JPH01172543A - Manufacture of austenitic stainless steel for boron-containing nuclear power - Google Patents

Manufacture of austenitic stainless steel for boron-containing nuclear power

Info

Publication number
JPH01172543A
JPH01172543A JP33044887A JP33044887A JPH01172543A JP H01172543 A JPH01172543 A JP H01172543A JP 33044887 A JP33044887 A JP 33044887A JP 33044887 A JP33044887 A JP 33044887A JP H01172543 A JPH01172543 A JP H01172543A
Authority
JP
Japan
Prior art keywords
stainless steel
austenitic stainless
powder
less
surrounding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33044887A
Other languages
Japanese (ja)
Other versions
JPH0461060B2 (en
Inventor
Takeshi Terasawa
寺沢 健
Yoshihiro Watabe
渡部 義広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33044887A priority Critical patent/JPH01172543A/en
Publication of JPH01172543A publication Critical patent/JPH01172543A/en
Publication of JPH0461060B2 publication Critical patent/JPH0461060B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an austenitic stainless steel for the shielding of neutrons by forming a surrounding layer of austenitic stainless steel powder to the mixture of said powder and ferroboron powder and subjecting the same to hot isostatic pressing and hot working. CONSTITUTION:The ferroboron powder is mixed to the austenitic stainless steel powder contg., by weight, <=0.1% C, <=1.0% Si, <=2.0% Mn, 7.0-25.0% Ni and 11.0-27.0% Cr and the balance consisting of Fe with inevitable impurities in such a manner that the B amounts are regulated to 0.5-5.0% for the total amounts. The surrounding layer of the above austenitic stainless steel powder is formed around the mixed powder to form the ingot having >=5mm thickness of surrounding layer by hot isostatic pressing. The ingot is then subjected to hot working. By this method, the austenitic stainless steel for the storage and transport of atomic waste or for the shilding of neutrons can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、中性子を放射する原子力廃棄物の貯蔵や輸送
あるいは中性子遮蔽材用に用いるオーステナイト系ステ
ンレス鋼の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing austenitic stainless steel used for storing and transporting nuclear waste that emits neutrons or for neutron shielding materials.

〔従来の技術〕[Conventional technology]

中性子を遮蔽しかつ耐食性を有する材料として、Bを含
有したオーステナイト系ステンレス鋼が有用であり、そ
の供給が要請されている。しかしながら、Bを0.5%
以上含有させたオーステナイト系ステンレス鋼は熱間加
工性が非常に劣悪であるため、大量供給の要請に応え難
かった。
B-containing austenitic stainless steel is useful as a material that shields neutrons and has corrosion resistance, and its supply is requested. However, 0.5% B
Since the austenitic stainless steel containing the above content has extremely poor hot workability, it has been difficult to meet the demand for mass supply.

従来、特開昭55−34636号公報に記載されている
ように、Bを限定量含有させ、かつAI/Nを限定する
ことによりオーステナイト結晶粒を微細化させて、熱間
加工性を改善する技術が知られている。
Conventionally, as described in JP-A-55-34636, austenite crystal grains are refined by containing a limited amount of B and limiting AI/N to improve hot workability. The technology is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記公知の技術をもってしても、Bを含有することによ
る熱間脆性の問題は完全には解決し得す、熱間加工に際
しては厳密な条件を守る必要があり、工業的技術として
完全ではない。
Even with the above-mentioned known technology, the problem of hot embrittlement due to the inclusion of B cannot be completely solved, but strict conditions must be observed during hot processing, and it is not perfect as an industrial technology. .

本発明は、Bを含有することによる熱間脆性の問題を完
全に解決し、熱間加工によって工業的規模で含B原子力
用オーステナイト系ステンレス鋼を製造することを目的
とする。
The object of the present invention is to completely solve the problem of hot embrittlement due to the inclusion of B, and to produce a B-containing austenitic stainless steel for nuclear power use on an industrial scale by hot working.

