JPS58120140A - Composite load cell - Google Patents

Composite load cell

Info

Publication number
JPS58120140A
JPS58120140A JP366382A JP366382A JPS58120140A JP S58120140 A JPS58120140 A JP S58120140A JP 366382 A JP366382 A JP 366382A JP 366382 A JP366382 A JP 366382A JP S58120140 A JPS58120140 A JP S58120140A
Authority
JP
Japan
Prior art keywords
load
load cell
cell
strain
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP366382A
Other languages
Japanese (ja)
Other versions
JPS6260013B2 (en
Inventor
Hitoshi Yabe
矢部 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA SOKKI KK
Original Assignee
SHOWA SOKKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA SOKKI KK filed Critical SHOWA SOKKI KK
Priority to JP366382A priority Critical patent/JPS58120140A/en
Publication of JPS58120140A publication Critical patent/JPS58120140A/en
Publication of JPS6260013B2 publication Critical patent/JPS6260013B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Force In General (AREA)

Abstract

PURPOSE:To expand the range of measurement by a constitution wherein a plurality of load cells having different range of measurement are formed concentricaly with a gap space between them. CONSTITUTION:A load X is applied from above to a cylindrical first load cell 1. The middle part of the cell 1 is formed to be slender and is made to function as a strain generating element 2, while a strain gage 3 is stuck on the peripheral surface thereof. The base of the cell 1 is joined to a second load cell 8, and a strain generating element 8' is formed in the middle part of the cell 8. The upper part of the cell 8 is joined to a third load cell 10, and a strain generating element 10' is formed in the middle part of the cell 10, while a strain gage 3' is stuck on the side surface thereof. While the load X is small, it acts on the cell 10 as a compressing force through the intermediary of the cells 1 and 8. When the load X becomes large, the base of the cell 8 touches a bottom board 12. Thereby a gap (d) turns to be zero, and thus the load X is detected by the cell 1.

Description

【発明の詳細な説明】 本発明は小さな荷重から大きな荷重に亘って加えられる
力を精度良く測定することができる複合ロードセルに関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite load cell that can accurately measure forces applied from small loads to large loads.

従来の荷重測定器はあらかじめ定格荷重が定められてお
り、その定格荷重を越えた過荷重が加えられると測定不
能になるばかりでなく、装置の破壊をもたらすことにな
るので、定格範囲内での使用が義務づけられている。し
かるに使用機器に応じて極めて大巾な荷重測定範囲が要
求されることがあり、例えば0トン〜50トンに   
 □まで及ぶ荷重測定をする場合、被測定物として定格
間トンの大形ロードセルを採用すると、比較的小さな荷
重測定時における分解能がラフになることによって正確
な荷重測定が実施できない欠点がある。その為あらかじ
め定格の異なるロードセルを複数個準備しておいて装置
内に並行して組込む構成にしておくことが考えられるが
、大荷重が加わる際のロードセル破壊を防止するストッ
パ機構を設ける必要があり、ロードセル本体の寸法も非
常に大きくなる難点を持つ。
Conventional load measuring instruments have a predetermined load rating, and if an overload exceeding the rated load is applied, it will not only be impossible to measure, but also cause the device to be destroyed. use is mandatory. However, depending on the equipment used, an extremely wide load measurement range may be required, for example from 0 tons to 50 tons.
When measuring a load up to □, if a large load cell with a ton rating is used as the object to be measured, the resolution becomes rough when measuring a relatively small load, making accurate load measurement impossible. Therefore, it is conceivable to prepare multiple load cells with different ratings in advance and install them in parallel in the device, but it is necessary to provide a stopper mechanism to prevent the load cells from breaking when a large load is applied. However, the size of the load cell body is also very large.

