JPS5812017A - Flow rate and pressure controller - Google Patents

Flow rate and pressure controller

Info

Publication number
JPS5812017A
JPS5812017A JP11060881A JP11060881A JPS5812017A JP S5812017 A JPS5812017 A JP S5812017A JP 11060881 A JP11060881 A JP 11060881A JP 11060881 A JP11060881 A JP 11060881A JP S5812017 A JPS5812017 A JP S5812017A
Authority
JP
Japan
Prior art keywords
pressure
valve
throttle valve
control
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11060881A
Other languages
Japanese (ja)
Other versions
JPS6246886B2 (en
Inventor
Kenji Masuda
健二 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP11060881A priority Critical patent/JPS5812017A/en
Publication of JPS5812017A publication Critical patent/JPS5812017A/en
Publication of JPS6246886B2 publication Critical patent/JPS6246886B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/03Stopping, starting, unloading or idling control by means of valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/82Hydraulic or pneumatic circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure

Abstract

PURPOSE:To perform pressure control with high accuracy, good response and saving energy, by controlling a solenoid proportional type relief valve with an output signal from a pressure sensor and an output signal from an adding amplifier and making a pressure at the poststage of a throttle valve coincident with an objective pressure. CONSTITUTION:The part before and after a throttle valve 4 provided at a main line 3 of a variable pump 1 is connected to a pilot chamber and a spring chamber of a power matching valve 5 and the valve 5 is responded to the differential pressure before and after the valve 4. A delivery quantity controlling section 20 of the pump 1 is freely changed over to the line 3 and a tank 17 via the valve 5 to control the differential pressure before and after the valve 4 to a constant value. A by-pass line 32 branched from the line 3 at the poststage of the valve 4 to the tank is provided with a solenoid proportional type relief valve 33. The relief valve 35 is controlled with an output signal from a pressure sensor 34 detecting the pressure at the poststage of the valve 4 and an output signal from an adding amplifier 35 detecting a deviation with an objective signal representing the objective pressure, allowing to make the pressure at the poststage of the valve 4 coincident with the objective pressure.

Description

【発明の詳細な説明】 この発明は、たとえば射出成形機等に用いれば特に有効
なもので、流量制御および圧力制御を省エネルギー的に
行ない得る上に、圧力制御を高精度、高応答に行ない得
るようにした流量・圧力制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is particularly effective when used in, for example, an injection molding machine, which allows flow rate control and pressure control to be performed in an energy-saving manner, and pressure control to be performed with high precision and high response. The present invention relates to a flow rate/pressure control device.

近年、たとえば射出成形機等の流量・圧力制御装置とし
ては、省エネルギーを図るために、可変ポンプの吐出流
量および吐出圧力を負荷の要求にマツチさせるようにし
た動力マツチング式のものがよく使用されるようになっ
た。
In recent years, power matching type devices that match the discharge flow rate and discharge pressure of a variable pump to the load requirements are often used as flow rate/pressure control devices for injection molding machines, etc., in order to save energy. It became so.

この動力マツチング式の流量・圧力制御装置は、たとえ
ば射出シリンダが前進している流量制御時においては、
可変ポンプと射出シリンダとを接続するメインラインに
設けた絞り弁の前後の圧力を、夫々、動力マツチ弁のパ
イロット室とバネ室とに伝えて、該動力マツチ弁で可変
ポンプの吐出量制御部たとえば斜板制御シリ7−ダを制
御して、上記絞り弁の前後の差圧が一定になるように吐
出量を制御し、無駄な流体を吐出させないので、省エネ
ルギー効果を有するものである。また、保圧工程等の射
出シリンダが静止している圧力制御時においては、動力
マツチ弁のバネ室に接続されかつ絞りを介してメインラ
インに接続されたパイロットIJ IJ−フ弁の作動を
介して、上記動力マツチ弁を作動させて、斜板制御シリ
ンダを制御し、可変ポンプの斜板を中立側に位置させて
、可変ポンプの吐出量を略零に近い状態に制御している
ので、やはり省エネルギー効果を有するものである。
This power matching type flow rate/pressure control device, for example, when controlling the flow rate when the injection cylinder is moving forward,
The pressures before and after the throttle valve provided in the main line connecting the variable pump and the injection cylinder are transmitted to the pilot chamber and spring chamber of the power match valve, respectively, and the power match valve is used to control the discharge amount of the variable pump. For example, by controlling the swash plate control cylinder 7-, the discharge amount is controlled so that the differential pressure across the throttle valve becomes constant, and unnecessary fluid is not discharged, resulting in an energy saving effect. In addition, during pressure control when the injection cylinder is stationary, such as during a pressure holding process, the pilot IJ valve, which is connected to the spring chamber of the power match valve and connected to the main line via a throttle, is operated. Then, the power match valve is operated to control the swash plate control cylinder, position the swash plate of the variable pump to the neutral side, and control the discharge amount of the variable pump to a state close to zero. This also has an energy saving effect.

