JPS58119004A - Bang-bang control method - Google Patents

Bang-bang control method

Info

Publication number
JPS58119004A
JPS58119004A JP180382A JP180382A JPS58119004A JP S58119004 A JPS58119004 A JP S58119004A JP 180382 A JP180382 A JP 180382A JP 180382 A JP180382 A JP 180382A JP S58119004 A JPS58119004 A JP S58119004A
Authority
JP
Japan
Prior art keywords
bang
overshoot
adder
value
desired value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP180382A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawase
河瀬 宏志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP180382A priority Critical patent/JPS58119004A/en
Publication of JPS58119004A publication Critical patent/JPS58119004A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To reduce an overshoot by supplying a command value obtained by subtracting an estimated overshoot value from a desired value, and performing switching from the command value to the desired value when the amount of the overshoot approximates the desired value. CONSTITUTION:To the automatic speed controller ASR10 consisting of a speed control element 1, limiter 2, feedback element 6, and adder 7, the control circuit consisting of a bang-bang element 9 and an adder 8 is added. The theta of the bang-bang element 9 corresponds to the amount of an overshoot when such an input that the limiter 2 is saturated is applied and the command value obtained by subtracting the value theta from the desired value is applied to the speed control element 1 through the adder 8. As the output of the adder 7 approximates the desired value, the theta approximates zero under the control of the bang-bang element 9 to perform less-overshoot speed control. Thus, while starting time is held short, the amount of the overshoot is reduced.

Description

【発明の詳細な説明】 本発明はバングバング制御方法に係ム特に応答性が早く
かつ行き過ぎ量の小さい制御を可能とするバングバング
制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bang-bang control method, and particularly to a bang-bang control method that enables quick response and small overshoot control.

一般に制御対象の被制御量(速度、位置、温良流量等)
を外部等から与えた目標値にするための制御系に於ては
、その目標値に速く近づき、かつオーバーシュートによ
る振動等を小さくして整定時間を短くする必要がある。
Generally, the controlled quantity of the controlled object (speed, position, temperature flow rate, etc.)
In a control system for achieving a target value given from an external source, it is necessary to quickly approach the target value, reduce vibrations caused by overshoot, and shorten the settling time.

第1図は、このような制御系の例としての、従来のモー
タ速度制御系を示すもので、速度制御要素1.リミッタ
2.フィードバック要素6.加算器7から成る自動速度
調整器(以下AIRと略記する)10と、−次遅れ要素
で表わされる自製電流11]I器(以下ACRと略記す
る)3とから成っておシ、制御対象としてのモータはト
ルク定数4゜慣性能率5及びトルク外乱TLで懺わされ
ている。
FIG. 1 shows a conventional motor speed control system as an example of such a control system, in which speed control elements 1. Limiter 2. Feedback element 6. It consists of an automatic speed regulator (hereinafter abbreviated as AIR) 10 consisting of an adder 7, and a self-made current 11 represented by a -th order lag element (hereinafter abbreviated as ACR) 3, and is controlled as a control object. The motor has a torque constant of 4°, a rate of inertia of 5, and a torque disturbance TL.

このような制御系では、その制御の目的に応じて、負荷
(第1図のTLに対応)が変化した場合に速度が下がっ
ても良いもの、下がってはならないもの、また速度指令
がステップ変化した場合にオーバーシュートがあって良
いもの、あってはならないもの等がアシ、これらの条件
に応じて速度制御要素1の伝達関数Gnとしては第1表
に示すような各穐のものが選ばれてい用られていた。
In such a control system, depending on the purpose of the control, the speed may or may not decrease when the load (corresponding to TL in Figure 1) changes, or the speed command may change in steps. In such a case, there are cases where overshoot is acceptable and cases where there should be no overshoot. Depending on these conditions, the transfer function Gn of the speed control element 1 is selected for each case as shown in Table 1. It was used.

