JPH0461060B2 - - Google Patents

Info

Publication number
JPH0461060B2
JPH0461060B2 JP33044887A JP33044887A JPH0461060B2 JP H0461060 B2 JPH0461060 B2 JP H0461060B2 JP 33044887 A JP33044887 A JP 33044887A JP 33044887 A JP33044887 A JP 33044887A JP H0461060 B2 JPH0461060 B2 JP H0461060B2
Authority
JP
Japan
Prior art keywords
powder
stainless steel
austenitic stainless
less
surrounding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP33044887A
Other languages
Japanese (ja)
Other versions
JPH01172543A (en
Inventor
Takeshi Terasawa
Yoshihiro Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33044887A priority Critical patent/JPH01172543A/en
Publication of JPH01172543A publication Critical patent/JPH01172543A/en
Publication of JPH0461060B2 publication Critical patent/JPH0461060B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、中性子を放射する原子力廃棄物の貯
蔵や輸送あるいは中性子遮蔽材用に用いるオース
テナイト系ステンレス鋼の製造法に関するもので
ある。 〔従来の技術〕 中性子を遮蔽しかつ耐食性を有する材料とし
て、Bを含有したオーステナイト系ステンレス鋼
が有用であり、その供給が要請されている。しか
しながら、Bを0.5%以上含有させたオーステナ
イト系ステンレス鋼は熱間加工性が非常に劣悪で
あるため、大量供給の要請に応え難かつた。 従来、特開昭55−34636号公報に記載されてい
るように、Bを限定量含有させ、かつAl/Nを
限定することによりオーステナイト結晶粒を微細
化させて、熱間加工性を改善する技術が知られて
いる。 〔発明が解決しようとする問題点〕 上記公知の技術をもつてしても、Bを含有する
ことによる熱間脆性の問題は完全には解決し得
ず、熱間加工に際しては厳密な条件を守る必要が
あり、工業的技術として完全ではない。 本発明は、Bを含有することによる熱間脆性の
問題を完全に解決し、熱間加工によつて工業的規
模で含B原子力用オーステナイト系ステンレス鋼
を製造することを目的とする。 〔問題点を解決するための手段、作用〕 本発明は、オーステナイト系ステンレス鋼粉末
にフエロボロン粉末を混合した混合粉末の周囲
に、該オーステナイト系ステンレス鋼粉末の囲繞
層を形成し、熱間等方圧加圧して鋼片とし、しか
るのち熱間加工するものである。 オーステナイト系ステンレス鋼粉末とフエロボ
ロン粉末の混合割合は、B量が重量%にて総量の
0.5〜5.0%となるようにする。Bが0.5%未満では
中性子遮蔽の顕著な効果がなく、5.0%を越える
と鋼の常温における延性ならびに靭性の劣化が顕
著になるからである。Bのうち自然状態で19.9%
含まれる同位元素10Bは中性子吸収断面積の大き
い原子であり、中性子遮蔽の効果が大きく、この
効果はBが化合物になつていても変わらない。 混合粉末の周囲に形成するオーステナイト系ス
テンレス鋼粉末の囲繞層の厚さは、熱間等方圧加
圧して得た鋼片における厚さで5mm以上とする。
この厚さが5mm未満だと熱間加工る際に低融点の
硼化物が露出し、熱間加工温度で硼化物が溶融状
態になり、そこから割れが進展するからである。 混合粉末の周囲にオーステナイト系ステンレス
鋼粉末の囲繞層を形成するには、熱間等方圧加圧
機内にて、たとえばつぎのようにして行う。ま
ず、加圧機内の底にオーステナイト系スンレス鋼
粉末を敷きつめ、ついで、加圧機内の側壁との間
に間隙を持たせて枠を装入し、枠内に混合粉末を
加圧機内の上面との間に間隙を装入し、枠と加圧
機内の側壁との間隙にオーステナイト系ステンレ
ス鋼粉末を持たせて装入し、枠と加圧機内の側壁
との間〓にオーステナイト系スンレス鋼粉末を装
入し、枠を取り除き、最後に混合粉末をオーステ
ナイト系ステンレス鋼粉で覆う。 このようにして熱間等方圧加圧機内に粉末を装
入した後、不活性ガスを導入して加圧しつつ加熱
して鋼片とする。 オーステナイト系ステンレス鋼粉末の組成は、 (1) 重量%にてC:0.1%以下、Si:1.0%以下、
Mn:2.0%以下、Ni:7.0〜25.0%、Cr:11.0〜
27.0%を含有し、残部Feおよび不可避的不純物 (2) 重量%にてC:0.1%以下、Si:1.0%以下、
Mn:2.0%以下、Ni:7.0〜25.0%、Cr:11.0〜
27.0%、Mo:0.3〜3.0%を含有し、残部Feお
よび不可避的不純物 (3) 重量%にてC:0.1%以下、Si:1.0%以下、
Mn:2.0%以下、Ni:7.0〜25.0%、Cr:11.0〜
27.0%、Cu:0.3〜2.0%を含有し、残部Feおよ
び不可避的不純物 (4) 重量%にてC:0.1%以下、Si:1.0%以下、
Mn:2.0%以下、Ni:7.0〜25.0%、Cr:11.0〜
27.0%、Mo:0.3〜3.0%、Cu:0.3〜2.0%を含
有し、残部Feおよび不可避的不純物 とする。 Cは、0.1%を越えると炭化物が生成しやすく
なり、鋼の耐食性が劣化するので0.1%以下とし
た。 Siは、脱酸のため添加するが、1.0%を越える
と鋼が脆化するので1.0%以下とした。 Mnは、オーステナイト組織の安定化に有効で
あるが、2.0%を越えると孔食発生の起点となる
硫化物系介在物が多量に生成し、耐食性が著しく
劣化するので、2.0%以下とした。 Niは、鋼の組織をオーテナイトとするために
7.0%以上必要であり、25.0%を越えて添加する
と高価になるので、7.0〜25.0%とした。 Crは、鋼の耐食性を保持させるため11.0%以上
の添加が必要であり、27.0%を越えて添加すると
鋼が脆化するので、11.0〜27.0%とした。 Moは、0.3%以上添加すると鋼の耐食性なかで
も耐孔食性が向上し、3.0%を越えると脆化する
ので、特に耐食性が要求される場合に添加し、そ
の量を0.3〜3.0%とした。 Cuは、0.2%以上添加すると耐酸性が向上し、
2.0%を越えると鋼の熱間加工性が劣化するので、
特に耐酸性が要求される場合に添加し、その量を
0.2〜2.0%とした。 MoおよびCuを複合添加すると、上記それぞれ
の効果が複合して発揮されるので、そのような特
性が要求される場合に添加し、その量をMoにつ
いては0.3〜3.0%、Cuについては0.2〜2.0%とし
た。 本発明法によれば、熱間等方圧加圧して得られ
た鋼片の表面が、Bを含まないオーステナイト系
ステンレス鋼で覆われているので、通常のオース
テナイト系ステンレス鋼と同様に熱間加工するこ