〔問題点を解決するための手段1作用]本発明法は、オ
ーステナイト系ステンレス鋼粉末にフェロボロン粉末を
混合した混合粉末の周囲に、該オーステナイト系ステン
レス鋼粉末の囲繞層を形成し、熱間等方圧加圧して鋼片
とし、しがるのち熱間加工するものである。
[Means for Solving the Problems 1 Effect] The method of the present invention forms a surrounding layer of austenitic stainless steel powder around a mixed powder of austenitic stainless steel powder and ferroboron powder, and It is pressurized to form a steel billet, which is then hardened and then hot worked.

オーステナイト系ステンレス鋼粉末とフェロボロン粉末
の混合割合は、B量が重量%にて総量の0.5〜5.0
χとなるようにする。Bが0.5!未満では中性子遮蔽
の顕著な効果がなく、5.0χを越えると鋼の常温にお
ける延性ならびに靭性の劣化が顕著になるからである。
The mixing ratio of austenitic stainless steel powder and ferroboron powder is such that the amount of B is 0.5 to 5.0% by weight of the total amount.
Make it so that χ. B is 0.5! This is because if it is less than 5.0x, there is no significant neutron shielding effect, and if it exceeds 5.0x, the ductility and toughness of the steel at room temperature will deteriorate significantly.

Bのうち自然状態で19.9χ含まれる同位元素1°B
は中性子吸収断面積の大きい原子であり、中性子遮蔽の
効果が大きく、この効果はBが化合物になっていても変
わらない。
Of B, the isotope 1°B contains 19.9χ in its natural state.
is an atom with a large neutron absorption cross section and has a large neutron shielding effect, and this effect does not change even if B is a compound.

混合粉末の周囲に形成するオーステナイト系ステンレス
鋼粉末の囲繞層の厚さは、熱間等方圧加圧して得た鋼片
における厚さで5mm以上とする。
The thickness of the surrounding layer of austenitic stainless steel powder formed around the mixed powder is 5 mm or more in the steel piece obtained by hot isostatic pressing.

この厚さが5mm未満だと、鋼片を熱間加工する際に低
融点の硼化物が露出し、熱間加工温度で硼化物が溶融状
態になり、そこから割れが進展するからである。
If the thickness is less than 5 mm, low-melting-point borides will be exposed when the steel piece is hot-worked, and the boride will become molten at the hot-working temperature, and cracks will develop from there.

混合粉末の周囲にオーステナイト系スンレス鋼粉末の囲
繞層を形成するには、熱間等方圧加圧機内にて、たとえ
ばつぎのようにして行う。まず、加圧機内の底にオース
テナイト系スンレス鋼粉末を敷きつめ、ついで、加圧機
内の側壁との間に間隙を持たせて枠を装入し、枠内に混
合粉末を加圧機内の上面との間に間隙を持たせて装入し
、枠と加圧機内の側壁との間隙にオーステナイト系スン
レス鋼粉末を装入し、枠を取り除き、最後に混合粉末を
オーステナイト系ステンレス鋼粉で覆う。
The surrounding layer of austenitic stainless steel powder is formed around the mixed powder in a hot isostatic pressing machine, for example, as follows. First, austenitic stainless steel powder is spread on the bottom of the pressurizer, then a frame is inserted with a gap between it and the side wall of the pressurizer, and the mixed powder is placed in the frame between the top surface of the pressurizer and the frame. The austenitic stainless steel powder is charged into the gap between the frame and the side wall of the pressurizer, the frame is removed, and finally the mixed powder is covered with the austenitic stainless steel powder.

このようにして熱間等方圧加圧機内に粉末を装入した後
、不活性ガスを導入して加圧しつつ加熱して鋼片とする
After the powder is charged into the hot isostatic press machine in this way, an inert gas is introduced and the powder is heated while being pressurized to form a steel billet.

