JPS58119676A - Linked solar battery - Google Patents

Linked solar battery

Info

Publication number
JPS58119676A
JPS58119676A JP57001707A JP170782A JPS58119676A JP S58119676 A JPS58119676 A JP S58119676A JP 57001707 A JP57001707 A JP 57001707A JP 170782 A JP170782 A JP 170782A JP S58119676 A JPS58119676 A JP S58119676A
Authority
JP
Japan
Prior art keywords
layer
solar cell
solar battery
junction
mixed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57001707A
Other languages
Japanese (ja)
Other versions
JPS629237B2 (en
Inventor
Masashi Yamaguchi
真史 山口
Atsushi Shibukawa
渋川 篤
Hideo Sugiura
杉浦 英雄
Akinori Katsui
勝井 明憲
Zeio Kamimura
税男 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57001707A priority Critical patent/JPS58119676A/en
Publication of JPS58119676A publication Critical patent/JPS58119676A/en
Publication of JPS629237B2 publication Critical patent/JPS629237B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide the highly efficient solar battery whose spectral sensitivity for sunlight is expanded, by optimizing the forbidden band width and lattice constant of the semiconductor material of each layer. CONSTITUTION:An N layer 12 and a P layer 13, comprising a mixed crystal Ga1-yInyAs (y=0.15-0.50) are grown on an N type semiconductor substrate 11 of GaAs, InP, InAs, and Ge by a hetero epitaxial method. The lower solar battery 14 is constituted by the P-N junction formed by the layers. A thin P layer 15 and a thin N layer 16, which comprises In1-xAlxAs (x=0.45-0.65) and has a film thickness of 200Angstrom or less and to which high concentration impurities are added, are provided. A tunnel junction 17 comprising said layers 15 and 16 is formed on a P type Ga1-yInyAs layer 13. The upper solar battery 18 and the lower solar battery 14 are connected by said tunnel junction 17. The upper solar battery 18 can be constituted by the solar battery comprising the P-N junction which is obtained by the hetero epitaxial growth of an N layer 19 and a P layer 20 comprising a mixed crystal In1-xAlxAs (x=0.45-0.65).

Description

【発明の詳細な説明】 本発明は、多層へテロ接合から成る太陽電池に関し、特
に各層半導体の禁止帯幅、格子定数の1&遍化をはかる
ことにより、光電変換効率を高めた連結太陽電池に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell comprising a multilayer heterojunction, and more particularly to a connected solar cell in which the photoelectric conversion efficiency is increased by making the forbidden band width and lattice constant of each layer semiconductor uniform by 1 and 1. It is something.

従来の太陽電池は例えば第1図(4)またはω)に示す
ように構成されていた。
A conventional solar cell was constructed as shown in FIG. 1 (4) or ω), for example.

すなわち、第1図(4)に示すように、従来の太陽電池
の多くはS1νGmAgの同一材料から成るpz M合
lを有する構造で構成されていた。これらの単一半導体
を用いている限りは、太陽光エネルギーを有効利用でき
ず、特に半導体の禁止帯幅より低千ネルギーの光は光起
電力に寄与し得ず、光電変換効率は一数弊が限界である
等の欠点があった。
That is, as shown in FIG. 1 (4), most conventional solar cells have a structure having a pz M alloy made of the same material S1νGmAg. As long as these single semiconductors are used, solar energy cannot be used effectively, and in particular, light with an energy lower than the forbidden band width of the semiconductor cannot contribute to photovoltaic power, and the photoelectric conversion efficiency is extremely low. There were drawbacks such as limitations.

また、第7図の)に示すように、太陽光に対するスペク
トル感度を拡大し、高効率化をはかる目的で、”0.1
ムj6.、ム−のpm接合−を有する上部太陽電池Jと
GaAsのpm接合ダを有する下部太陽電池SとをG&
。0.ムj0..ムlのpm接合から成るトンネル接合
6を介して接続した連結太陽電池も提案されている。
In addition, as shown in Figure 7), in order to expand the spectral sensitivity to sunlight and increase efficiency,
Muj6. , an upper solar cell J having a GaAs pm junction and a lower solar cell S having a GaAs pm junction.
. 0. Muj0. .. Connected solar cells have also been proposed which are connected via tunnel junctions 6 consisting of multilayer pm junctions.

