JPH0471385A - Current limiting method for thyristor leonard system - Google Patents

Current limiting method for thyristor leonard system

Info

Publication number
JPH0471385A
JPH0471385A JP2182693A JP18269390A JPH0471385A JP H0471385 A JPH0471385 A JP H0471385A JP 2182693 A JP2182693 A JP 2182693A JP 18269390 A JP18269390 A JP 18269390A JP H0471385 A JPH0471385 A JP H0471385A
Authority
JP
Japan
Prior art keywords
current
time constant
signal
variation
load current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2182693A
Other languages
Japanese (ja)
Other versions
JP2673994B2 (en
Inventor
Toshimasa Tanizaki
谷崎 俊正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2182693A priority Critical patent/JP2673994B2/en
Publication of JPH0471385A publication Critical patent/JPH0471385A/en
Application granted granted Critical
Publication of JP2673994B2 publication Critical patent/JP2673994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Control Of Direct Current Motors (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To quicken response at the time of abrupt load variation by means of a current command signal and to suppress overshoot by means of a load current signal by a current limiting method which provides a quick transient response without sacrifice of steady state stability and has no difference between rising and falling response rates. CONSTITUTION:Since a current command signal I* is added to a parameter having integration time constant K1, current limiting signal kI' drops to about half level quickly immediately after variation of the current command signal I* and functions to vary the integration time constant quickly thus quickening variation of load current. The integration time constant varies quickly by an amount corresponding to half of current variation for both increase and decrease of current setting and then converges. Consequently, response time after abrupt variation of current command before settling of load current is substantially identical for both increase and decrease. When the integration time constant K1 is varied according to the average value of the load current signal I and the current command signal I* as mentioned above, variation of the integration time constant K1 can be quickened in appropriate direction as compared with the case employing only the load current I, resulting in a preferable transient response.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電動機駆動を行うサイリスタレオナード装置の
電流制限方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a current limiting method for a thyristor Leonard device that drives an electric motor.

〔従来の技術〕[Conventional technology]

直流電動機を駆動するためにサイリスタレオナード装置
が多用されているが、該装置は同じ点弧角のゲート信号
を与えても負荷電流の大きい場合(電流連続領域)と負
可電流の小さい場合(電流断続領域)とでは、その出力
電圧が異なる性質がある。
Thyristor Leonard devices are often used to drive DC motors, but even if a gate signal with the same firing angle is given, this device is difficult to operate when the load current is large (current continuous region) and when the negative current is small (current (intermittent region), the output voltage has different properties.

このことは、制御利得が負荷電流の大きさにより変化す
ること、制御系の安定性や応答の様子が負荷電流によっ
て変化することを意味し、巾広く変動する負荷に対して
安定性を保つために何らかの手段が必要になる。
This means that the control gain changes depending on the magnitude of the load current, and that the stability and response of the control system change depending on the load current. Some means will be needed.

第3図はサイリスタ1ノオナード装置の一般的な接続構
成図でこれについて説明する。
FIG. 3 is a general connection configuration diagram of a thyristor 1 non-onard device, and this will be explained.

1は交流電源、2はサイリスタブリ1.ジ、3は負荷機
を共なった直流電動機、4は負荷電流検出器、5は電流
設定器、6は加減算器、7は電流制* 御増幅器、8はゲート信号発生回路、■ は電流指令信
号、■は負荷電流信号である。
1 is an AC power supply, 2 is a thyristorby 1. 3 is a DC motor with a load device, 4 is a load current detector, 5 is a current setting device, 6 is an adder/subtractor, 7 is a current control amplifier, 8 is a gate signal generation circuit, ■ is a current command The signal ■ is the load current signal.

上記構成において、電流設定器5と負荷電流検出器4の
出力信号との差が加減算器6により得られ電流制御増幅
器7に与えられる。
In the above configuration, the difference between the output signals of the current setter 5 and the load current detector 4 is obtained by the adder/subtractor 6 and applied to the current control amplifier 7.