このように動力マツチング式の流量・圧力制御装置は、
省エネルギー効果を有するが、圧力および流量を、可変
ポンプの斜板や斜板制御シリンダ等を動作させて制御し
ているために、たとえば高度な成形品を製造する場合に
必要とする高い応答性、高い精度を有する圧力、制御を
得ることができないという欠点があった。
In this way, the power matching type flow rate/pressure control device
Although it has an energy saving effect, since the pressure and flow rate are controlled by operating the swash plate of the variable pump, the swash plate control cylinder, etc., the high responsiveness required when manufacturing advanced molded products, for example. There was a drawback that it was not possible to obtain pressure control with high precision.

そこで、この発明の目的は、流量制御を動力マツチング
方式でして、省エネルギー効果を保持したままで、圧力
制御を可変ポンプのたと差ば斜板や斜板制御シリンダを
殆んど動作させないで、また、可変ポンプ系の影響を消
去して高い応答性、高い精度を有する高性能な圧力制御
をし得る流量・圧力制御装置を新規に提供することにあ
る。
Therefore, an object of the present invention is to control the flow rate using a power matching method, maintain the energy saving effect, and control the pressure by using a variable pump, so that the swash plate and the swash plate control cylinder are hardly operated. Another object of the present invention is to provide a new flow rate/pressure control device that can eliminate the influence of a variable pump system and perform high-performance pressure control with high responsiveness and high accuracy.

このため、この発明は、可変ポンプのメインラインに設
けた絞り弁の前後を、夫々、動力マツチ弁のパイロット
室とバネ室とに接続して、該動力マツ亭弁を上記絞り弁
の前後の差圧に応動させ、また該動力マツチ弁を介して
上記可変ポンプの吐出量制御部を上記メインラインとタ
ンクとに切換自在になして、上記絞り弁の前後の差圧を
一定に制御するようにした流量制御′装置において、上
記絞り弁の後位のメインラインからタンクへ分岐したパ
イパスラインに電磁比例形リリーフ弁を設け、該電磁比
例形リリーフ弁を、上記絞り弁の後位の圧力を検知する
圧力センサからの出力信号と目標圧力を表わす目標値信
号との偏差を算出する加算増中器からの出力信号で制御
して、上記絞り弁の後位の圧力と目標圧力とを一致させ
るようにしたことを特徴としている。
Therefore, the present invention connects the front and rear of the throttle valve provided in the main line of the variable pump to the pilot chamber and spring chamber of the power match valve, respectively, and connects the power match valve to the front and rear of the throttle valve. The variable pump is adapted to respond to the differential pressure, and the discharge amount control section of the variable pump can be freely switched between the main line and the tank via the power match valve, so that the differential pressure before and after the throttle valve is controlled to be constant. In this flow rate control device, an electromagnetic proportional relief valve is provided in a bypass line branching from the main line downstream of the throttle valve to the tank, and the electromagnetic proportional relief valve is used to control the pressure downstream of the throttle valve. Control is performed using the output signal from the summing intensifier that calculates the deviation between the output signal from the pressure sensor to be detected and the target value signal representing the target pressure, and the pressure after the throttle valve is made to match the target pressure. It is characterized by the fact that

以下、この発明を図示の射出成形機における実施例につ
いて詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to embodiments of the illustrated injection molding machine.

第1図において、1はたとえば常時最大流量を吐出する
ように斜板をバネで最大傾斜角方向に付勢する斜板式の
可変ポンプ、2は可変ポンプ1にメインライン3を介し
て接続した射出シリンダ、4はメインライン3に設けた
絞り弁の一例としての電磁比例絞り弁、5は動力マツチ
弁である。
In FIG. 1, 1 is a swash plate-type variable pump whose swash plate is biased by a spring in the direction of the maximum inclination angle so as to always discharge the maximum flow rate, and 2 is an injection pump connected to the variable pump 1 via a main line 3. The cylinder, 4 is an electromagnetic proportional throttle valve as an example of a throttle valve provided in the main line 3, and 5 is a power match valve.