とが出来る。そして、熱間加工して得られた製品
あるいはこれをさらに冷間加工して得られた製品
は、表面が通常のオーステナイト系ステンレス鋼
と同様に耐食性を有しているとともに、内部には
Bが必要量均一に分散しているので、中性子遮蔽
効果が優れている。さらに、内部もオーステナイ
ト系ステンレス鋼であつて耐食性を有しているの
で、製品を溶接したときに内部の鋼が表面に露出
しても耐食性が劣化し難い。 〔実施例〕 表1に本発明法による熱間加工の結果を従来法
と比較して示す。熱間等方圧加圧は、オーステナ
イト系ステンレス鋼粉末とフエロボロン粉末の混
合粉末の周囲に該オーステナイト系ステンレス鋼
粉末の囲繞層を形成した合計13Kgの粉末を、温度
1200℃、圧力1000気圧で2時間加圧して行い、得
られた材料の表面を研削して厚さ50mmの鋼片を製
造した。従来例の鋳造は、真空溶解した100Kgの
鋼塊を鋳型に鋳造して行い、得られた材料を切断
し表面を研削して、本発明例と同一サイズの鋼片
を製造した。 鋼片の化学成分は、鋼片の内部の分析値を示
し、熱間等方圧加圧によるものの表面層の分析値
は、B以外の成分については内部と同じでBは含
まれていない。 熱間加工性は、50mm厚の鋼片を6mm厚まで熱間
圧延して評価した。 表1のNo.に*印を付したものが本発明例であ
り、いずれもB無添加のものと同様に良好な熱間
加工性を示していることがわかる。 本発明で得られた含Bオーステナイト系ステン
レス鋼は、いずれも顕著な中性子遮蔽効果が得ら
れた。耐食性については、B添加ステンレス鋼の
使用環境である微量Cl-イオンを含む硼酸溶液
(2500ppmH3BO3+100ppmCl-)中で温水浸漬試
験(80℃)した結果、本発明例で得られたものの
耐食性はB無添加のものと同等であつた。また、
Mo、Cuを単独あるいは複合添加したものの耐食
性は、さらに優れたものであつた。なお、溶接部
もほぼ同等の耐食性を示した。 〔発明の効果〕 本発明は、今後ますます需要の増加が予想され
る原子力廃棄物の貯蔵や輸送あるいは中性子遮蔽
のためのオーステナイト系ステンレス鋼の実用的
製造法を提供するものであり、工業的価値は絶大
である。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing austenitic stainless steel used for storing and transporting nuclear waste that emits neutrons or for neutron shielding materials. [Prior Art] Austenitic stainless steel containing B is useful as a material that shields neutrons and has corrosion resistance, and there is a demand for its supply. However, since austenitic stainless steel containing 0.5% or more of B has extremely poor hot workability, it has been difficult to meet the demand for mass supply. Conventionally, as described in JP-A-55-34636, austenite crystal grains are refined by containing a limited amount of B and limiting Al/N to improve hot workability. The technology is known. [Problems to be solved by the invention] Even with the above-mentioned known techniques, the problem of hot embrittlement due to the inclusion of B cannot be completely solved, and strict conditions must be met during hot working. It needs to be protected and is not perfect as an industrial technology. The object of the present invention is to completely solve the problem of hot brittleness due to the inclusion of B, and to produce an austenitic stainless steel containing B for nuclear power use on an industrial scale by hot working. [Means and effects for solving the problems] The present invention forms a surrounding layer of austenitic stainless steel powder around a mixed powder of austenitic stainless steel powder and ferroboron powder, and It is pressed into a steel billet and then hot worked. The mixing ratio of austenitic stainless steel powder and ferroboron powder is determined by the amount of B in weight% of the total amount.
It should be between 0.5 and 5.0%. This is because if B is less than 0.5%, there is no significant neutron shielding effect, and if it exceeds 5.0%, the ductility and toughness of the steel at room temperature will deteriorate significantly. 19.9% of B in natural state
The isotope 10B included is an atom with a large neutron absorption cross section, and has a large neutron shielding effect, and this effect does not change even if B is in the form of a compound. The thickness of the surrounding layer of austenitic stainless steel powder formed around the mixed powder is 5 mm or more in terms of the thickness of the steel piece obtained by hot isostatic pressing.