ゲート信号発生回路8は電流制御増幅器7の出力に対応
した点弧角のゲート信号をサイリスタブリッジ2に供給
し、サイリスタブリ、ジ2は直流電動機を駆動する。
The gate signal generation circuit 8 supplies a gate signal having a firing angle corresponding to the output of the current control amplifier 7 to the thyristor bridge 2, and the thyristor bridge 2 drives the DC motor.

第4図は、サイリスタレオナード装置の一般的P3 な制御ブロック図で、71は比例増幅器、72は積分増
幅器、73は加算器であり、第4図中第3図と同一符号
を付したものは同じ構成部品を示す。
FIG. 4 is a general P3 control block diagram of a thyristor Leonard device, in which 71 is a proportional amplifier, 72 is an integral amplifier, and 73 is an adder. The same components are shown.

* 加算器6は、電流指令信号Iと負荷電流信号工との偏差
電流信号Δ■を出力する。
*The adder 6 outputs a deviation current signal Δ■ between the current command signal I and the load current signal.

電流制御増幅器7は、利得Kpの比例増幅器71と積分
時定数KXを持つ積分増巾器72、および比例増幅器7
1と積分増幅器72の出力を加算する加算器73で構成
され、該電流制御増幅器7の出力■9は電圧指令値であ
る。
The current control amplifier 7 includes a proportional amplifier 71 with a gain Kp, an integral amplifier 72 with an integral time constant KX, and a proportional amplifier 7.
The output of the current control amplifier 7 is the voltage command value.

ゲート発生回路8は、前記電圧指令V*に相当する点弧
角αのゲートパルスを発生し、サイリスクブリッジ2は
、点弧角αのゲートパルスによりcosαに比例する直
流電圧Vを発生する。
The gate generation circuit 8 generates a gate pulse with a firing angle α corresponding to the voltage command V*, and the Cyrisk bridge 2 generates a DC voltage V proportional to cos α by the gate pulse with a firing angle α.

負荷機を共なった直流電動機3は、モータ時定数KM、
トルク係数にτ、慣性Jなどの特性定数で表すことがで
きるが詳細な説明は省略する。
The DC motor 3 with a load machine has a motor time constant KM,
Although it can be expressed by characteristic constants such as torque coefficient τ and inertia J, detailed explanation will be omitted.

前述の構成からなるサイリスタレオナード装置の一般的
な出力特性は第5図に示され、点弧角と出力電圧の関係
を示す。
The general output characteristics of the thyristor Leonard device constructed as described above are shown in FIG. 5, which shows the relationship between the firing angle and the output voltage.

第5図について説明すると、負荷電流が十分に大きく連
続している状態では、VDCは出力電圧、VINは電源
電圧として、点弧角αが変化した時の直流出力電圧は次
式になる。
Explaining FIG. 5, when the load current is sufficiently large and continuous, VDC is the output voltage, VIN is the power supply voltage, and the DC output voltage when the firing angle α changes is expressed by the following formula.

VDC= 1.35VIN X cnsα ・・・・・
・・・・・・・・・・・・・・・・・・・(1)上記の
特性は破線イに示される。しかし負荷電流が小さく連続
していない状態では、実線口や一点鎖線ハのように変化
し、この特性は負荷電流の大きさ、直流電動機の逆起電
力、直流電動機の電機子抵抗やインダクタンスにより変
化する。
VDC= 1.35VIN
・・・・・・・・・・・・・・・・・・(1) The above characteristics are shown by the broken line A. However, when the load current is small and not continuous, it changes as shown by the solid line or the dashed-dotted line C, and this characteristic changes depending on the magnitude of the load current, the back electromotive force of the DC motor, and the armature resistance and inductance of the DC motor. do.

上述のことは、負荷状態によって制御回路の安定性が変
化することを示している。
The above shows that the stability of the control circuit changes depending on the load condition.