上記動力マツチ弁5はシンボル位置■1でポートlとn
とを連通させ、ポートmを閉鎖する一方 ・シンボル位
置■2でポートmとnとを連通させ、ポート/を閉鎖す
るようになっている。そして、この動力マツチ弁5はそ
のバネ室11のバネ12のバネ圧をΔPに設定していて
、パイロット室13とバネ室11との差圧が12以上に
なると、シンボル位置v1に位置し、上記差圧がΔP以
下になるとシンボル位置■2に位置するようになってい
る。                     −上
記動力マツチ弁5のポートjには1、パイロツートライ
ン15を介して絞り弁4よりも前位のメインライン3を
接続すると共に、そのポートmにパイロットライン16
を介してタンク17を接続す−る一方、そのポートnに
パイロットライン18を介して可変ポンプ1のたとえば
斜板制御シリンダからなる吐出量制御部20に接続する
。 −上記動力マツチ弁5のパイロット室13とバネ室
11には、・夫々、パイロットライン21と、絞り22
を設けたパイロットライン23とを介して、上記絞り弁
4の前後を接続して、該動力マツチ弁5を絞り弁4の前
後の差圧に応動するようにする。
The above power match valve 5 has ports l and n at symbol position ■1.
・At symbol position ■2, ports m and n are communicated and port / is closed. The power match valve 5 has the spring pressure of the spring 12 in the spring chamber 11 set to ΔP, and when the differential pressure between the pilot chamber 13 and the spring chamber 11 becomes 12 or more, it is located at the symbol position v1, When the differential pressure becomes equal to or less than ΔP, the symbol is located at the symbol position (2). - Port j of the power match valve 5 is connected to the main line 3 which is located in front of the throttle valve 4 via the pilot line 15, and the pilot line 16 is connected to the port m.
While the tank 17 is connected to the port n via the pilot line 18, it is connected to the discharge amount control section 20 of the variable pump 1, such as a swash plate control cylinder. - The pilot chamber 13 and spring chamber 11 of the power match valve 5 have a pilot line 21 and a throttle 22, respectively.
The front and rear of the throttle valve 4 are connected via a pilot line 23 provided with a pilot line 23, so that the power match valve 5 responds to the differential pressure across the throttle valve 4.

また、上記動力マツチ弁5のバネ室11と絞り22との
間からタンク25へ分岐したパイロ・ットライン26に
はパイ、ロットリリーフ弁27を設ける。
Further, a pilot line 26 branched from between the spring chamber 11 and the throttle 22 of the power match valve 5 to the tank 25 is provided with a pi-lot relief valve 27.

一方、上記絞り弁4の後位のメインライン3からタンク
31へ分岐したバイパスライン32に電磁比例形+71
7−フ弁33を設ける。上記電磁比例形リリーフ弁33
は、該電磁比例形リリーフ弁33の制御圧力たる前方の
圧力を検出する圧力センサ34からの出力信号と目標圧
力を表す目標値信ヌとの偏差を演算・出力する加算増中
器35からの 。
On the other hand, an electromagnetic proportional +71
7- A valve 33 is provided. The above electromagnetic proportional relief valve 33
is the output signal from the summing intensifier 35 that calculates and outputs the deviation between the output signal from the pressure sensor 34 that detects the front pressure, which is the control pressure of the electromagnetic proportional relief valve 33, and the target value signal that represents the target pressure. .

出力信号により制御されて、上記目標圧力と制御圧力と
を一致させるように圧力フィードバック制御を構成する
Pressure feedback control is configured to match the target pressure and the control pressure by being controlled by the output signal.

上記構成の流量・圧力制御装置は次のように動作する。The flow rate/pressure control device having the above configuration operates as follows.

いま、可変ポンプ1を駆動し、射出シリンダ2を絞りか
4で速度制御しながら前進させて11図示しない成形型
に樹脂を充填する射出行程を行なうとする。
Suppose now that the variable pump 1 is driven and the injection cylinder 2 is moved forward while controlling its speed with the aperture 4 to perform an injection stroke in which a mold (not shown) is filled with resin.