しかし、この連結太陽電池においては、上部電池3およ
び下部電池jの構成材料Ga o、a A、l □、2
 A−およびGaAsの格子定数整合の最適化ははから
れてはいるものの、禁止帯幅が各々/jj @Vおよび
/、4I3・Vであるため、太陽光スペクトルの内、長
波長光は光起電力に寄与し得す、従って太陽光エネルギ
ーを有効利用できず、光電変換効率は理論的にも約30
%、実験上でも75%と低いなどの欠点があった。
However, in this connected solar cell, the constituent materials of the upper cell 3 and the lower cell j are Ga o, a A, l □, 2
Although efforts have been made to optimize the lattice constant matching of A- and GaAs, the band gaps are /jj @V and /, 4I3·V, respectively, so long wavelength light in the sunlight spectrum is Therefore, solar energy cannot be used effectively, and the photoelectric conversion efficiency is theoretically about 30%.
%, which was low at 75% even in experiments.

本発明は、これらの欠点を除去するためになされたもの
で、その目的は、多層へテ四接舎から成る太陽電池にお
いて、各層牛導体材料の禁止帯幅および格子定数の最適
化をはかることにより、太陽光に対す漬スペクトル感度
を拡大させた高効率の連結太陽電池を提供することにあ
る。
The present invention has been made to eliminate these drawbacks, and its purpose is to optimize the forbidden band width and lattice constant of the conductor material of each layer in a solar cell consisting of a multilayer structure. The object of the present invention is to provide a highly efficient connected solar cell with expanded spectral sensitivity to sunlight.

かかる目的を達成するために、本発明でu、GaムS。In order to achieve such an objective, in the present invention, GaM S.

ImP # InAsあるいはG・の半導体基板上に混
晶Ga1−yImy人−(y −0,/!r〜0.kO
)から成るpm接合により下部太陽電池を構成し、混晶
l* 1−3h1.A4 (x−0,社”wO,4k 
)から成るpm接合により上部太陽電池な構成し、該上
部太陽電池と前記下部太陽電池とを前記混晶半導体に高
不純物濃度で不純物を添加して威るド接合で連結する@ 以下に、図面を参照しながら、実施例を用いて本発明の
詳細な説明するが、かかる実施例は本発明の例示に過ぎ
ず、本発明の範囲内で種々の改良や変形があり得ること
は勿論である。
ImP # Mixed crystal Ga1-yImy-(y-0,/!r~0.kO
), the lower solar cell is constructed by a pm junction consisting of mixed crystal l* 1-3h1. A4 (x-0, company”wO, 4k
), and the upper solar cell and the lower solar cell are connected by a dejunction made by doping the mixed crystal semiconductor with a high impurity concentration. The present invention will be described in detail using examples with reference to the following, but these examples are merely illustrative of the present invention, and it goes without saying that various improvements and modifications may be made within the scope of the present invention. .