そこで、安定性を改善するための従来の方法を制御ブロ
ック図の第6図で説明する。
Therefore, a conventional method for improving stability will be explained with reference to FIG. 6, which is a control block diagram.

第6図は第4図と同一符号を付したものは同じ構成部品
を示し、リミッタ回路93で構成された積分時定数算出
回路9が追加されたもので、該リミッタ回路93の特性
図を第7図に示す。
In FIG. 6, the same reference numerals as in FIG. 4 indicate the same components, and an integral time constant calculation circuit 9 composed of a limiter circuit 93 is added. It is shown in Figure 7.

積分時定数算出回路9は負荷電流Iに比例した喧 積分定数KXを得るが、負荷電流が連結となる状態の負
荷電流■。に対応する値以上、またオーバフローや演算
精度が極端に低下する小電流領域で、制限された電流制
限信号kIを積分増幅器72に供給し、積分増幅器72
の積分時定数を変化させる。
The integral time constant calculation circuit 9 obtains an integral constant KX proportional to the load current I, but the load current ■ is in a state where the load current is connected. The limited current limit signal kI is supplied to the integral amplifier 72 at a value higher than the value corresponding to
change the integral time constant of

本方法においては、定常的な負荷に対して良好な安定性
を示すが、次に示すように過渡応答に問題がある。
Although this method shows good stability against steady loads, it has problems with transient response as shown below.

第8図は、上述の安定性を改善した装置の過渡特性曲線
図を示したもので■は電流指令信号、■は負荷電流信号
、kIは電流制限信号を示す。
FIG. 8 shows a transient characteristic curve diagram of the above-mentioned device with improved stability, where ■ indicates a current command signal, ■ indicates a load current signal, and kI indicates a current limit signal.

先ず、時刻t1で電流指令信号Iがスアップ状に上昇す
る場合、負荷電流は未だ小さく、電流制限信号kIも十
分に大きくない。しかるに積分時定数KNも小さいため
、電流指令信号Iの変化分により電流制御増幅器7の出
力は大きく変化し急激に負荷電流は上昇し一気に電流設
定値を越えてしまう0 そこで、積分時定数Klは負荷゛直流が上昇するにつれ
て大きくなるが、サイリスタレオナード装置は、電源周
波数の電気角60度分の制御遅れをともなうため、負荷
電流は大きくオーパージニートしてしまう。
First, when the current command signal I rises in an upward trend at time t1, the load current is still small and the current limit signal kI is not large enough. However, since the integral time constant KN is also small, the output of the current control amplifier 7 changes greatly depending on the change in the current command signal I, causing the load current to rise suddenly and exceeding the current set value at once. Therefore, the integral time constant Kl is The load current increases as the direct current increases, but since the thyristor Leonard device involves a control delay of 60 electrical degrees of the power frequency, the load current becomes large and operginate.

*    − 次に、時刻t2で電流指令信号■がスアップ状に低下す
る場合、t2直後の電流制限信号kIも大きく、しかる
に積分時定数に!は大きな値で、電流制御増幅器7の出
力の急変を許さず、負荷電流■の変化的に良好な特性を
得るが、過渡的な変化時にオーパージニートが発生した
り、著しく緩やかな変化となる、また立ち上りと立ち下
りで応答速度が異なる等の欠点があった。
* - Next, when the current command signal ■ decreases in an up-like manner at time t2, the current limit signal kI immediately after t2 is also large and becomes an integral time constant! is a large value, which does not allow sudden changes in the output of the current control amplifier 7 and obtains good characteristics in terms of changes in the load current. Also, there were drawbacks such as different response speeds between rising and falling edges.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上述の不具合を解決するためになされたもので
、定常的な安定性を失うことなくかつ過渡的にも速い応
答速度をもち、また立ち上り立ち下りの応答速度に差の
ない電流制限方法を提供するものであり、具体的には電
流制御増幅器の該積分増幅器は積分時定数を可変にでき
るものとし、この積分増幅器の積分時定数を負荷電流信
号と電P7 流指令信号の平均値に比例して変化させるようにしたも
のである。
The present invention has been made in order to solve the above-mentioned problems, and is a current limiting method that has a fast response speed even in a transient state without losing steady stability, and has no difference in response speed between rising and falling edges. Specifically, the integrating amplifier of the current control amplifier has a variable integration time constant, and the integration time constant of this integrating amplifier is set to the average value of the load current signal and the current command signal. It is designed to change proportionately.