本発明は上記に鑑みて考えられた新規なロードセルを提
供し、該ロードセルに加えられる荷重が極めて大きな場
合から零にまで到る広範囲な測定範囲をカバーする機能
を持たしめた装置の実現を目的とするものである。以下
図面を参照して本発明の実施例に関し説明する。
The present invention provides a novel load cell that was conceived in view of the above, and aims to realize a device that has the ability to cover a wide measurement range from extremely large loads to zero loads. That is. Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る複合ロードセルの縦断面図であ;
9、図中1は略円柱形の第1のロードセルを示し、上方
よりXに示す荷重が加えられる・該第1のロードセルの
中間部分は若干細く形成してあり、起歪部2として機能
させ、その周面に第2図に示すストレインゲージ3が貼
布しである。ストレインゲージ3は公知のようにプラス
チックシート等絶縁基板4上に所定のパターンに形成し
た金属抵抗材料5を設けて歪受感部とし、該パターンの
端部より導出した引出し線6.6と、上部を覆う絶縁材
料から成るカバーコートを主要な構成要素としており、
測定用外部リード線7.7を具備し、ロードセルの伸長
、収縮台分他の歪を金属抵抗材料5に伝えてその抵抗値
の変化を感知し、増巾して電気信号の変化として検出す
る。
FIG. 1 is a longitudinal cross-sectional view of a composite load cell according to the present invention;
9. In the figure, 1 indicates a substantially cylindrical first load cell, to which a load indicated by X is applied from above.The middle part of the first load cell is formed to be slightly thinner, and functions as a strain-generating part 2. , and a strain gauge 3 shown in FIG. 2 is pasted on its circumferential surface. As is well known, the strain gauge 3 has a metal resistance material 5 formed in a predetermined pattern on an insulating substrate 4 such as a plastic sheet as a strain sensitive part, and has a lead wire 6.6 led out from the end of the pattern. The main component is a cover coat made of insulating material that covers the top.
It is equipped with an external lead wire 7.7 for measurement, and transmits strain such as expansion and contraction of the load cell to the metal resistance material 5, senses the change in resistance value, amplifies it, and detects it as a change in electrical signal. .

前記第1のロードセル1はその底部において第2のロー
ドセル8とボルト9を用いて連結固定される。第2のロ
ードセル8は上方に向けてシリンダ状に延びており、中
途部において起歪部gを形成する。第2のロードセル8
の上方部分は第3のロードセルlOとホルト11.11
によって連結してあり、第3のロードセル10は下方に
むけてシリンダ状に延びて中途部において起歪都度を形
成し、更にその下方部10#は底板12とボルト13.
13によって連結固定される。起歪部10′には前記と
同様なストレインゲージ3′、「が貼布しである。14
はカバーであり、上面からダイヤフラム15が覆せであ
る。カバー14と各ロードセル8.10間には0リング
16.16を介在させ。
The first load cell 1 is connected and fixed to the second load cell 8 using bolts 9 at its bottom. The second load cell 8 extends upward in a cylindrical shape, and forms a strain-generating portion g in the middle. Second load cell 8
The upper part of is the third load cell lO and Holt 11.11
The third load cell 10 extends downward in a cylindrical shape and forms a strain-generating section in the middle, and the lower part 10# is connected to the bottom plate 12 and bolts 13.
It is connected and fixed by 13. A strain gauge 3' similar to that described above is attached to the strain generating part 10'.14
is a cover, and the diaphragm 15 can be covered from the top surface. An O-ring 16.16 is interposed between the cover 14 and each load cell 8.10.

カバー止めねじ17によって固定する。The cover is fixed with set screws 17.

一方第2のロードセル8の下端と、底板12間にはギャ
ップdを保持させるように設定する。
On the other hand, a gap d is set between the lower end of the second load cell 8 and the bottom plate 12.

該ギャップは後述するように過荷重が加えられた際に密
着してストッパとして機能する。
The gap functions as a stopper when an overload is applied, as will be described later.