このとき、第2図に示す如く、樹脂の充填に伴もなって
射出圧力つまり絞り弁4の下流側圧力Paは上昇するが
動力マツチ弁5のパイロット室13とバネ室11とには
、絞り弁4の前後の圧力が夫々パイロットライン21.
i3を介して伝えられているため、該動力マツチ弁5は
絞り弁4の前後の差圧に応じて、下記の如くシンボル位
置v1やv2に位置して、可変ポンプ1の吐出量制御部
20に伝える圧力を制御し、可変ポンプlの吐出量を絞
り弁4の前後の差圧が一定(バネ圧に相当するΔP I
if/d ) Iζなるように制御する。すなわち1、
 絞り弁4の前後の差圧がΔP K?/d以下にな名と
、動力マツチ弁5はそのバネ12のバネ圧(ΔPK1i
1/d)により、シンボル位置v2に位置して、ボー)
nとmとを連通させ、吐出量制御部20をタンク17に
連通させて、斜板を最大吐出側に傾斜させ、吐出量を増
大させる。これにより、絞り弁4の前後の差圧は増大し
てΔP Kf/cdになる。一方、絞り弁4の前後の差
圧がΔP Kf/d以上になると、動力マツチ弁5はシ
ンボル位置v1に位置して、ボー)/とnとを連通させ
、吐出量制御部′ 20にメインライン3の圧力を伝え
て、斜板を最少吐出流量側に傾斜させ吐出量を減少させ
る。これにより、絞り弁4の前後の差圧は減少してΔP
KP/aJになる。
At this time, as shown in FIG. 2, the injection pressure, that is, the downstream pressure Pa of the throttle valve 4 increases as the resin is filled, but the pilot chamber 13 and spring chamber 11 of the power match valve 5 have no throttle. The pressure before and after the valve 4 is connected to the pilot line 21.
i3, the power matching valve 5 is located at the symbol position v1 or v2 as shown below according to the differential pressure before and after the throttle valve 4, and the power is controlled by the discharge amount control unit 20 of the variable pump 1. The discharge amount of the variable pump l is controlled so that the differential pressure across the throttle valve 4 is constant (ΔP I
if/d) Iζ. That is, 1,
Is the differential pressure before and after the throttle valve 4 ΔPK? /d or less, the power match valve 5 has a spring pressure of its spring 12 (ΔPK1i
1/d), it is located at the symbol position v2, and the baud)
n and m are communicated, the discharge amount control unit 20 is communicated with the tank 17, and the swash plate is inclined toward the maximum discharge side to increase the discharge amount. As a result, the differential pressure across the throttle valve 4 increases to ΔP Kf/cd. On the other hand, when the differential pressure across the throttle valve 4 becomes equal to or greater than ΔP Kf/d, the power match valve 5 is located at the symbol position v1, communicates between baud)/ and n, and the main The pressure of line 3 is transmitted to tilt the swash plate toward the minimum discharge flow rate to reduce the discharge volume. As a result, the differential pressure before and after the throttle valve 4 decreases to ΔP
Become KP/aJ.

このように、この流量・圧力制御装置は流量制御時にお
いては可変ポンプ1の゛吐出量を負荷の要求に応じた量
に制御し、余剰流体を排出することがないので、′省エ
ネルギー的なものである。なお、上記流量制御状態では
パイロッ) IJ IJ−フ弁27お、よび電磁比例形
リリーフ弁33は完全に閉鎖しているとする。
In this way, this flow rate/pressure control device controls the discharge amount of the variable pump 1 to an amount that corresponds to the load requirement during flow rate control, and does not discharge excess fluid, so it is energy-saving. It is. It is assumed that in the above flow rate control state, the pilot valve 27 and the electromagnetic proportional relief valve 33 are completely closed.

次に、成形型への樹脂の充填が完了して射出シリンダ2
が静止すると、第2図中時点t0よりも右側の曲線で示
す如く、射出圧力は急速に上昇して流量制御状態から流
量をほとんど必要としない圧力制御装置に移行する。
Next, after filling the mold with resin is completed, the injection cylinder 2
When it comes to a standstill, the injection pressure increases rapidly, as shown by the curve on the right side of time t0 in FIG. 2, and the flow rate control state shifts to a pressure control device that requires almost no flow rate.

このとき、絞り弁4の開度をたとえば電磁比例形リリ′
−フ弁33の定格流量の約1〜10%流し得る程度にま
で絞り込み、加算増巾器35に目標圧力を表わ”す目標
値信号を入力して、下記の如く圧力i制御を行なう。な
お27は安全弁的な働きをjるものであり、常に「゛圧
力(至)く圧力(5)」の関係にある。
At this time, the opening degree of the throttle valve 4 is set to, for example, an electromagnetic proportional
- The flow is narrowed down to a level that allows approximately 1 to 10% of the rated flow rate of the valve 33 to flow, and a target value signal representing the target pressure is input to the addition amplifier 35, and pressure i control is performed as described below. Note that 27 functions as a safety valve, and is always in the relationship of "Pressure (very) Pressure (5)".

いま、仮りに電磁比例形リリニフ弁33は閉鎖している
とするならば、回芦の流体圧力は上昇する。
Now, if the electromagnetic proportional type relinif valve 33 is closed, the recycle fluid pressure will increase.