オーステナイト系ステンレス鋼粉末の組成は、(1)重
量%にてC:0.1%以下、 Si:1.0%以下。
The composition of the austenitic stainless steel powder is (1) C: 0.1% or less, Si: 1.0% or less in weight percent.

Mn:2.0%以下、 Ni:7.0〜25.0%、 
Cr:11.0〜27.0gを含有し、残部Feおよび
不可避的不純物(2)重量%ニテC:0.IX以下、 
Si:1.0%以下。
Mn: 2.0% or less, Ni: 7.0 to 25.0%,
Contains Cr: 11.0 to 27.0 g, balance Fe and unavoidable impurities (2) weight% Nite C: 0. Below IX,
Si: 1.0% or less.

Mn:2.0%以下、 Ni:7.0〜25.0X、 
Cr:11.0〜27.0%。
Mn: 2.0% or less, Ni: 7.0 to 25.0X,
Cr: 11.0-27.0%.

Mo:0.3〜3.0χを含有し、残部Feおよび不可
避的不純物 (3)重量%にてC:0.1%以下、 Si:1.0%
以下。
Contains Mo: 0.3 to 3.0χ, balance Fe and unavoidable impurities (3) weight%, C: 0.1% or less, Si: 1.0%
below.

Mn:2.0”l以下、 Ni:7.0〜25.0%、
 Cr:11.0〜27.0!。
Mn: 2.0”l or less, Ni: 7.0 to 25.0%,
Cr:11.0~27.0! .

Cu:0.3〜2.0χを含有し、残部Feおよび不可
避的不純物 (4)重量%にてC:0.1%以下、 Si:1.0%
以下。
Cu: Contains 0.3 to 2.0χ, balance Fe and unavoidable impurities (4) weight% C: 0.1% or less, Si: 1.0%
below.

Mn:2.0%以下、 Ni:7.0〜25.0%、 
Cr:11.0〜27.0%。
Mn: 2.0% or less, Ni: 7.0 to 25.0%,
Cr: 11.0-27.0%.

Mo:0.3〜3.0%、 Cu:0.3〜2.0χを
含有し、残部Feおよび不可避的不純物 とする。
Contains Mo: 0.3 to 3.0%, Cu: 0.3 to 2.0%, and the remainder is Fe and inevitable impurities.

Cは、0.1χを越えると炭化物が生成しやすくなり、
鋼の耐食性が劣化するので0.1%以下とした。
When C exceeds 0.1χ, carbide tends to be generated,
Since the corrosion resistance of steel deteriorates, the content is set at 0.1% or less.

Siは、脱酸のため添加するが、1.0χを越えると鋼
が脆化するので1.0%以下とした。
Si is added for deoxidation, but if it exceeds 1.0χ, the steel becomes brittle, so it is set at 1.0% or less.

Mnは、オーステナイト組織の安定化に有効であるが、
2.0χを越えると孔食発生の起点となる硫化物系介在
物が多量に生成し、耐食性が著しく劣化するので、2.
0%以下とした。
Mn is effective in stabilizing the austenite structure, but
If it exceeds 2.0χ, a large amount of sulfide-based inclusions, which become the starting point for pitting corrosion, will be generated, and the corrosion resistance will be significantly deteriorated.
It was set to 0% or less.

Niは、鋼の組織をオーステナイトとするために7.0
%以上必要で万り、25.0χを越えて添加すると高価
になるので、7.0〜25.0χとした。
Ni is 7.0 to make the steel structure austenite.
% or more, and adding more than 25.0χ would be expensive, so it was set at 7.0 to 25.0χ.

Crは、鋼の耐食性を保持させるため11.02:以上
の添加が必要であり、27.0χを越えて添加すると鋼
が脆化するので、11.0〜27.0χとした。
Cr needs to be added in an amount of 11.02: or more in order to maintain the corrosion resistance of the steel, and since adding more than 27.0x causes the steel to become brittle, it was set at 11.0 to 27.0x.