上記構成によ5いて第1のロードセル1は定格荷重が大
であり、第3のロードセル10は定格荷重が小となって
いる。仮に上記第1のロードセル1の定格を(資)トン
、第3のロードセルlOの定格を加トンとすると、上方
より加えられる荷重Xがθ〜20トンの間は、該荷重が
第1のロードセルに対しては圧縮力として伝達され、第
2のロードセル8に対する引張力に変換されて、更に第
3のロードセル10の圧縮力として最終的に伝達される
。よって第3のロードセルlOの起歪部10′を変形さ
せ、ストレインゲージ「の電気抵抗変化を発生せしめて
荷重を計測する。
With the above configuration, the first load cell 1 has a large rated load, and the third load cell 10 has a small rated load. Assuming that the rating of the first load cell 1 is (capital) tons and the rating of the third load cell 1 is (tons), if the load X applied from above is between θ and 20 tons, the load will be applied to the first load cell. The force is transmitted to the second load cell 8 as a compressive force, converted to a tensile force to the second load cell 8, and finally transmitted to the third load cell 10 as a compressive force. Therefore, the strain-generating portion 10' of the third load cell IO is deformed to cause a change in the electrical resistance of the strain gauge to measure the load.

ここで第2のロードセル8は第1のロードセル1にかけ
られた荷重を引っばり歪に変換して、第3のロードセル
lOに対する圧縮歪として伝達する機能を有し、後述す
るようにギャップdを設定するための夏イ1拡大用ロー
ドセルとして機能する。
Here, the second load cell 8 has a function of converting the load applied to the first load cell 1 into tensile strain and transmitting it as compressive strain to the third load cell IO, and sets a gap d as described later. It functions as a load cell for Natsui 1 expansion.

次に上方より加えられる荷重Xが加トンを越えると、第
2のロードセル8の底部が底板12と接して両者間のギ
ャップdが零となり、いわば 5− 底板12が荷重Xのストッパとして働き、第3のロード
セル10にはそれ以上の荷重が伝達されない。よって九
〜(資)トンまでの荷重Xは第1のロードセル1の起歪
部2によって検出され、測定信号が取り出されることに
なる。
Next, when the load X applied from above exceeds the load, the bottom of the second load cell 8 comes into contact with the bottom plate 12, and the gap d between them becomes zero, so to speak. 5- The bottom plate 12 acts as a stopper for the load X, No further load is transmitted to the third load cell 10. Therefore, a load X of 9 to (capital) tons is detected by the strain generating section 2 of the first load cell 1, and a measurement signal is taken out.

第3図によって荷重X (ton)に対する第1のロー
ドセル1と第3のロードセル10の出力(mv/v)の
関係をグラフ化して示す。図示の如く荷重Xがθ〜20
トンの間は第3のロードセル10におい・て出力が大き
く発生し、荷重がかトンを越えると飽和状態となる。一
方第1のロードセル1は荷重Xがθ〜50トンの全てに
亘って直線的な出力を示している。
FIG. 3 shows a graph of the relationship between the outputs (mv/v) of the first load cell 1 and the third load cell 10 with respect to the load X (ton). As shown in the figure, the load X is θ~20
When the load exceeds a ton, a large output is generated in the third load cell 10, and when the load exceeds a ton, it becomes saturated. On the other hand, the first load cell 1 shows a linear output over the entire load X of θ to 50 tons.

本発明の複合ロードセルに関し、更に動作の態様を下記
に詳述する。
Regarding the composite load cell of the present invention, the operational aspects will be further detailed below.

(1)荷重Xが零のとき ロードセル1及び10ともにその出力電圧は零・ (2)荷重が10トン加わった時、 ■起歪部2は圧縮歪が発生 6 − O起歪部「は引っ張り歪が発生 θ起歪部10’は圧縮歪が発生 このとき起歪部gのたわみ戊と、起歪部10′のたわみ
δ4の和が9に近似するようにギャップdを調整する。
(1) When the load When strain occurs, the θ strain-generating portion 10' generates compressive strain. At this time, the gap d is adjusted so that the sum of the deflection of the strain-generating portion g and the deflection δ4 of the strain-generating portion 10' approximates 9.