ところが、加算増巾器35には、上記パイロ7ツトリリ
ーフ弁27の設定圧力よりも低い予め定めた第2図中の
目標1次圧力pbを表わす目標値信号を入力すると共に
、圧力センサ34で検出した絞り弁4の後位の圧力を表
わす圧力信号を入力して、該加算増巾器35から電磁比
例形IJ IJ−フ弁3$に、上記圧力信号と目標値信
号との偏差信号を入力してもくる。このため、電磁比例
形IJ IJ−フ弁33は、上記圧力センサ34で検出
する制御圧力たる絞り弁4の後位の圧力と目標1次圧力
Pbとを一致させるように動作する。゛すな−わち、電
磁比例形リリーフ弁33は、(制御圧力〉目標1次圧力
)のときは開き側に動作し、(制御圧力に目。
However, a target value signal representing a predetermined target primary pressure pb in FIG. A pressure signal representing the rear pressure of the throttle valve 4 is inputted, and a deviation signal between the pressure signal and the target value signal is inputted from the addition amplifier 35 to the electromagnetic proportional type IJ valve 3$. I will come. For this reason, the electromagnetic proportional IJ valve 33 operates so that the pressure downstream of the throttle valve 4, which is the control pressure detected by the pressure sensor 34, matches the target primary pressure Pb. In other words, the electromagnetic proportional relief valve 33 operates to the open side when (control pressure>target primary pressure);

標圧力)のときは閉じ側に動作する。つまり、電磁比例
形リリーフ弁33、加算増巾器35および圧力センサ3
4により、圧力のフィ丁ドパツク制御を行なっているの
である。また、このとき、動力マツチ弁5のバネ室11
の流体圧力は上記1次圧力Pbとなっているから、パイ
ロ2ットリリ−フ弁27は完全に閉鎖しており、動力マ
ツチ弁5はパイロット室13の圧力が上記1次圧力Pb
よりもバネ圧ΔPだけ高くなるように、つまり、絞り弁
4の前後の差圧がΔPとなるように動作して、可変ポン
プ1の吐出量を制御する。この状態では、絞り弁4の開
度を圧力制御に支障がない程度、つまり前記の如く電磁
比例形〆71J 17−フ弁33の定格流量の1〜10
%流し得る程度に絞り込んでいるから、可変ポンプ1は
斜板を中立側に静止させて、極く少量の流体を吐出して
いる。この流体は、絞り弁4および電磁比例形IJ I
J−フ弁33を経由してタンク31に排出される。
(standard pressure), it moves to the closing side. In other words, the electromagnetic proportional relief valve 33, the additive amplifier 35, and the pressure sensor 3
4 performs pressure pack control. Also, at this time, the spring chamber 11 of the power match valve 5
Since the fluid pressure in the pilot chamber 13 is the above-mentioned primary pressure Pb, the pyro-relief valve 27 is completely closed, and the power match valve 5 is operated so that the pressure in the pilot chamber 13 is the above-mentioned primary pressure Pb.
The discharge amount of the variable pump 1 is controlled by operating so that the spring pressure ΔP is higher than that of the throttle valve 4, that is, the differential pressure across the throttle valve 4 becomes ΔP. In this state, the opening degree of the throttle valve 4 is set to an extent that does not interfere with pressure control, that is, as described above, the opening degree of the throttle valve 4 is set to 1 to 10 of the rated flow rate of the electromagnetic proportional type valve 33.
%, the variable pump 1 keeps the swash plate stationary on the neutral side and discharges a very small amount of fluid. This fluid flows through the throttle valve 4 and the electromagnetic proportional type IJ I
It is discharged into the tank 31 via the J-fu valve 33.

次に、加算増巾器35に一次圧力pbよりも低い第2図
中の2次圧力Pcを表わす信号を入力すると、加算増巾
器35は圧力センサ34で検出した絞り弁4の後位の圧
力と2次圧力Pcとの偏差を表わす信号を電磁比例形リ
リーフ弁33に入力する。そうすると、電磁比例形リリ
ーフ弁33は上記偏差を表わす信号に応じて開放して、
絞り弁4後位の圧力を上記2次圧力Pcに迅速にかつ精
度高く制御する。なお、このとき、前記1次圧力pbに
制御している場合と同様に、動力マツチ弁5は絞り弁4
の前後の差圧をバネ圧ΔPに制御するように可変ポンプ
1の吐出量を制御し、パイロットリリーフ弁27は閉鎖
している。
Next, when a signal representing the secondary pressure Pc in FIG. 2, which is lower than the primary pressure pb, is input to the addition amplification device 35, the addition amplification device 35 detects the pressure downstream of the throttle valve 4 detected by the pressure sensor 34. A signal representing the deviation between the pressure and the secondary pressure Pc is input to the electromagnetic proportional relief valve 33. Then, the electromagnetic proportional relief valve 33 opens in response to the signal representing the deviation, and
The pressure downstream of the throttle valve 4 is quickly and accurately controlled to the secondary pressure Pc. Note that at this time, the power match valve 5 is controlled to the throttle valve 4 as in the case where the primary pressure is controlled to PB.
The discharge amount of the variable pump 1 is controlled so that the differential pressure before and after is controlled to the spring pressure ΔP, and the pilot relief valve 27 is closed.