Moは、0.3%以上添加すると鋼の耐食性なかても耐
孔食性が向上し、3.0χを越えると脆化するので、特
に耐食性が要求される場合に添加し、その量を0.3〜
3.0χとした。
When Mo is added in an amount of 0.3% or more, the corrosion resistance, especially the pitting corrosion resistance, of the steel improves, and when it exceeds 3.0χ, it becomes brittle, so it is added when particularly corrosion resistance is required, and the amount is reduced to 0.3%. 3~
It was set to 3.0χ.

Cuは、0.2%以上添加すると耐酸性が向上し、2.
0χを越えると鋼の熱間加工性が劣化するので、特に耐
酸性が要求される場合に添加し、その量を0.2〜2.
0χとした。
Adding 0.2% or more of Cu improves acid resistance; 2.
If it exceeds 0χ, the hot workability of the steel deteriorates, so it is added especially when acid resistance is required, and the amount is 0.2 to 2.
It was set to 0χ.

MoおよびCuを複合添加すると、上記それぞれの効果
が複合して発揮されるので、そのような特性が要求され
る場合に添加し、その量をMoについては0.3〜3.
0X、Cuについては0.2〜2.0χとした。
When Mo and Cu are added in combination, the effects of each of the above are exhibited in combination, so they are added when such characteristics are required, and the amount for Mo is 0.3 to 3.
For 0X and Cu, it was set to 0.2 to 2.0χ.

本発明法によれば、熱間等方圧加圧して得られた鋼片の
表面が、Bを含まないオーステナイト系ステンレス鋼で
覆われているので、通常のオーステナイト系ステンレス
鋼と同様に熱間加工することが出来る。そして、熱間加
工して得られた製品あるいはこれをさらに冷間加工して
得られた製品は、表面が通常のオーステナイト系ステン
レス鋼と同様に耐食性を有しているとともに、内部には
Bが必要量均一に分散しているので、中性子遮蔽効果が
優れている。さらに、内部もオーステナイト系ステンレ
ス鋼であって耐食性を有しているので、製品を溶接した
ときに内部の鋼が表面に露出しても耐食性が劣化し難い
According to the method of the present invention, the surface of the steel piece obtained by hot isostatic pressing is covered with B-free austenitic stainless steel. It can be processed. Products obtained by hot working or products obtained by further cold working have the same corrosion resistance on the surface as ordinary austenitic stainless steel, and the interior contains B. Since the required amount is uniformly dispersed, the neutron shielding effect is excellent. Furthermore, since the inside is also made of austenitic stainless steel and has corrosion resistance, the corrosion resistance is unlikely to deteriorate even if the internal steel is exposed to the surface when the product is welded.

〔実施例〕〔Example〕

表1に本発明法による熱間加工の結果を従来法と比較し
て示す。熱間等方圧加圧は、オーステナイト系ステンレ
ス鋼粉末とフェロボロン粉末の混合粉末の周囲に該オー
ステナイト系ステンレス鋼粉末の囲繞層を形成した合計
13kgの粉末を、温度1200°C1圧力1000気
圧で2時間加圧して行い、得られた材料の表面を研削し
て厚さ50mmの鋼片を製造した。従来例の鋳造は、真
空溶解した100 kgの鋼塊を鋳型に鋳造して行い、
得られた材料を切断し表面を研削して、本発明例と同一
サイズの鋼片を製造した。
Table 1 shows the results of hot working by the method of the present invention in comparison with the conventional method. In hot isostatic pressing, a total of 13 kg of powder, in which a surrounding layer of austenitic stainless steel powder was formed around a mixed powder of austenitic stainless steel powder and ferroboron powder, was heated at a temperature of 1200°C and a pressure of 1000 atm for 2 hours. Pressure was applied for a period of time, and the surface of the obtained material was ground to produce a steel piece with a thickness of 50 mm. Conventional casting is carried out by casting a vacuum-melted 100 kg steel ingot into a mold.
The obtained material was cut and the surface ground to produce a steel piece of the same size as the example of the present invention.