This is because if the thickness is less than 5 mm, the low melting point boride will be exposed during hot working, the boride will become molten at the hot working temperature, and cracks will develop from there. The surrounding layer of austenitic stainless steel powder is formed around the mixed powder in a hot isostatic press, for example, as follows. First, austenitic stainless steel powder is spread on the bottom of the pressurizer, then a frame is inserted with a gap between it and the side wall of the pressurizer, and the mixed powder is placed in the frame between the top surface of the pressurizer and the frame. The austenitic stainless steel powder is charged in the gap between the frame and the side wall of the pressurizer, and the austenitic stainless steel powder is placed between the frame and the side wall of the pressurizer. is charged, the frame is removed, and finally the mixed powder is covered with austenitic stainless steel powder. After the powder is charged into the hot isostatic press machine in this way, an inert gas is introduced and the powder is heated while being pressurized to form a steel billet. The composition of the austenitic stainless steel powder is (1) C: 0.1% or less, Si: 1.0% or less,
Mn: 2.0% or less, Ni: 7.0~25.0%, Cr: 11.0~
Contains 27.0%, the balance is Fe and unavoidable impurities (2) C: 0.1% or less, Si: 1.0% or less,
Mn: 2.0% or less, Ni: 7.0~25.0%, Cr: 11.0~
27.0%, Mo: 0.3 to 3.0%, balance Fe and unavoidable impurities (3) C: 0.1% or less, Si: 1.0% or less,
Mn: 2.0% or less, Ni: 7.0~25.0%, Cr: 11.0~
27.0%, Cu: 0.3 to 2.0%, balance Fe and unavoidable impurities (4) C: 0.1% or less, Si: 1.0% or less,
Mn: 2.0% or less, Ni: 7.0~25.0%, Cr: 11.0~
27.0%, Mo: 0.3 to 3.0%, Cu: 0.3 to 2.0%, and the balance is Fe and inevitable impurities. If C exceeds 0.1%, carbides tend to form and the corrosion resistance of the steel deteriorates, so it is set to 0.1% or less. Si is added for deoxidation, but if it exceeds 1.0%, the steel will become brittle, so it was kept below 1.0%. Mn is effective in stabilizing the austenitic structure, but if it exceeds 2.0%, a large amount of sulfide-based inclusions, which become the starting point for pitting corrosion, will be generated, resulting in a significant deterioration of corrosion resistance, so the content was set to 2.0% or less. Ni is used to make the steel structure autenite.
7.0% or more is required, and adding more than 25.0% will increase the price, so it was set at 7.0 to 25.0%. Cr needs to be added in an amount of 11.0% or more in order to maintain the corrosion resistance of the steel, and if it is added in excess of 27.0%, the steel becomes brittle, so it was set at 11.0 to 27.0%. When Mo is added in an amount of 0.3% or more, the pitting corrosion resistance of the steel improves, and if it exceeds 3.0%, it becomes brittle, so it is added when particularly corrosion resistance is required, and the amount is set at 0.3 to 3.0%. . Adding 0.2% or more of Cu improves acid resistance.
If it exceeds 2.0%, the hot workability of the steel will deteriorate.
Added when acid resistance is particularly required, and the amount