〔作 用〕[For production]

積分増幅器の積分時定数を変化させるパラメータとして
、′電流指令信号を用いて負荷急変時の応答を速くし、
かつ負荷電流信号を用いてオーバーシュートを抑制する
ことができる。また、該二つのパラメータを均等に作用
させることにより、立ち上りと立ち下りの両方の変化の
速度を同じとすることかできる。
The current command signal is used as a parameter to change the integral time constant of the integrating amplifier to speed up the response when the load suddenly changes.
Moreover, overshoot can be suppressed using the load current signal. Furthermore, by applying these two parameters equally, it is possible to make the speed of change in both the rise and fall the same.

〔実 施 例〕〔Example〕

第1図は本発明によるサイリスタレオナード装置の制御
ブロック図で、第1図中第6図と同一符号を付したもの
は同じ構成部品を示す。
FIG. 1 is a control block diagram of a thyristor Leonard device according to the present invention, in which the same reference numerals as in FIG. 6 indicate the same components.

91は加算器、92は利得(1/2)の増幅器、kI’
は電流制限信号であり、積分時定数算出回路9′は、加
算器91と利得(1/2)の増幅器92が第6図に追加
されて構成される。
91 is an adder, 92 is an amplifier with gain (1/2), kI'
is a current limit signal, and the integral time constant calculation circuit 9' is constructed by adding an adder 91 and an amplifier 92 with a gain of (1/2) to the one shown in FIG.

* 第1図では電流指令信号Iと負荷電流信号■とを加算器
91で加算し、増幅器92にて(1/2)の値を得る。
* In FIG. 1, an adder 91 adds the current command signal I and a load current signal ■, and an amplifier 92 obtains a value of (1/2).

即ち■とIとの平均値に比例した電流制限信号kI’、
l積分増幅器72に供給し、積分増幅器72の積分時定
数を変化させるものである。
That is, a current limit signal kI' proportional to the average value of ■ and I,
1 is supplied to the integrating amplifier 72 to change the integration time constant of the integrating amplifier 72.

第2図は本発明の過渡特性曲線を示したもので、kI’
は電流制限信号であり、第8図と同一符号を付したもの
は同じ構成部品を示す。
Figure 2 shows the transient characteristic curve of the present invention, kI'
is a current limit signal, and the same reference numerals as in FIG. 8 indicate the same components.

電流制限信号工”がステップ状に上昇した場合を第8図
の従来方式と比較して説明すれば、第8図に示す従来の
ものは、t1直後では小さい電流制限信号kIによる制
御のため一気に負荷電流は上昇しオーバーシュートする
If we compare the case where the current limit signal rises in a stepwise manner with the conventional system shown in Fig. 8, the conventional system shown in Fig. 8 will increase the current limit signal kI in a step immediately after t1. The load current increases and overshoots.

しかし、第2図ζこ示す今回の発明のものは、積分時定
数に!のパラメータに電流指令信号■”が加えられてい
るため、t1直後での電流制限信号kI’は速やかに約
半分迄上昇し、積分時定数の急変が抑制され、電流制御
増幅器7の出力変化を抑えることになり、負荷電流の変
化は第8図よりは緩やかになる。
However, the invention shown in Figure 2 ζ has an integral time constant! Since the current command signal "■" is added to the parameter, the current limit signal kI' immediately after t1 rises to about half, suppressing the sudden change in the integral time constant, and suppressing the output change of the current control amplifier 7. As a result, the change in load current becomes more gradual than in FIG.