(3)荷重が加トン以上加わった時、 前記rf、+杭≧dとなり、ギャップdが零となってス
トッパが働き、荷重Xは底板12に伝達される。
(3) When a load of more than ton is applied, the above rf,+pile≧d, the gap d becomes zero, the stopper works, and the load X is transmitted to the bottom plate 12.

(4)荷重がかトンの上下を変動した時、前記動作が可
逆的となって、ロードセルの出力が1、又は10より得
られる。
(4) When the load fluctuates up and down by tons, the above operation becomes reversible and the output of the load cell can be obtained from 1 or 10.

以上詳細に本発明に係る複合ロードセルの構成と動作態
様に関する説明を行ったが、本発明の実施に際して、ロ
ードセル1及びロードセル10の起歪部寸法、即ち板厚
及び高さを適当に選択するとともにロードセル10側に
定格荷重が加わった際にギャップdが零となるようにあ
らかじめ設定しておくことが必要である。この際第2の
ロードセル8は、荷重Xを引っばり力として伝達するた
め、定格荷重におけるロードセル10側の総たわみ是を
大きくする効果があり、ギャップdの間隔、即ちストッ
パの動作点の調整が容易になる。
The structure and operation mode of the composite load cell according to the present invention have been described in detail above, but when implementing the present invention, the dimensions of the strain-generating portions of the load cells 1 and 10, that is, the plate thickness and height, should be appropriately selected. It is necessary to set the gap d in advance so that it becomes zero when the rated load is applied to the load cell 10 side. At this time, since the second load cell 8 transmits the load X as a tensile force, it has the effect of increasing the total deflection on the load cell 10 side at the rated load, and the adjustment of the gap d, that is, the operating point of the stopper, is effective. becomes easier.

更に本発明の場合、荷重Xが小さな範囲内では、定格の
小さな第3のロードセル10で分解能の高い測定を実施
でき、荷重Xが大きくなると第1のロードセルによる測
定が継続的に実施し得るとともに、第3のロードセルの
破壊を防止することができる利点があり、第1のロード
セルに対してシリンダ状ロードセルを組合せて構成した
ことによって全体がコンパクト化され、大荷重Xに対し
ても本体の寸法を大形化することもなく構成することが
できるという効果を発揮する。
Furthermore, in the case of the present invention, when the load X is within a small range, the third load cell 10 with a small rating can perform measurements with high resolution, and when the load X becomes large, the first load cell can continuously perform measurements. , it has the advantage of being able to prevent destruction of the third load cell, and by combining the cylindrical load cell with the first load cell, the entire structure is made more compact, and the size of the main body can be reduced even under a large load X. This has the effect of being able to be configured without increasing the size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す複合ロードセルの縦断面
図、第2図はストレインゲージの一例を示す平面図、第
3図は荷重とロードセル出力の関係を示すグラフである
。 1・・・第1のロードセル 2・・・起歪部3.3・・
・ストレインゲージ 8・・・第2のロードセル 9.
13・・・ボルト 10・・・第3のロードセル12・
・・底板14・・・カバー 15・・・ダイヤフラム1
6・・・0リング 17・・・カバー止めねじ特許出願
人  株式会社 昭和側型  9 −
FIG. 1 is a longitudinal sectional view of a composite load cell showing an embodiment of the present invention, FIG. 2 is a plan view showing an example of a strain gauge, and FIG. 3 is a graph showing the relationship between load and load cell output. 1... First load cell 2... Strain generating part 3.3...
・Strain gauge 8...Second load cell 9.
13... Bolt 10... Third load cell 12.
...Bottom plate 14...Cover 15...Diaphragm 1
6...0 ring 17...Cover set screw Patent applicant Showa side type Co., Ltd. 9 -