It was set at 0.2 to 2.0%. When Mo and Cu are added in combination, the effects of each of the above are exhibited in combination, so they should be added when such properties are required, and the amounts should be adjusted to 0.3 to 3.0% for Mo and 0.2 to 3.0% for Cu. It was set at 2.0%. According to the method of the present invention, the surface of the steel piece obtained by hot isostatic pressing is covered with B-free austenitic stainless steel. It can be processed. Products obtained by hot working or products obtained by further cold working have the same corrosion resistance on the surface as ordinary austenitic stainless steel, and the interior contains B. Since the required amount is uniformly dispersed, the neutron shielding effect is excellent. Furthermore, since the inside is also made of austenitic stainless steel and has corrosion resistance, even if the internal steel is exposed to the surface when the product is welded, the corrosion resistance will not deteriorate easily. [Example] Table 1 shows the results of hot working according to the method of the present invention in comparison with the conventional method. In the hot isostatic pressing, a total of 13 kg of powder, which is a mixed powder of austenitic stainless steel powder and ferroboron powder with a surrounding layer of the austenitic stainless steel powder formed around the powder, is heated at a temperature of
The test was carried out at 1200° C. and 1000 atm for 2 hours, and the surface of the obtained material was ground to produce a 50 mm thick steel piece. Casting in the conventional example was performed by casting a vacuum-melted 100 kg steel ingot into a mold, and the obtained material was cut and the surface ground to produce a steel billet of the same size as the inventive example. The chemical composition of the steel slab indicates the analysis value of the inside of the steel slab, and the analysis value of the surface layer obtained by hot isostatic pressing is the same as the inside with respect to components other than B, and B is not included. Hot workability was evaluated by hot rolling a 50 mm thick steel slab to 6 mm thickness. The samples marked with * in Table 1 are the examples of the present invention, and it can be seen that all of them exhibit good hot workability similar to those without B additive. All of the B-containing austenitic stainless steels obtained in the present invention had a remarkable neutron shielding effect. Regarding corrosion resistance, as a result of a hot water immersion test (80°C) in a boric acid solution (2500ppmH 3 BO 3 +100ppmCl - ) containing trace amounts of Cl - ions, which is the usage environment of B-added stainless steel, the corrosion resistance of the example of the present invention was determined. was equivalent to that without B additive. Also,
The corrosion resistance of the samples in which Mo and Cu were added singly or in combination was even better. The welded parts also showed almost the same corrosion resistance. [Effects of the Invention] The present invention provides a practical manufacturing method for austenitic stainless steel for storage and transportation of nuclear waste and for neutron shielding, the demand of which is expected to increase in the future. The value is tremendous. 【table】