上記の如く行なう圧力制御は、絞り弁4を絞り込んで、
圧力制御精度および応答性を悪くする可変ポンプ系の影
響を断って、電磁比例形リリーフ弁33および加算増巾
器35お−よび圧力センサに−よる弁制御方式であり、
かつ圧力フィードバック制御であるから、圧力制御精度
が高く、がっ応答性の高いという利点を有する。また、
上記圧力制御状態では絞り弁4を電磁比例形f杉IJ 
IJ−フ弁33の定格流量の1%〜10%しか流し得な
いように絞り込み、可変ポンプ1は動力マツチ弁5によ
り絞り弁4の前後の差圧がΔPになるように極く小量吐
出するように制御されているから、従来や固定ポンプと
リリーフ弁とによる弁制御の圧力制御方式に比べて、余
剰流体が少なくて、動力損失が少なくなっている。
The pressure control performed as described above is achieved by narrowing down the throttle valve 4.
This is a valve control method using an electromagnetic proportional relief valve 33, an additive amplifier 35, and a pressure sensor, which eliminates the influence of a variable pump system that degrades pressure control accuracy and response.
Moreover, since it is pressure feedback control, it has the advantage of high pressure control accuracy and high pressure response. Also,
In the above pressure control state, the throttle valve 4 is of the electromagnetic proportional type f Sugi IJ
The flow is throttled so that only 1% to 10% of the rated flow rate of the IJ-F valve 33 can flow, and the variable pump 1 discharges an extremely small amount using the power match valve 5 so that the differential pressure across the throttle valve 4 becomes ΔP. Therefore, compared to the conventional pressure control method of valve control using a fixed pump and a relief valve, there is less surplus fluid and less power loss.

上記実施例では絞り弁として電磁比例絞り弁を用いたが
、たとえば圧力補償付流量調整弁や比例絞り切換弁を用
いてもよい。また、上記実施例の可変ポンプ1は吐出量
制御部に作用する制御流体圧力が最小値のときに、吐出
量が最大値になる形式のものであるが、制御流体圧力が
最小値のときに最小吐出量となり、制御流体圧力が最大
値のときに最大吐出流量となる形式の可変ポンプを用い
てもよい。この場合は、周知の如く、動力マツチ弁のシ
ンボル記号は上記実施例とは逆になる。また、上記実施
例では絞り弁4を絞り込んで圧力制御を行こなったが、
絞り弁4を全開状態でも一圧力制御をできることは言う
までもない。
In the above embodiment, an electromagnetic proportional throttle valve is used as the throttle valve, but for example, a flow rate adjustment valve with pressure compensation or a proportional throttle switching valve may be used. Furthermore, the variable pump 1 of the above embodiment is of a type in which the discharge amount reaches the maximum value when the control fluid pressure acting on the discharge amount control section is the minimum value, but when the control fluid pressure is the minimum value, A variable pump of a type that has a minimum discharge amount and a maximum discharge flow rate when the control fluid pressure is at a maximum value may be used. In this case, as is well known, the symbol of the power match valve will be reversed from that of the above embodiment. Furthermore, in the above embodiment, the pressure was controlled by restricting the throttle valve 4; however,
It goes without saying that one pressure control can be performed even when the throttle valve 4 is fully open.