次に、t2にて電流指令信号■がスアップ状に低下した
場合には、第8図に示す従来方式のものでは、t2後も
負荷電流が大きいため電流制限信号も大きいままで、制
御増幅器7の出力は緩かな変化しかできず、負荷電流も
緩やかな減少しかできない。
Next, when the current command signal ■ decreases in an upward manner at t2, in the conventional system shown in FIG. The output can only change gradually, and the load current can only decrease slowly.

しかし、第2図に示す今回の発明のものは、積分時定数
KIのパラメータに電流指令信号I*が加えられている
ため、第8図と比べて電流制限信号* kI’は、電流指令信号■の変化直後に速やかに約半分
迄低下し積分時定数の急変に作用し、負荷電流の変化を
速めている。
However, in the present invention shown in Fig. 2, the current command signal I* is added to the parameter of the integral time constant KI, so compared to Fig. 8, the current limit signal * kI' is the current command signal Immediately after the change in (2), it quickly decreases to about half, acting on a sudden change in the integral time constant, and accelerating the change in load current.

また、電流設定が上昇、低下のいずれの時にも積分時定
数は、電流変化の(1/2)相当は速やかに変化し、以
降は収束に向うため、電流指令が急変してから負荷電流
が定常に達する迄の応答時間は、上昇、低下ともほぼ同
じとなる。
In addition, when the current setting increases or decreases, the integral time constant changes rapidly for (1/2) of the current change and then tends to converge, so the load current changes after the current command suddenly changes. The response time until reaching steady state is almost the same for both rise and fall.

以上のように、積分時定数KIを負荷電流信号* ■と電流指令信号Iとの平均値により変化させることに
より負荷電流■のみにより積分時定数を決定した場合に
比べて、積分時定数Kzの変化を適切な方向に速めるこ
とができ、良好な過渡応答を得ることかできる。
As described above, by changing the integral time constant KI according to the average value of the load current signal *■ and the current command signal I, the integral time constant Kz can be changed compared to the case where the integral time constant is determined only by the load current ■. Changes can be accelerated in the appropriate direction and good transient response can be obtained.

〔効 果〕〔effect〕

以上説明したように、本発明は積分時定数KXを制御す
るに当って、負荷電流信号をフィードバック的に、電流
指令信号をフィードフォワード的に用いたことになり、
つまり、制御増幅器の積分時定数に!を負荷電流のみで
決めるのでなく、負荷電流と電流指令信号との平均値に
より決定することにより、積分時定数に■に対して電流
指令信号がフィードフォワードに作用できる。従って、
積分時定数が速やかに適切に変化し応答が速く、かつ立
ち上り、立ち下がりの応答時がほぼ同じとなる良好な応
答が得られるサイリスタレオナード装置を提供できる。
As explained above, in controlling the integral time constant KX, the present invention uses the load current signal in a feedback manner and the current command signal in a feedforward manner.
In other words, the integral time constant of the control amplifier! By determining the value not only from the load current but from the average value of the load current and the current command signal, the current command signal can act in a feedforward manner on the integral time constant. Therefore,
It is possible to provide a thyristor Leonard device in which the integral time constant changes quickly and appropriately, the response is fast, and a good response in which the rising and falling responses are almost the same can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図は本発明による制御プロ、ツク図と過渡
特性曲線を示す。 第3図と第4図は一般的なサイリスタレオナード装置の
接続構成図と制御ブロック図、第5図は一般的なサイリ
スタ1/オナード装置の出力特性曲P  11 線、第6図は安定性を改善した従来方式の制御ブロック
図、第7図はリミッタ回路の特性図、第8図は安定性を
改善した従来の過渡特性曲線図を示す・ 71 、72・・・・・・電流制御増幅器7の比例増幅
器、積分増幅器、92・・・・・・積分時定数算出回路
9′の増幅器、■・・・・・・負荷電流信号、I*・・
・・・・電流指令信号、kI・・・・・・電流制限信号
1 and 2 show control diagrams and transient characteristic curves according to the present invention. Figures 3 and 4 are the connection configuration diagram and control block diagram of a general thyristor Leonard device, Figure 5 is the output characteristic curve P 11 line of a general thyristor 1/Onard device, and Figure 6 is the stability diagram. A control block diagram of an improved conventional method, FIG. 7 shows a characteristic diagram of a limiter circuit, and FIG. 8 shows a conventional transient characteristic curve diagram with improved stability. 71, 72...Current control amplifier 7 proportional amplifier, integral amplifier, 92... amplifier of integral time constant calculation circuit 9', ■... load current signal, I*...
...Current command signal, kI...Current limit signal.