Claims (1)

【特許請求の範囲】 1 重量%にてC:0.1%以下、Si:1.0%以下、
Mn:2.0%以下、Ni:7.0〜25.0%、Cr:11.0〜
27.0%を含有し、残部Feおよび不可避的不純物か
らなるオーステナイト系ステンレス鋼粉末に、フ
エロボロン粉末をB量が重量%にて総量の0.5〜
5.0%となるように混合した混合粉末の周囲に、
前記オーステナイト系ステンレス鋼粉末の囲繞層
を形成し、熱間等方圧加圧して該囲繞層の厚さが
5mm以上の鋼片とし、しかるのち熱間加工するこ
とを特徴とする含ボロン原子力用オーステナイト
系ステンレス鋼の製造法。 2 重量%にてC:0.1%以下、Si:1.0%以下、
Mn:2.0%以下、Ni:7.0〜25.0%、Cr:11.0〜
27.0%、Mo:0.3〜3.0%を含有し、残部Feおよ
び不可避的不純物からなるオーステナイト系ステ
ンレス鋼粉末に、フエロボロン粉末をB量が重量
%にて総量の0.5〜5.0%となるように混合した混
合粉末の周囲に、前記オーステナイト系ステンレ
ス鋼粉末の囲繞層を形成し、熱間等方圧加圧して
該囲繞層の厚さが5mm以上の鋼片とし、しかるの
ち熱間加工することを特徴とする含ボロン原子力
用オーステナイト系ステンレス鋼の製造法。 3 重量%にてC:0.1%以下、Si:1.0%以下、
Mn:2.0%以下、Ni:7.0〜25.0%、Cr:11.0〜
27.0%、Cu:0.3〜2.0%を含有し、残部Feおよび
不可避的不純物からなるオーステナイト系ステン
レス鋼粉末に、フエロボロン粉末をB量が重量%
にて総量の0.5〜5.0%となるように混合した混合
粉末の周囲に、前記オーステナイト系ステンレス
鋼粉末の囲繞層を形成し、熱間等方圧加圧して該
囲繞層の厚さが5mm以上の鋼片とし、しかるのち
熱間加工することを特徴とする含ボロン原子力用
オーステナイト系ステンレス鋼の製造法。 4 重量%にてC:0.1%以下、Si:1.0%以下、
Mn:2.0%以下、Ni:7.0〜25.0%、Cr:11.0〜
27.0%、Mo:0.3〜3.0%、Cu:0.3〜2.0%を含有
し、残部Feおよび不可避的不純物からなるオー
ステナイト系ステンレス鋼粉末に、フエロボロン
粉末をB量が重量%にて総量の0.5〜5.0%となる
ように混合した混合粉末の周囲に、前記オーステ
ナイト系ステンレス鋼粉末の囲繞層を形成し、熱
間等方圧加圧して該囲繞層の厚さが5mm以上の鋼
片とし、しかるのち熱間加工することを特徴とす
る含ボロン原子力用オーステナイト系ステンレス
鋼の製造法。
[Claims] 1 C: 0.1% or less, Si: 1.0% or less,
Mn: 2.0% or less, Ni: 7.0~25.0%, Cr: 11.0~
Ferroboron powder is added to the austenitic stainless steel powder containing 27.0% B and the balance consisting of Fe and unavoidable impurities, with a B amount of 0.5 to 0.5% by weight of the total amount.
Around the mixed powder mixed to be 5.0%,
A boron-containing nuclear power application characterized in that a surrounding layer of the austenitic stainless steel powder is formed, hot isostatic pressure is applied to obtain a steel billet in which the surrounding layer has a thickness of 5 mm or more, and then hot working is performed. Manufacturing method of austenitic stainless steel. 2 C: 0.1% or less, Si: 1.0% or less, in weight%
Mn: 2.0% or less, Ni: 7.0~25.0%, Cr: 11.0~
Ferroboron powder was mixed into austenitic stainless steel powder containing 27.0% Mo, 0.3 to 3.0% Mo, and the balance Fe and unavoidable impurities so that the amount of B was 0.5 to 5.0% of the total amount by weight. A surrounding layer of the austenitic stainless steel powder is formed around the mixed powder, and hot isostatic pressure is applied to form a steel billet in which the surrounding layer has a thickness of 5 mm or more, followed by hot working. A method for producing boron-containing austenitic stainless steel for nuclear power use. 3 C: 0.1% or less, Si: 1.0% or less, in weight%
Mn: 2.0% or less, Ni: 7.0~25.0%, Cr: 11.0~
Ferroboron powder is added to austenitic stainless steel powder containing 27.0% Cu, 0.3 to 2.0% Cu, and the balance Fe and unavoidable impurities.
A surrounding layer of the austenitic stainless steel powder is formed around the mixed powder at a concentration of 0.5 to 5.0% of the total amount, and the thickness of the surrounding layer is 5 mm or more by hot isostatic pressing. 1. A method for producing boron-containing austenitic stainless steel for nuclear power use, which method comprises preparing a steel billet and then hot working it. 4 C: 0.1% or less, Si: 1.0% or less, in weight%
Mn: 2.0% or less, Ni: 7.0~25.0%, Cr: 11.0~
27.0%, Mo: 0.3-3.0%, Cu: 0.3-2.0%, and the balance is Fe and unavoidable impurities, and ferroboron powder is added to the austenitic stainless steel powder with a B amount of 0.5-5.0% by weight of the total amount. %, a surrounding layer of the austenitic stainless steel powder is formed around the mixed powder, and hot isostatic pressure is applied to form a steel piece in which the surrounding layer has a thickness of 5 mm or more, and then A method for manufacturing boron-containing austenitic stainless steel for nuclear power use, which is characterized by hot working.
JP33044887A 1987-12-26 1987-12-26 Manufacture of austenitic stainless steel for boron-containing nuclear power Granted JPH01172543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33044887A JPH01172543A (en) 1987-12-26 1987-12-26 Manufacture of austenitic stainless steel for boron-containing nuclear power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33044887A JPH01172543A (en) 1987-12-26 1987-12-26 Manufacture of austenitic stainless steel for boron-containing nuclear power