以上の説明で明らかな如く、この発明の流量・圧力制御
装置は、可変ポンプのメインラインに設けた絞り弁の前
後を、夫々動力マツチ弁のパイロット室とバネ室とに接
続して、該動力マツチ弁を上記絞り弁の前後の差圧に応
動させ、また該動力マツチ弁を介して上記可変ポンプの
吐出量制御部を上記メインラインとタンクとに切換自在
になして、可変ポンプの吐出量を制御し上記絞り弁の前
後の差圧を一定に制御するようにしているから、可変ポ
ンプの流量および吐出圧力を負荷の要求に応じて制御で
き、したがって動力損失がなくて回路効率の良い流量制
御をできるという利点を保持し得る上に、上記絞り弁の
後位のメインラインからタンクへ分岐したバイパスライ
ンに電磁比例形リリーフ弁を設け、該電磁比例形リリー
フ弁を、上記絞り弁の後位の圧力を検知する圧力センサ
からの出力信号と目標圧力を表わす目標値信号との偏差
を算出する加算増巾器からの出力信号で制御して、上記
絞り弁の後位の圧力を目標圧力に一致させるようにした
から、上記絞り弁を絞り込んで、可変ポンプ系の悪影響
を除去して、電磁比例形リリーフ弁、圧力センサおよび
加算増巾器で弁制御方式の圧力フィードバック制御をで
き、したがって、精度が高く、応答性が良く、かつ省エ
ネルギー的な圧力制御を行なうことができる。したがっ
て、この発明は高度な成形品を製造する射出成形機に用
いれば極めて有効なものである。また、この発明の装置
は、電磁比例形リリーフ弁を用いているから従来のサー
ボ弁を用いる装置に比べて、作動油の汚染に強く、信頼
性が高いという利点を有する。また、この発明の装置の
圧力フィードバックのた″めの電気回路は従来の弁制御
方式(固定ポンプ、リリーフ弁による方式)の電気回路
をそのまま利用できるので、この装置は安価、迅速に製
造できるという利点を有する。
As is clear from the above description, the flow rate/pressure control device of the present invention connects the front and rear of the throttle valve provided in the main line of the variable pump to the pilot chamber and spring chamber of the power match valve, respectively. A match valve is made to respond to the differential pressure before and after the throttle valve, and the discharge amount control section of the variable pump is made freely switchable between the main line and the tank via the power match valve, so that the discharge amount of the variable pump is Since the differential pressure before and after the throttle valve is controlled to be constant, the flow rate and discharge pressure of the variable pump can be controlled according to the load requirements, and therefore there is no power loss and the flow rate is high in circuit efficiency. In addition to maintaining the advantage of controllability, an electromagnetic proportional relief valve is provided on a bypass line that branches from the main line downstream of the throttle valve to the tank, and the electromagnetic proportional relief valve is connected to the bypass line downstream of the throttle valve. The pressure after the throttle valve is controlled by the output signal from the summing amplifier that calculates the deviation between the output signal from the pressure sensor that detects the pressure at the end of the throttle valve and the target value signal that represents the target pressure. By adjusting the throttle valve to match the value of , it is possible to perform pressure control with high precision, good responsiveness, and energy saving. Therefore, the present invention is extremely effective when used in an injection molding machine that manufactures sophisticated molded products. Further, since the device of the present invention uses an electromagnetic proportional relief valve, it has the advantage that it is more resistant to hydraulic oil contamination and has higher reliability than devices that use conventional servo valves. In addition, the electrical circuit for pressure feedback of the device of this invention can be used as is from the conventional valve control method (fixed pump, relief valve method), so this device can be manufactured at low cost and quickly. has advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る流量・圧力制御装置
の回路図、第2図は第1図に示す装置の時間−射出圧力
の関係を示すグラフである。 1・・・可変ポンプ、3・・・メインライン、4・・・
絞り弁、5・・・動力マツチ弁、33・・・電磁比例形
リリーフ弁、34・・・圧力センサ、35・・・加算増
巾器。
FIG. 1 is a circuit diagram of a flow rate/pressure control device according to an embodiment of the present invention, and FIG. 2 is a graph showing the relationship between time and injection pressure of the device shown in FIG. 1...Variable pump, 3...Main line, 4...
Throttle valve, 5...Power match valve, 33...Electromagnetic proportional relief valve, 34...Pressure sensor, 35...Additional amplifier.

Claims (1)

【特許請求の範囲】[Claims] (1)可変ポンプ(1)のメインライン(3)に設けた
絞り弁(4)の前後を、夫々、動力マツチ弁(5)のパ
イロット室とバネ室とに接続して、該動力マツチ弁(5
)を上記絞り弁(4)の前後の差圧に応動させ、該動力
マツチ弁(5)を介して上記可変ポンプ(1)の吐出量
制御部■を上記メインライン(3)とタンクαηとに切
換自在になして、上記絞り弁(4)の前後の差圧を一定
に制御するようにした流量制御装置において、上記絞り
弁(4)の後位のメインライン(3)からタンクへ分岐
したバイパスライン(支)に電磁比例形リリーフ弁c1
34設け、圧力制御時には該電磁比例形リリーフ弁(至
)を、上記絞り弁(4)の後位の圧力を検知する圧力セ
ンサ(財)からの出力信号と目標圧力を表わす目標値信
号との偏差を算出する加算増巾器(至)からの出力信号
で制御して、上記絞り弁(4)の後位の圧力と目標圧力
とを一致させるようにしたことを特徴とする流量・圧力
制御装置。
(1) The front and rear of the throttle valve (4) provided in the main line (3) of the variable pump (1) are connected to the pilot chamber and spring chamber of the power match valve (5), respectively, and the power match valve (5
) is made to respond to the differential pressure before and after the throttle valve (4), and the discharge amount control section (■) of the variable pump (1) is controlled between the main line (3) and the tank αη via the power match valve (5). In a flow control device that can be freely switched to control the differential pressure before and after the throttle valve (4) at a constant level, the main line (3) downstream of the throttle valve (4) is branched to a tank. Install a proportional electromagnetic relief valve c1 on the bypass line (branch)
34 is provided, and during pressure control, the electromagnetic proportional relief valve (to) is connected to an output signal from a pressure sensor that detects the pressure downstream of the throttle valve (4) and a target value signal representing the target pressure. Flow rate/pressure control characterized in that the pressure downstream of the throttle valve (4) is made to match the target pressure by controlling with an output signal from an addition amplifier (to) that calculates the deviation. Device.
JP11060881A 1981-07-14 1981-07-14 Flow rate and pressure controller Granted JPS5812017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11060881A JPS5812017A (en) 1981-07-14 1981-07-14 Flow rate and pressure controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11060881A JPS5812017A (en) 1981-07-14 1981-07-14 Flow rate and pressure controller