Claims (1)

【特許請求の範囲】[Claims] 1 比例増巾器と積分増巾器からなる電流制御増幅器の
該前記積分増幅器の積分時定数を、負荷電流信号と電流
指令信号の平均値に比例して変化させることを特徴とす
るサイリスタレオナード装置の電流制限方法。
1. A thyristor Leonard device characterized in that the integral time constant of the integral amplifier of a current control amplifier consisting of a proportional amplifier and an integral amplifier is changed in proportion to the average value of a load current signal and a current command signal. current limiting method.
JP2182693A 1990-07-12 1990-07-12 Thyristor Leonard device current limiting method Expired - Lifetime JP2673994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2182693A JP2673994B2 (en) 1990-07-12 1990-07-12 Thyristor Leonard device current limiting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2182693A JP2673994B2 (en) 1990-07-12 1990-07-12 Thyristor Leonard device current limiting method

Publications (2)

Publication Number Publication Date
JPH0471385A true JPH0471385A (en) 1992-03-05
JP2673994B2 JP2673994B2 (en) 1997-11-05

Family

ID=16122785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2182693A Expired - Lifetime JP2673994B2 (en) 1990-07-12 1990-07-12 Thyristor Leonard device current limiting method

Country Status (1)

Country Link
JP (1) JP2673994B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201186A (en) * 2008-02-19 2009-09-03 Ihi Corp Motor controller and motor control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169597U (en) * 1983-04-26 1984-11-13 株式会社明電舎 Elevator control circuit using thyristor Leonard

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169597U (en) * 1983-04-26 1984-11-13 株式会社明電舎 Elevator control circuit using thyristor Leonard

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201186A (en) * 2008-02-19 2009-09-03 Ihi Corp Motor controller and motor control method

Also Published As

Publication number Publication date
JP2673994B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
US4079301A (en) D.C. motor control
US4160940A (en) Method of and system for operating an induction motor
US3413534A (en) Non-regenerating dc motor regulating circuit having improved stability
JPS6115679B2 (en)
US3419777A (en) Speed regulating system providing constant loop gain
US4422022A (en) Speed control for truck
Liaw et al. A VSS speed controller with model reference response for induction motor drive
US3935520A (en) DC motor regulator
JPH0471385A (en) Current limiting method for thyristor leonard system
US3538408A (en) Synchronous motor torque compensator control
JP3235331B2 (en) Current control circuit
JPH04156288A (en) Equipment for controlling motor
JPS61106094A (en) Acceleration/deceleration control system of motor
JPH0433583A (en) Induction motor controller
JP2751059B2 (en) Motor control circuit
JPH09106303A (en) Automatic gain decision method for control system
RU1831764C (en) Procedure for automatic control of non-reversible gate electric drive speed and non-reversible direct current electric drive
JPS6056362B2 (en) Induction motor control circuit for trains
SU896733A1 (en) Electric drive with subordinate control of parameters
SU928300A1 (en) Self-tuning control system
SU1534720A2 (en) Double-zone rectifier electric drive
JPS58119004A (en) Bang-bang control method
SU1025007A1 (en) Device for control of non-reversible dc electric drive
JPS6118433B2 (en)
SU1274109A1 (en) Adjustable-frequency electric drive

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 13

EXPY Cancellation because of completion of term