鋼片の化学成分は、鋼片の内部の分析値を示し、熱間等
方圧加圧によるものの表面層の分析値は、B以外の成分
については内部と同じでBは含まれていない。
The chemical composition of the steel slab indicates the analysis value of the inside of the steel slab, and the analysis value of the surface layer obtained by hot isostatic pressing is the same as the inside with respect to components other than B, and B is not included.

熱間加工性は、50mm厚の鋼片を6mm厚まで熱間圧
延して評価した。
Hot workability was evaluated by hot rolling a 50 mm thick steel slab to 6 mm thickness.

表1のNαに*印を付したものが本発明例であり、いず
れもB無添加のものと同様に良好な熱間加工性を示して
いることがわかる。
The examples marked with * in Table 1 are the examples of the present invention, and it can be seen that all of them exhibit good hot workability as well as those without B additive.

本発明例で得られた含Bオーステナイト系ステンレス鋼
は、いずれも顕著な中性子遮蔽効果が得られた。耐食性
については、B添加ステンレス鋼の使用環境である微量
C1−イオンを含む硼酸溶液(2500ppmHJOs
+100pp100pp中で温水浸漬試験(80°C)
シた結果、本発明例で得られたものの耐食性はB無添加
のものと同等であった。また、Mo、 Cuを単独ある
いは複合添加したものの耐食性は、さらに優れたもので
あった。なお、溶接部もほぼ同等の耐食性を示した。
All of the B-containing austenitic stainless steels obtained in the examples of the present invention had a remarkable neutron shielding effect. Regarding corrosion resistance, a boric acid solution (2500 ppm HJOs) containing trace amounts of C1- ions, which is the usage environment for B-added stainless steel,
Hot water immersion test (80°C) in +100pp100pp
As a result, the corrosion resistance of the samples obtained in the examples of the present invention was equivalent to that of samples without B additive. Furthermore, the corrosion resistance of the alloys in which Mo and Cu were added alone or in combination was even better. The welded parts also showed almost the same corrosion resistance.

〔発明の効果〕〔Effect of the invention〕

本発明は、今後ますます需要の増加が予想される原子力
廃棄物の貯蔵や輸送あるいは中性子遮蔽のためのオース
テナイト系ステンレス鋼の実用的製造法を提供するもの
であり、工業的価値は絶大である。
The present invention provides a practical method for producing austenitic stainless steel for the storage and transportation of nuclear waste and for neutron shielding, the demand of which is expected to increase in the future, and has enormous industrial value. .

Claims (4)