Publications (2)

Publication Number Publication Date
JPH01172543A JPH01172543A (en) 1989-07-07
JPH0461060B2 true JPH0461060B2 (en) 1992-09-29

Family

ID=18232731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33044887A Granted JPH01172543A (en) 1987-12-26 1987-12-26 Manufacture of austenitic stainless steel for boron-containing nuclear power

Country Status (1)

Country Link
JP (1) JPH01172543A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109321809B (en) * 2018-10-26 2020-12-08 冯英育 Radiation-absorbing nano-powder stainless steel and manufacturing method and application thereof

Also Published As

Publication number Publication date
JPH01172543A (en) 1989-07-07

Similar Documents

Publication Publication Date Title
CN109355558B (en) Austenitic stainless steel, and preparation method and application thereof
US20240093339A1 (en) High-entropy austenitic stainless steel and preparation method thereof
EP0225226B1 (en) Aluminum alloy with superior thermal neutron absorptivity
CA2960670C (en) A steel for a lead cooled reactor
GB2024862A (en) High manganese non-magnetic steel
EP2608911B1 (en) Processable high thermal neutron absorbing fe-base alloys
JP7340186B2 (en) austenitic stainless steel
JPH0461060B2 (en)
JPH01168833A (en) Boron-containing titanium alloy
JPH0461061B2 (en)
JPH08269564A (en) Production of nonmagnetic thick stainless steel plate
JPH0461062B2 (en)
JP2546549B2 (en) Method for producing B-containing austenitic stainless steel
EP0077079B1 (en) Use of a non-magnetic alloy having high hardness for electromagnetic stirrer rolls
US4744824A (en) Method of producing metallic materials for the components of nuclear reactors
JP3297698B2 (en) Method for producing B-containing stainless steel and B-containing stainless steel
JPS63293139A (en) Production of boron-containing austenitic stainless steel for atomic energy
JPH05255812A (en) Austenitic stainless steel for shielding thermal neutron
US5496593A (en) Process for producing a nitrogen-alloyed stainless steel layer on steel
US3719475A (en) Low carbon ferrous alloy containing chromium
GB2083499A (en) Austenitic steel
JPH0477067B2 (en)
JP3060873B2 (en) Austenitic stainless steel for neutron shielding
JPS61227153A (en) High nitrogen bearing austenitic sintered alloy and its manufacture
JP3237486B2 (en) Stainless steel with excellent thermal neutron absorption capacity