第1表 このうち、特に負荷が変化しても速度低下が許されない
場合(オフセットエラー0)には、第1表に示すように
Qlmとしては比例積分要素G、が用いられるが、この
時には速度指令変化時のオーバーシュートが避けられま
い。又、オフセットエラーは許されても速い応答を必要
とする場合にも一次遅れ・進み要素G、が用いられ、や
はりオーバーシュートが不可避であるという欠点がおっ
た。
Table 1 Among these, especially when speed reduction is not allowed even if the load changes (offset error 0), the proportional integral element G is used as Qlm as shown in Table 1. In this case, the speed Overshoot when the command changes is unavoidable. Further, even if an offset error is allowed, the first-order lag/advance element G is used even when a fast response is required, which again has the disadvantage that overshoot is inevitable.

本発明の目的は、上記した従来技術の欠点をなくシ、高
精度整定および速い応答を必要とする系においても、オ
ーバーシュート量を著しく低減させることを可能とする
パングツ(ング制御方法を提供するにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a pumping control method that makes it possible to significantly reduce the amount of overshoot even in systems that require high precision settling and quick response. It is in.

本発明は、オーバーシュート量を事前に推定し、本来目
的とする目標値からオーバーシュート量を引いた指令を
与えておき、フィートノ(ツク量が目標値に近づいた時
に指令値を目標値に切り換えるようにしたことを特徴と
するものである。
The present invention estimates the overshoot amount in advance, gives a command that subtracts the overshoot amount from the originally intended target value, and then switches the command value to the target value when the overshoot amount approaches the target value. It is characterized by the following.

以下、本発明を実施例によシ詳述する。第2図は従来の
第1図に示したモータ速度制御に対して本発明を適用し
た実施例を示すもので、ASRloに加算器8及びバン
グバング素子9が加えられているのが特徴である。ここ
でバングバング素子9に示したθは、リミッタ2におい
て飽和するようなステップ入力を加えた時のオーバーシ
ュート量に相当し、εは系によって決定されるしきい値
である。そしてこのバングバング素子9と加算器8によ
り目標値を変化させてオーバーシュートtを低減させる
もので、その動作を第3図のタイムチャートを用いて貌
明する。
Hereinafter, the present invention will be explained in detail using examples. FIG. 2 shows an embodiment in which the present invention is applied to the conventional motor speed control shown in FIG. 1, and is characterized in that an adder 8 and a bang-bang element 9 are added to ASRlo. Here, θ shown in the bang-bang element 9 corresponds to the amount of overshoot when a step input that saturates the limiter 2 is applied, and ε is a threshold value determined by the system. The bang-bang element 9 and the adder 8 change the target value to reduce the overshoot t, and its operation will be explained using the time chart of FIG.

今、第3図に示すように、目標値ω0がω。=0からω
0二aへとステップ状の変化で与えられたとすると、゛
フィードバック要素6の出力でおる応答速度ω、及びこ
れと目標値ω。との偏差δとは、従来方式の場合、第3
図の実線に示すような応答を示す。すなわち、立上シは
極めて早く、かつオフセラ)4ないが、オーバーシュー
トのため整定時間が長く、同図の1=1.  ぐらいま
でかかつてしまう。
Now, as shown in FIG. 3, the target value ω0 is ω. =0 to ω
02a in a stepwise manner, ``the response speed ω at the output of the feedback element 6, and this and the target value ω. In the case of the conventional method, the deviation δ from the third
The response is shown by the solid line in the figure. In other words, the start-up is extremely fast and there is no offset (4), but the settling time is long due to overshoot, and 1 = 1 in the figure. It lasts for about a while.