【特許請求の範囲】[Claims] (1)重量%にてC:0.1%以下、Si:1.0%以
下、Mn:2.0%以下、Ni:7.0〜25.0%、
Cr:11.0〜27.0%を含有し、残部Feおよび
不可避的不純物からなるオーステナイト系ステンレス鋼
粉末に、フェロボロン粉末をB量が重量%にて総量の0
.5〜5.0%となるように混合した混合粉末の周囲に
、前記オーステナイト系ステンレス鋼粉末の囲繞層を形
成し、熱間等方圧加圧して該囲繞層の厚さが5mm以上
の鋼片とし、しかるのち熱間加工することを特徴とする
含ボロン原子力用オーステナイト系ステンレス鋼の製造
法。
(1) In weight%, C: 0.1% or less, Si: 1.0% or less, Mn: 2.0% or less, Ni: 7.0 to 25.0%,
Ferroboron powder was added to the austenitic stainless steel powder containing 11.0 to 27.0% Cr and the balance consisting of Fe and unavoidable impurities, with the amount of B being 0% by weight of the total amount.
.. A surrounding layer of the austenitic stainless steel powder is formed around the mixed powder at a concentration of 5 to 5.0%, and hot isostatic pressure is applied to form a steel in which the surrounding layer has a thickness of 5 mm or more. A method for manufacturing boron-containing austenitic stainless steel for nuclear power use, which is characterized by cutting into pieces and then hot working.
(2)重量%にてC:0.1%以下、Si:1.0%以
下、Mn:2.0%以下、Ni:7.0〜25.0%、
Cr:11.0〜27.0%、Mo:0.3〜3.0%
を含有し、残部Feおよび不可避的不純物からなるオー
ステナイト系ステンレス鋼粉末に、フェロボロン粉末を
B量が重量%にて総量の0.5〜5.0%となるように
混合した混合粉末の周囲に、前記オーステナイト系ステ
ンレス鋼粉末の囲繞層を形成し、熱間等方圧加圧して該
囲繞層の厚さが5mm以上の鋼片とし、しかるのち熱間
加工することを特徴とする含ボロン原子力用オーステナ
イト系ステンレス鋼の製造法。
(2) In weight%, C: 0.1% or less, Si: 1.0% or less, Mn: 2.0% or less, Ni: 7.0 to 25.0%,
Cr: 11.0-27.0%, Mo: 0.3-3.0%
around a mixed powder in which ferroboron powder is mixed with austenitic stainless steel powder containing Fe and unavoidable impurities with the balance being Fe and unavoidable impurities so that the amount of B is 0.5 to 5.0% by weight of the total amount. , a boron-containing nuclear power plant characterized in that a surrounding layer of the austenitic stainless steel powder is formed, hot isostatic pressure is applied to form a steel billet in which the surrounding layer has a thickness of 5 mm or more, and then hot working is performed. Manufacturing method for austenitic stainless steel.
(3)重量%にてC:0.1%以下、Si:1.0%以
下、Mn:2.0%以下、Ni:7.0〜25.0%、
Cr:11.0〜27.0%、Cu:0.3〜2.0%
を含有し、残部Feおよび不可避的不純物からなるオー
ステナイト系ステンレス鋼粉末に、フェロボロン粉末を
B量が重量%にて総量の0.5〜5.0%となるように
混合した混合粉末の周囲に、前記オーステナイト系ステ
ンレス鋼粉末の囲繞層を形成し、熱間等方圧加圧して該
囲繞層の厚さが5mm以上の鋼片とし、しかるのち熱間
加工することを特徴とする含ボロン原子力用オーステナ
イト系ステンレス鋼の製造法。
(3) In weight%, C: 0.1% or less, Si: 1.0% or less, Mn: 2.0% or less, Ni: 7.0 to 25.0%,
Cr: 11.0-27.0%, Cu: 0.3-2.0%
around a mixed powder in which ferroboron powder is mixed with austenitic stainless steel powder containing Fe and unavoidable impurities with the balance being Fe and unavoidable impurities so that the amount of B is 0.5 to 5.0% by weight of the total amount. , a boron-containing nuclear power plant characterized in that a surrounding layer of the austenitic stainless steel powder is formed, hot isostatic pressure is applied to form a steel billet in which the surrounding layer has a thickness of 5 mm or more, and then hot working is performed. Manufacturing method for austenitic stainless steel.
(4)重量%にてC:0.1%以下、Si:1.0%以
下、Mn:2.0%以下、Ni:7.0〜25.0%、
Cr:11.0〜27.0%、Mo:0.3〜3.0%
、Cu:0.3〜2.0%を含有し、残部Feおよび不
可避的不純物からなるオーステナイト系ステンレス鋼粉
末に、フェロボロン粉末をB量が重量%にて総量の0.
5〜5.0%となるように混合した混合粉末の周囲に、
前記オーステナイト系ステンレス鋼粉末の囲繞層を形成
し、熱間等方圧加圧して該囲繞層の厚さが5mm以上の
鋼片とし、しかるのち熱間加工することを特徴とする含
ボロン原子力用オーステナイト系ステンレス鋼の製造法
(4) In weight%, C: 0.1% or less, Si: 1.0% or less, Mn: 2.0% or less, Ni: 7.0 to 25.0%,
Cr: 11.0-27.0%, Mo: 0.3-3.0%
, Cu: 0.3 to 2.0%, and the balance is Fe and unavoidable impurities, and ferroboron powder is added to the austenitic stainless steel powder containing 0.3 to 2.0% of Cu, and the balance is Fe and unavoidable impurities.
Around the mixed powder mixed so that it was 5 to 5.0%,
A boron-containing nuclear power application characterized in that a surrounding layer of the austenitic stainless steel powder is formed, hot isostatic pressure is applied to obtain a steel billet in which the surrounding layer has a thickness of 5 mm or more, and then hot working is performed. Manufacturing method of austenitic stainless steel.
JP33044887A 1987-12-26 1987-12-26 Manufacture of austenitic stainless steel for boron-containing nuclear power Granted JPH01172543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33044887A JPH01172543A (en) 1987-12-26 1987-12-26 Manufacture of austenitic stainless steel for boron-containing nuclear power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33044887A JPH01172543A (en) 1987-12-26 1987-12-26 Manufacture of austenitic stainless steel for boron-containing nuclear power

