896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56092268A JPS57207896A (en) 1981-06-17 1981-06-17 Neutron absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56092268A JPS57207896A (en) 1981-06-17 1981-06-17 Neutron absorbing material

Publications (2)

Publication Number Publication Date
JPS57207896A JPS57207896A (en) 1982-12-20
JPS6319038B2 true JPS6319038B2 (en) 1988-04-21

Family

ID=14049643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56092268A Granted JPS57207896A (en) 1981-06-17 1981-06-17 Neutron absorbing material

Country Status (1)

Country Link
JP (1) JPS57207896A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841390A (en) * 1981-09-04 1983-03-10 株式会社日立製作所 Nuclear fuel storage rack
FR2551907A1 (en) * 1983-09-14 1985-03-15 Lemer & Cie DEVICE FOR STORING COMBUSTIBLE ELEMENTS IN A SWIMMING POOL
JPH0766072B2 (en) * 1986-03-13 1995-07-19 住友特殊金属株式会社 Composite plate for neutron shielding
DE10003727A1 (en) * 2000-01-28 2001-08-09 Siemens Ag Method of manufacturing an absorber element
JP3926823B2 (en) * 2005-03-28 2007-06-06 英樹 村上 Radiation shielding material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110649A (en) * 1980-12-27 1982-07-09 Toshiba Corp Neutron absorber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110649A (en) * 1980-12-27 1982-07-09 Toshiba Corp Neutron absorber

Also Published As

Publication number Publication date
JPS57207896A (en) 1982-12-20

Similar Documents

Publication Publication Date Title
Krishnan et al. Zirconium alloys in nuclear technology
US5634989A (en) Amorphous nickel alloy having high corrosion resistance
JPH07504500A (en) Reactor fuel rod with double layer cladding
JPS59184882A (en) Nuclear fuel rod
US4572750A (en) Magnetic alloy for magnetic recording-reproducing head
KR100710606B1 (en) Zirconium alloy highly resistant to corrosion and to sun burst by water and water vapour, method for thermomechanical transformation of the alloy, and a component produced from the alloy
CH616960A5 (en) Components resistant to high-temperature corrosion.
JPS6319038B2 (en)
JP3057074B2 (en) Zirconium alloy composition for nuclear fuel cladding
DE69206018T2 (en) Sacrificial electrode material for corrosion protection.
JPH05247567A (en) Zirconium-bismuth-niobium alloy for bulkhead for nuclear fuel cladding
JPH0660364B2 (en) Corrosion resistant zirconium alloy containing bismuth
JP3346861B2 (en) High strength copper alloy
JPH0727884A (en) Nuclear reactor clad fuel tube superior in corrosion resistance and its production method
JPS6214207B2 (en)
US6334913B1 (en) Corrosion-resistant titanium alloy
US2871176A (en) Nuclear reactor component cladding material
EP4023784A1 (en) Composite coated steel and preparation method therefor
EP0314805B1 (en) Highly corrosion-resistant amorphous nickel-based alloy
DE3814439A1 (en) MATERIAL FOR ELECTRICAL CONTACT SPRINGS MADE OF A COPPER ALLOY AND THE USE THEREOF
JPS6032700B2 (en) Zinc alloy for hot-dip plating
JPS5952947B2 (en) Zinc alloy for hot-dip plating
JPH02173235A (en) Corrosion resisting zirconium alloy
JPS5850307B2 (en) Structural aluminum-based alloy with excellent neutron shielding effect
JP2770777B2 (en) High corrosion resistant and low hydrogen absorbing zirconium-based alloy and method for producing the same