第一図は本発明連結太陽電池の基本構成を示す。ここで
は、Gaps e lap e lmAsあるいはG・
の態形半導体基板ll上に混晶Gi□−,I+a、As
(l −0,/に〜0.20 )から成る1層/コep
NIisをヘテロエピタキシャル成長させ、それにより
形成されたpm接合によって下部太陽電池/4’を構成
する。p形Ga1−、I!1゜ムII/J上に!亀□、
ム!、ム−(xw−0,参t 〜o、u )から成り、
不純物を高濃度で添加したp@tmよび3層/4の各々
膜厚にθA以下の薄層から成るトンネル接合17を形成
し、このトンネル接合77を介して、上部太陽電池/l
と下部太陽電池!4+とを接続する。上部太陽電池/l
は、混晶”1−xムj、As (x −0,lj〜Oj
りから成る*M/デおよびp層Xをヘテロエピタキシャ
ル成長させて得たpm接合から成る太陽電池で構成でき
る。このように、本発明ではd*1−xム11ム腸の上
部太陽電池/lとGa□−、In、Asの下部太陽電池
/1とをトンネル接合17により接続して連結太陽電池
を構成する。
Figure 1 shows the basic configuration of the coupled solar cell of the present invention. Here, Gaps e lap e lmAs or G・
Mixed crystal Gi□-, I+a, As
1 layer/coep consisting of (l −0, /~0.20 )
NIis is grown heteroepitaxially, and the pm junction formed thereby constitutes the lower solar cell/4'. p-type Ga1-, I! On 1゜mu II/J! Turtle□,
Mu! , Mu-(xw-0, reference t~o,u),
A tunnel junction 17 consisting of a thin layer of θA or less is formed in each of the p@tm and 3/4 layers doped with impurities at a high concentration, and the upper solar cell/l is formed through this tunnel junction 77.
And the lower solar cell! Connect with 4+. Upper solar cell/l
is a mixed crystal "1-xmuj, As (x -0,lj~Oj
It can be constructed from a solar cell consisting of a pm junction obtained by heteroepitaxially growing *M/de and p layer X consisting of . In this way, in the present invention, a connected solar cell is constructed by connecting the upper solar cell/l of d*1-xmu11m and the lower solar cell/1 of Ga□-, In, and As through the tunnel junction 17. do.

本発明による連結太陽電池においては、上部太陽電池/
1および下部太陽電池/ダを構成する混晶半導体材料I
 !l l、x Alx A−およびGaニーy1亀y
ム−の禁止帯幅がそれぞれ/JNJ、l)・Vおよびθ
、デ〜ムコ・Vであり、上部太陽電池7gに入射する太
陽光コlに対するスペクトル感度の拡大がはかられてお
り、理想的な連結太陽電池材料の禁止帯幅の組合せへ4
J@V/θ、デj・■を包含し、光1変換効率は30〜
qo%に達する。
In the connected solar cell according to the present invention, the upper solar cell/
1 and the mixed crystal semiconductor material I constituting the lower solar cell/da
! l l, x Alx A- and Ganey y1 turtle y
The forbidden band widths of MU are /JNJ, l)・V and θ, respectively.
, De~muco・V, and the spectral sensitivity to solar light incident on the upper solar cell 7g is expanded, and the combination of the bandgap widths of the ideal coupled solar cell materials 4
Includes J@V/θ, dej・■, and the light 1 conversion efficiency is 30~
Reach qo%.

また、連紡太li!電池を構成するIn、−a−ム18
^・e Ga1−y I n y A−および半導体基
板結晶の格子定数の整合も極めて良い特長を有する。ま
た、本発明では、上部上限電池材料1n1.A%ムSと
下部太陽電池材料Ga1−、In、Asとの格子定数の
不整合率はQ、/ 〜1.0%程度と低く、ミスフィツ
ト転位の発生が少なく、下も抑制でき、以って高効率化
を達成できる。更に、本発明において、半導体基板結晶
GaAs e I!lP#■ロムSあるいはG・と下部
太陽電池材料a& 1−、 I * 311 AIとの
格子定数の不整合率はo、r −41%程度と若干高い
が、半導体基板結晶上にGa1−y InyAmを組成
を変えながら傾な1成長させることにより、Gm1−、
In、As層内へのミスフィツト転位の発生を抑制でき
、下部太陽′遊池内のキャリア収集効率の低下を抑制で
き、高効率化を達成できる。このようなGa1−yIm
Also, Renbota li! In, -a-m 18 constituting the battery
The lattice constant matching between the ^·e Ga1-y I n y A- and the semiconductor substrate crystal is also very good. Moreover, in the present invention, upper upper limit battery material 1n1. The mismatch rate of the lattice constants between A% Mu S and the lower solar cell materials Ga1-, In, and As is as low as Q,/~1.0%, and the occurrence of misfit dislocations is small and can be suppressed. high efficiency can be achieved. Furthermore, in the present invention, the semiconductor substrate crystal GaAs e I! The lattice constant mismatch rate between lP#■ROM S or G and the lower solar cell material a & 1-, I * 311 AI is slightly high at around o, r -41%, but it is By growing InyAm at an angle while changing its composition, Gm1-,
It is possible to suppress the occurrence of misfit dislocations in the In and As layers, suppress the decrease in carrier collection efficiency in the lower solar pond, and achieve high efficiency. Such Ga1-yIm
.