Publications (2)

Publication Number Publication Date
JPS5812017A true JPS5812017A (en) 1983-01-24
JPS6246886B2 JPS6246886B2 (en) 1987-10-05

Family

ID=14540139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11060881A Granted JPS5812017A (en) 1981-07-14 1981-07-14 Flow rate and pressure controller

Country Status (1)

Country Link
JP (1) JPS5812017A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751859A (en) * 1984-06-18 1988-06-21 Toyota Jidosha Kabushiki Kaisha Hydraulic control apparatus for hydraulically-operated power transmitting system having continuously variable transmission
JPH0262221A (en) * 1988-08-29 1990-03-02 Meiki Co Ltd Device for controlling injection pressure of injection molder
EP0563466A1 (en) * 1992-03-31 1993-10-06 Hummel, Erhard Process and equipment for ascertainment of sumvalues of parameters of processes for controlling of injection moulding machines
EP0576741A1 (en) * 1992-07-02 1994-01-05 Hummel, Erhard Hydraulic command layout for measuring feeding rate variations in the injection cylinder for hydraulic powered injection moulding machine
JPH0627166A (en) * 1992-07-06 1994-02-04 Mitsubishi Materials Corp Microwave energy detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751859A (en) * 1984-06-18 1988-06-21 Toyota Jidosha Kabushiki Kaisha Hydraulic control apparatus for hydraulically-operated power transmitting system having continuously variable transmission
JPH0262221A (en) * 1988-08-29 1990-03-02 Meiki Co Ltd Device for controlling injection pressure of injection molder
EP0563466A1 (en) * 1992-03-31 1993-10-06 Hummel, Erhard Process and equipment for ascertainment of sumvalues of parameters of processes for controlling of injection moulding machines
EP0576741A1 (en) * 1992-07-02 1994-01-05 Hummel, Erhard Hydraulic command layout for measuring feeding rate variations in the injection cylinder for hydraulic powered injection moulding machine
JPH0627166A (en) * 1992-07-06 1994-02-04 Mitsubishi Materials Corp Microwave energy detector

Also Published As

Publication number Publication date
JPS6246886B2 (en) 1987-10-05

Similar Documents

Publication Publication Date Title
CN105221506B (en) A kind of load-sensitive valve and load-sensitive hydraulic system
JPS63186002A (en) Fluid pressure drive controller for at least two actuator
JPS61132787A (en) Control valve device for variable delivery pump
CN111255007B (en) Loader constant-variable hydraulic system based on load signal direct control
JPS5812017A (en) Flow rate and pressure controller
JPS6214718B2 (en)
JPH0423122B2 (en)
JPS5838134A (en) Apparatus for controlling speed of injection cylinder
JPS5813202A (en) Flowrate controlling device with compensation of pressure
JPS6188006A (en) Pressure controlling circuit
JPS6263201A (en) Flow rate control circuit enabling mode switching
JPS6323403B2 (en)
JPS5874901A (en) Flow control circuit of changeable mode
JPS6293502A (en) Flow control circuit having mode switch function
JPS5824007Y2 (en) hydraulic circuit
JPH0525870Y2 (en)
JPH029201B2 (en)
JPS5815731Y2 (en) Hydraulic pressure system switching control device
JP2677880B2 (en) Load sensing circuit
JPH10119102A (en) Method for controlling hydraulic pressure of clamping apparatus
JPS58222989A (en) Load sensing circuit
JPS62255603A (en) Joined circuit
JP2886189B2 (en) Control valve device
JPS6158682B2 (en)
JPS5928832Y2 (en) Hydraulic control circuit for injection molding machine