しかし、本実施例では、目標値人力ω。−a(〉C)に
対して、加算器7の出力a<t=ta>からバングバン
グ素子9出力のθが差引かれたa−θが初期の偏差δと
なC(83図点線)、これが次第に減少していく、(こ
のことは見かけ上目標値aがa−θとなっていることに
相当する)。
However, in this embodiment, the target value human power ω. -a(〉C), a-θ, which is obtained by subtracting θ of the bang-bang element 9 output from the output a<t=ta> of the adder 7, is the initial deviation δC (dotted line in Figure 83), which is gradually decreases (this corresponds to the apparent target value a becoming a-θ).

そしてt二重、にて加算器7の出力がεに達した時、す
なわち第3図の実線のδ値がεとなった時バンクバンク
素子9の出力はθからゼロに変化し制御偏差δは一θ+
εからεに変化する。しかもここまでの所要時間は、も
ともと系が高速に立上る本のであるので、目標値がaか
らa−〇に減っていても殆んど変らす、短時間で立上る
Then, when the output of the adder 7 reaches ε at t-duplex, that is, when the δ value of the solid line in FIG. is one θ+
Changes from ε to ε. Moreover, the time required up to this point is such that the system starts up at a high speed, so even if the target value decreases from a to a-0, it will start up in a short time, with almost no change.

ここでθは第3図の速度応答ω1に示すように従来方式
に於るリミッタにかかる場合のオーバーシュート量にt
lは等しく選んでおき、かつεを詐容される制御偏差、
即ち整定したと見なせる従来の1=1.に於る偏差程度
の値としておくと、t=t!でδ=eという小さい偏差
となり、かつその時の目標値はω。=aに対応したもの
である(θ=0となっていることに注意)から、ω、は
目標値aに極めて近いω、=a−εに達している。
Here, θ is the overshoot amount when applied to the limiter in the conventional method, as shown in speed response ω1 in Figure 3.
l is chosen to be equal, and ε is the control deviation to be spoofed,
In other words, the conventional 1=1, which can be considered to have stabilized. If the value is about the deviation in , then t=t! Then, the deviation becomes small as δ=e, and the target value at that time is ω. =a (note that θ=0), so ω has reached ω, =a−ε, which is extremely close to the target value a.

従って本発明による速度応答ω、(離線)は、t=11
に於て目標値aに達した状態からほぼ微小なステップ入
力変化−εを再入力されたようか応答を示し、これ以後
バンクバンク素子9は作動せす(δくε)、急速にω、
は目標値aに整定される。
Therefore, the speed response ω, (track separation) according to the present invention is t=11
When the target value a has been reached, a nearly minute step input change -ε appears to be re-inputted, and the bank-bank element 9 is activated (δ decreases ε), and rapidly changes ω,
is set to the target value a.

以上の実施例の実験データによれば、従来方式の比例積
分要素で、オーバーシュート1βチを有する系に本方式
を用いることによj91.5%に低減することができた
According to the experimental data of the above embodiments, by using the present method in a system having an overshoot of 1β chi using the proportional integral element of the conventional method, it was possible to reduce j to 91.5%.

以上述べたように、本発明によれば、リミッタ2が飽和
値に達するような入力を加えた時のオーバーシュート量
を知シ、系によシ定められる適当なCを与えれば、制御
定数の調整は特に必要とせす、かつループゲインを下げ
るなど性能を低下させることもなく容易にオーバーシュ
ート量を低減できるという効果がある。
As described above, according to the present invention, it is possible to know the amount of overshoot when an input is applied that causes the limiter 2 to reach the saturation value, and if an appropriate C determined by the system is given, the control constant can be adjusted. This has the effect that the amount of overshoot can be easily reduced without requiring special adjustment and without degrading performance by lowering the loop gain.

内面の簡単なa明 第1図は従来のモータ速度制御系を示すブロック図、第
2図は本発明の一実施例を示すブロック図、第3図は従
来方式及び本発明の方法による制御系に於るステップ応
答の説明図である。
Fig. 1 is a block diagram showing a conventional motor speed control system, Fig. 2 is a block diagram showing an embodiment of the present invention, and Fig. 3 is a control system according to the conventional method and the method of the present invention. It is an explanatory diagram of a step response in .