ム−の傾斜組成層は、半導体基板結晶としてGaAsや
Goを用いた場合には、半導体基板結晶側から上部に向
けから低エネルギーのものに毅化するため、傾斜組成層
内に内蔵電界が発生し、キャリアの収集効率を高めるこ
とができるなどの利点も得られる。
When GaAs or Go is used as the semiconductor substrate crystal, the gradient composition layer of Mu-1 changes to a lower energy layer from the semiconductor substrate crystal side upwards, so a built-in electric field is generated within the gradient composition layer. However, advantages such as being able to improve carrier collection efficiency can also be obtained.

このように、本発明の連結太陽電池は上部太陽電池およ
び下部太陽電池の禁止帯幅、格子定数の最適化がなされ
ており、従来の太陽電池に比べて高効率化がはかられて
いる。
As described above, in the connected solar cell of the present invention, the forbidden band width and lattice constant of the upper solar cell and the lower solar cell are optimized, and higher efficiency is achieved than in conventional solar cells.

なお、以上の実施例においては、基板結晶/lにn形半
導体を用いた例について説明してきたが、本発明はこの
例にのみ限られず、p形半導体を基板結晶//に用いた
場合についても同様によく適用し得ることは明らかで、
その場合には各層の導電型を逆にすれば良い。
In the above embodiments, an example in which an n-type semiconductor is used as the substrate crystal /l has been described, but the present invention is not limited to this example, and may also be applied to a case in which a p-type semiconductor is used in the substrate crystal //. It is clear that it can be applied equally well,
In that case, the conductivity type of each layer may be reversed.

以上説明したように、本発明連結太陽電池によれば、上
部太陽電池および下部太陽電池の禁止帯幅、格子定数の
最適化がはかられているので、従来の太陽電池に比べて
高効率であり、なおかつ下部太陽電池の傾斜組成層にお
ける内蔵電界も利用でき、キャリア収集効率を高めるこ
とができるなどの利点を有する。
As explained above, according to the connected solar cell of the present invention, the forbidden band width and lattice constant of the upper solar cell and the lower solar cell are optimized, so it has higher efficiency than conventional solar cells. Moreover, it has the advantage that the built-in electric field in the graded composition layer of the lower solar cell can also be used, and carrier collection efficiency can be increased.

ハ・・ホモpn接合、  コ・・・Ga5.sム10.
、ムリ1接会、3・・・上部太陽電池、  亭・・・G
aAs p*接合、j・・・下部太陽電池、ト・・Ga
6.sム1゜、、ムSトンネル接合、// ・・・n 
(p)形半導体基板結晶、/コー1(p)形Ga 1+
+y I m yA S層、i3・・・p(a)形Ga
1−.In、As層、/l−・−下部太陽電池、/3・
・・高不純物濃度添加P(11)形fl−zム11ム1
層、/ト・・高不純物濃度添加m(p)形r m 1−
、ムI5ム1層、/7・・・Fンネル接合、  lト・
・上部太陽電池、/l= n (p)形Imt−μj、
As層、X)・・・p (n)形Ink−、AJ、ムS
層、−ノ・・・太陽光。
C...Homo pn junction, C...Ga5. smu10.
, Unreasonable 1st meeting, 3...Top solar cell, Tei...G
aAs p*junction, j...lower solar cell, g...Ga
6. smu1゜,,muS tunnel junction, //...n
(p) type semiconductor substrate crystal, /Co1(p) type Ga 1+
+y I m yA S layer, i3...p(a) type Ga
1-. In, As layer, /l-・-lower solar cell, /3・
... Highly doped P(11) type fl-z 11mu 1
Layer, /t...high impurity concentration doped m(p) type r m 1-
, MuI5mu1 layer, /7...F tunnel junction, lto...
・Top solar cell, /l=n (p) type Imt-μj,
As layer, X)...p (n) type Ink-, AJ, MuS
Layer, -no...sunlight.