Publications (2)

Publication Number Publication Date
JPH01172543A true JPH01172543A (en) 1989-07-07
JPH0461060B2 JPH0461060B2 (en) 1992-09-29

Family

ID=18232731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33044887A Granted JPH01172543A (en) 1987-12-26 1987-12-26 Manufacture of austenitic stainless steel for boron-containing nuclear power

Country Status (1)

Country Link
JP (1) JPH01172543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109321809A (en) * 2018-10-26 2019-02-12 冯英育 Absorb the nanometer powder stainless steel radiated and its manufacturing method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109321809A (en) * 2018-10-26 2019-02-12 冯英育 Absorb the nanometer powder stainless steel radiated and its manufacturing method and application

Also Published As

Publication number Publication date
JPH0461060B2 (en) 1992-09-29

Similar Documents

Publication Publication Date Title
US4963200A (en) Dispersion strengthened ferritic steel for high temperature structural use
EP4257717A1 (en) High-entropy austenitic stainless steel, and preparation method therefor
Choi et al. Fabrication of Gd containing duplex stainless steel sheet for neutron absorbing structural materials
WO2011013366A1 (en) Neutron shield material, method for producing same, and cask for spent fuel
US20170167005A1 (en) Austenitic stainless steel and method for producing the same
CA2960670C (en) A steel for a lead cooled reactor
JPH068484B2 (en) Article made from processable boron-containing stainless steel alloy and method of making the same
EP2608911B1 (en) Processable high thermal neutron absorbing fe-base alloys
CN108026620B (en) Dispersion-strengthened austenitic stainless steel material, method for producing the stainless steel material, and product made of the stainless steel material
CN110373573B (en) Gadolinium-rich nickel-tungsten-based alloy material for nuclear shielding and preparation method thereof
US4430296A (en) Molybdenum-based alloy
JPH01168833A (en) Boron-containing titanium alloy
JPH01172543A (en) Manufacture of austenitic stainless steel for boron-containing nuclear power
JPH01172544A (en) Manufacture of austenitic stainless steel for boron-containing nuclear powder
JPH08269564A (en) Production of nonmagnetic thick stainless steel plate
JP2546549B2 (en) Method for producing B-containing austenitic stainless steel
JPH01172545A (en) Manufacture of austenitic stainless steel for boron-containing nuclear power
JPS63293139A (en) Production of boron-containing austenitic stainless steel for atomic energy
RU2259419C1 (en) Cold-resistant steel for load-bearing elements of metal-concrete containers of nuclear-power engineering
JPS62250154A (en) Alloy tool steel
CN110016624B (en) Lanthanum modified high-hardness alloy and casting method thereof
JP3237486B2 (en) Stainless steel with excellent thermal neutron absorption capacity
JP2659271B2 (en) Manufacturing method of homogeneous large low alloy steel ingot
JPH0545647B2 (en)
JPS6338553A (en) Aluminum alloy having superior thermal neutron absorbing power