1・・・速度制御要素、2・・・リミッタ、4・・・ト
ルク定数、5・・・慣性能率、6・・・速度フィードバ
ック賛亀寿 1 図 第 2 図
1...Speed control element, 2...Limiter, 4...Torque constant, 5...Inertia factor, 6...Speed feedback Sankiju 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、制御対象の被制御量とその目標値との偏差が予め定
められたしきい値をこえた時に一足の大きさの出力を発
住するバングバング要素を設けるとともに、該バングバ
ング要素の出力を上記偏差から差引くことによって得た
偏差値を制御l!素に入力して該制御l!木比出力より
上記被制御量を制御するようにし九ことを特徴とするバ
ングバング制御方法。
1. A bang-bang element is provided that generates an output as large as a foot when the deviation between the controlled variable of the controlled object and its target value exceeds a predetermined threshold, and the output of the bang-bang element is Control the deviation value obtained by subtracting it from the deviation! Simply input the control l! 9. A bang-bang control method characterized in that the controlled quantity is controlled by the wood ratio output.
JP180382A 1982-01-11 1982-01-11 Bang-bang control method Pending JPS58119004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP180382A JPS58119004A (en) 1982-01-11 1982-01-11 Bang-bang control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP180382A JPS58119004A (en) 1982-01-11 1982-01-11 Bang-bang control method

Publications (1)

Publication Number Publication Date
JPS58119004A true JPS58119004A (en) 1983-07-15

Family

ID=11511728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP180382A Pending JPS58119004A (en) 1982-01-11 1982-01-11 Bang-bang control method

Country Status (1)

Country Link
JP (1) JPS58119004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038856A1 (en) * 2011-09-16 2013-03-21 いすゞ自動車株式会社 Actuator control method and actuator control device
US9558897B2 (en) 2011-07-12 2017-01-31 Isuzu Motors Limited Actuator control method and actuator control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9558897B2 (en) 2011-07-12 2017-01-31 Isuzu Motors Limited Actuator control method and actuator control device
WO2013038856A1 (en) * 2011-09-16 2013-03-21 いすゞ自動車株式会社 Actuator control method and actuator control device
JP2013065152A (en) * 2011-09-16 2013-04-11 Isuzu Motors Ltd Control method for actuator and control device of actuator
US9519275B2 (en) 2011-09-16 2016-12-13 Isuzu Motors Limited Actuator control method and actuator control device

Similar Documents

Publication Publication Date Title
EP0318006A2 (en) Automatic control system
US8125178B2 (en) Drive and method
JPS58119004A (en) Bang-bang control method
Platzer et al. Model Reference Adaptive Control of Thyristor Driven DC Motor Systems Subject to Current Limit a Tions
US20010053941A1 (en) Control apparatus
JPH0823691A (en) Control device of servo system
JPS6325911Y2 (en)
JP2000293234A (en) Motor control gain switching method
JPH02262843A (en) Power system stabilizer
JPS61244286A (en) Feedback speed control system for motor
JPH0471385A (en) Current limiting method for thyristor leonard system
JPH06161507A (en) Controller
JPH0816204A (en) Method for cutting integration operation of pid controller
SU1070679A1 (en) Non-reversible thyratron d.c.motor
JPS6277605A (en) I-pd control circuit
JPH0926801A (en) Overshoot suppression controller
JPH01279304A (en) Integral proportion compensator for servo control system
SU1473044A1 (en) Dc stabilizing secondary power supply source
JPH0145272Y2 (en)
JPS58140807A (en) Controller with automatic control mechanism of integral limiter
SU1317635A1 (en) Control device for a.c.electric drive
SU1325658A1 (en) Device for controlling excitation of synchronous generator
JPH01291683A (en) Method of controlling speed of motor
JPS6229802B2 (en)
JPS61121110A (en) Servo controller