Claims (2)

【特許請求の範囲】[Claims] (1)中心位置に円柱形のロードセル1を配置し、該ロ
ードセルの外側に配置され且つ上下方向より加えられる
荷重によって引っばり歪を受けるシリンダ状ロードセル
8と圧縮歪を受けるシリンダ状ロードセル10とを連結
形成し、前記円柱形のロードセル1と底板12との間に
所定長のギャップdを設けた事を特徴とする複合ロード
セル。
(1) A cylindrical load cell 1 is arranged at the center position, and a cylindrical load cell 8 and a cylindrical load cell 10, which are arranged outside the load cell and receive tensile strain due to loads applied from the top and bottom directions, and a cylindrical load cell 10 which receives compressive strain, are arranged at the center. A composite load cell characterized in that a gap d of a predetermined length is provided between the cylindrical load cell 1 and the bottom plate 12, which are connected to each other.
(2)中心位置に設けた円柱形のロードセル1は大きな
荷重に対する起歪部を構成し、シリンダ状ロードセル1
0は、小さな荷重に対する起歪部を構成したことを特徴
とする特許請求の範囲第(1)項記載の複合ロードセル
(2) The cylindrical load cell 1 provided at the center constitutes a strain-generating part for large loads, and the cylindrical load cell 1
The composite load cell according to claim 1, wherein 0 constitutes a strain-generating portion for small loads.
JP366382A 1982-01-13 1982-01-13 Composite load cell Granted JPS58120140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP366382A JPS58120140A (en) 1982-01-13 1982-01-13 Composite load cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP366382A JPS58120140A (en) 1982-01-13 1982-01-13 Composite load cell

Publications (2)

Publication Number Publication Date
JPS58120140A true JPS58120140A (en) 1983-07-16
JPS6260013B2 JPS6260013B2 (en) 1987-12-14

Family

ID=11563683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP366382A Granted JPS58120140A (en) 1982-01-13 1982-01-13 Composite load cell

Country Status (1)

Country Link
JP (1) JPS58120140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225834U (en) * 1985-07-31 1987-02-17
JP2011058813A (en) * 2009-09-07 2011-03-24 Panasonic Corp Weight sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225834U (en) * 1985-07-31 1987-02-17
JP2011058813A (en) * 2009-09-07 2011-03-24 Panasonic Corp Weight sensor

Also Published As

Publication number Publication date
JPS6260013B2 (en) 1987-12-14

Similar Documents

Publication Publication Date Title
US7347109B2 (en) Load cell with foil strain gauge
EP0738882B1 (en) Load cell with a plate with an opening and bridging strain sensor
US5756943A (en) Load cell
US5569866A (en) Force measuring device
US20110127091A1 (en) Planar Beam Load Cell Assembly
US5076376A (en) Strain gauge weighing device
US3210993A (en) Electromechanical transducer utilizing poisson ratio effects
US3222628A (en) Force measuring device
US4491027A (en) Wide-range load cell
JPS58120140A (en) Composite load cell
US20190195263A1 (en) Sensor for measuring a tightening force applied on a screw-assembly member
US20030209086A1 (en) Force-measuring element for a scale, and scale
US6435034B1 (en) Piezo-electric stretching detector and method for measuring stretching phenomena using such a detector
US3237450A (en) Load cell
JP2559540B2 (en) Capacitive load cell
US3297971A (en) Load cell
JP2598485B2 (en) Load cell
JP2527551B2 (en) Thin load cell
JP7061718B2 (en) Load transducer
JP6967914B2 (en) Load transducer
JP2001074569A (en) Planar capacitance type twist strain sensor
JP2684538B2 (en) Load transducer
KR102498987B1 (en) Load detection device
FI64719B (en) KRAFTMAETNINGSGIVARE FOER ELONTRONISKA VAOGAR O DYL
KR20010024325A (en) Weighing Machine