特許出願人 日本電信電話公社 代理人弁理士 谷   義  −畠 第1図 <A) (β)Patent applicant: Nippon Telegraph and Telephone Corporation Representative Patent Attorney Yoshi Tani - Hatake Figure 1 <A) (β)

Claims (1)

【特許請求の範囲】[Claims] GaAs # InP e lmAsあるいはG・の半
導体基板上に混晶Ga1−ylnyAm  (y−0,
/! 〜OJO)から成るpm接合により下部太陽電池
を構成し、混晶1m1−!ムl、M(X−θ、qs −
o、bs )から成るpt+接合により上部太陽電池を
構成し、該上部太陽電池と前記下部太陽電池とを前記混
晶半導体に高不純物濃度で不純物を添加して成るpn接
合で連結したことを特徴とする連結太陽電池。
Mixed crystal Ga1-ylnyAm (y-0,
/! The lower solar cell is constructed by a pm junction consisting of ~OJO), and the mixed crystal 1m1-! Mul, M(X-θ, qs −
o, bs)), and the upper solar cell and the lower solar cell are connected by a pn junction formed by adding impurities to the mixed crystal semiconductor at a high impurity concentration. connected solar cells.
JP57001707A 1982-01-11 1982-01-11 Linked solar battery Granted JPS58119676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57001707A JPS58119676A (en) 1982-01-11 1982-01-11 Linked solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57001707A JPS58119676A (en) 1982-01-11 1982-01-11 Linked solar battery

Publications (2)

Publication Number Publication Date
JPS58119676A true JPS58119676A (en) 1983-07-16
JPS629237B2 JPS629237B2 (en) 1987-02-27

Family

ID=11509017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57001707A Granted JPS58119676A (en) 1982-01-11 1982-01-11 Linked solar battery

Country Status (1)

Country Link
JP (1) JPS58119676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009719A (en) * 1989-02-17 1991-04-23 Mitsubishi Denki Kabushiki Kaisha Tandem solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009719A (en) * 1989-02-17 1991-04-23 Mitsubishi Denki Kabushiki Kaisha Tandem solar cell

Also Published As

Publication number Publication date
JPS629237B2 (en) 1987-02-27

Similar Documents

Publication Publication Date Title
Yamaguchi et al. Multi-junction solar cells paving the way for super high-efficiency
US7217882B2 (en) Broad spectrum solar cell
CN100573923C (en) Silicon base efficient multi-node solar battery and preparation method thereof
US20050081910A1 (en) High efficiency tandem solar cells on silicon substrates using ultra thin germanium buffer layers
CN102388466A (en) Photovoltaic cell
Wilkins et al. Multijunction solar cell designs using silicon bottom subcell and porous silicon compliant membrane
USH667H (en) Patterned tunnel junction
CN210272385U (en) Lattice gradient buffer layer applied to epitaxial growth of lattice-mismatched solar cell
CN108172638A (en) A kind of three-junction solar battery
JPH0661513A (en) Laminated solar battery
Takamoto et al. InGaP/GaAs and InGaAs mechanically-stacked triple-junction solar cells
JPS58119676A (en) Linked solar battery
CN210052751U (en) Multi-junction solar cell
CN207834310U (en) A kind of three-junction solar battery
JP5548908B2 (en) Manufacturing method of multi-junction solar cell
Zhang et al. Theoretical study on potential performance of lattice-matched monolithic GaNP/GaNAsP/Si triple-junction solar cell
Simon et al. Recent HVPE grown solar cells at NREL
JPS63261882A (en) Semiconductor element
JPH03285363A (en) Series laminated solar cell
JPS6214110B2 (en)
JPH0582812A (en) Solar cell
Sodabanlu et al. Effects of various dopants on properties of GaAs tunneling junctions and p–i–n solar cells
Bedair et al. Growth and characterization of a two-junction, stacked solar cell
WO2003052836A1 (en) Multi-junction solar cell device
Olson et al. Current-matched, high-efficiency, multi-junction monolithic solar cells