JPS58118950A - Method for measuring moisture of raw material of iron manufacturing - Google Patents
Method for measuring moisture of raw material of iron manufacturingInfo
- Publication number
- JPS58118950A JPS58118950A JP201382A JP201382A JPS58118950A JP S58118950 A JPS58118950 A JP S58118950A JP 201382 A JP201382 A JP 201382A JP 201382 A JP201382 A JP 201382A JP S58118950 A JPS58118950 A JP S58118950A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- moisture content
- measuring
- temperature
- dielectric constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N22/00—Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
- G01N22/04—Investigating moisture content
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Radiation Pyrometers (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は石炭、焼結、生石灰等製鉄原料の水分含有蓋
を測定する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the moisture content of raw materials for iron making such as coal, sinter, quicklime, etc.
従来の製鉄原料(石炭、焼結、生石灰等)粉粒体の水分
含督癒を測定する方法としては、■中性子水分針(中性
子線の弾性散乱を用いる)方式、■赤外線領域での水圧
よる共鳴吸収を利用する方式、■原料中へのプローブ挿
入によるメ誘電4!−直接測定方式、■マイクロ波の透
過8反射により、水分による吸収、減衰を利用して測定
する方式がある。Conventional methods for measuring moisture retention in powdered materials such as raw materials for steelmaking (coal, sinter, quicklime, etc.) include: ■ Neutron moisture needle method (using elastic scattering of neutron beams); ■ Water pressure in the infrared region. A method that uses resonance absorption, ■Medielectricity by inserting a probe into the raw material 4! -Direct measurement method; ■Measurement method that utilizes absorption and attenuation by moisture through transmission and reflection of microwaves.
しかし、■の中性手水分針方式は安全管理上取扱いが制
限されるという難点があり、■の赤外線領域での水によ
る共鳴吸収を利用する方式は表面層の水分測定であるた
め、ヤード野積原料等原料j−厚の厚い場合には適用で
きないという欠点があり、■の誘電率直接測定方式は局
所的な測定となり広範囲の測定に適しない欠点があり、
ψのマイクロ波による測定方式は測定対象の形状(鳩厚
一定)、測定装置との位置関係に制限を受けるという欠
点があった。However, the neutral hand moisture needle method (■) has the disadvantage that its handling is restricted due to safety management, and the method (■) that uses resonance absorption by water in the infrared region measures moisture in the surface layer, so it cannot be used in yards. It has the disadvantage that it cannot be applied to thick materials such as raw materials, and the dielectric constant direct measurement method described in (■) has the disadvantage that it is a local measurement and is not suitable for wide-area measurements.
The method of measuring ψ using microwaves has the disadvantage of being limited by the shape of the object to be measured (constant pigeon thickness) and the positional relationship with the measuring device.
このように、従来の方法では、特にヤード野積み状態で
水分測定を行なう場合に広範囲の測定ができないこと、
内部状況を含めた測定ができないこと、IJjJ料粉粒
体の形状が変動する場合測定困娠等の問題があつ九。As described above, with conventional methods, it is not possible to measure a wide range of moisture, especially when measuring moisture in open yard conditions.
There are problems such as not being able to measure the internal conditions, and difficulty in measuring if the shape of the IJJJ material powder changes.
この発明は従来の前記問題を解消するためになされたも
ので、ヤード野積み状態にある原料を広範囲にわたって
内部状況も含め非接触で測定可能であり、また測定対象
の形状が変動する場合にも適用でき、さらに水分だけで
なく温度も測定できる方法を提案することを目的とする
ものである。This invention was made to solve the above-mentioned conventional problems, and it is possible to measure a wide range of raw materials piled up in a yard without contact, including the internal condition, and even when the shape of the object to be measured changes. The purpose of this study is to propose a method that can be used to measure not only moisture but also temperature.
すなわち、仁の発明は原料粉粒体中の水分含有量の変化
によ如等価誘電率が変化することに着目し、この等価誘
電率変化に伴い、原料粉粒体の放射率が変化することを
利用し、波長0.4謳以上での熱放射(輝度温度)を測
定して該粉粒体中の水分含有量と温度を測定する方法で
あり、まえ上記の水分測定方法において、垂直偏波、水
平偏波の両者の測定を交互に行なうことKよp、粉粒体
の温度および水分含有量を検出することを特徴とするも
のである。In other words, Jin's invention focused on the fact that the equivalent dielectric constant changes with changes in the water content in the raw material powder, and that the emissivity of the raw material powder changes as the equivalent permittivity changes. This is a method to measure the moisture content and temperature in the powder by measuring thermal radiation (brightness temperature) at a wavelength of 0.4 or more. This method is characterized by alternately measuring both waves and horizontally polarized waves, and detecting the temperature and moisture content of the powder and granular material.
以下、この発明法について詳細に説明する。This invention method will be explained in detail below.
第1図は測定対象物の熱放射(輝度温度)を測定する方
法の原理説明図で、(1)は測定対象物、(2)は円形
ホーンアンテナのごとき、対象物(1)からO熱放射を
受信するアンテナで、測定対象物(1)K対して観測角
−で設置される。Figure 1 is an explanatory diagram of the principle of the method for measuring thermal radiation (brightness temperature) of a measurement target. (1) is the measurement target, (2) is a circular horn antenna, etc. An antenna that receives radiation and is installed at an observation angle of - with respect to the object to be measured (1) K.
すなわち、この発明法では波*Q、4−以上での熱放射
(輝度温度)を測定することKより放射率変化をとらえ
る。輝度温度(T1)は、測定対象物の物理温度(T)
と放射率(ε)の積に比例し、T)CCT”
(1)
となる。That is, in the method of this invention, changes in emissivity are detected from K by measuring thermal radiation (brightness temperature) at waves *Q, 4- or higher. The brightness temperature (T1) is the physical temperature (T) of the object to be measured.
and emissivity (ε), T) CCT”
(1) becomes.
また、放射率(ε)は測定対象物(1)の等価誘電率(
gt)と、観測角#O関数となり、
1工/ Cat 、 #) (1)で示される
。In addition, the emissivity (ε) is the equivalent dielectric constant (
gt) and the observation angle #O function, which is expressed as 1 k/Cat, #) (1).
また、等価誘電率(at)は粉粒体の誘電率(#厖)、
水の誘電率(#W)、水分含有量(W)の関数となり、
g @ oc y (1m 、 aw 、 W) (
1)で示される。In addition, the equivalent permittivity (at) is the permittivity of the powder (#厖),
It is a function of the dielectric constant of water (#W) and water content (W),
g @ oc y (1m, aw, W) (
1).
上記(1)〜(1)式より、
丁Bcch (T、gy、gy、W、#)(■)となる
。From the above formulas (1) and (1), Ding Bcch (T, gy, gy, W, #) (■) is obtained.
ここに、粉粒体の誘電率(#、、)、水の誘電率(8w
)は既知であす、輝度温度(T1)は測定対象物(1)
の温度(T)、水分量(W)、観測角(θ)により決定
される。Here, the permittivity of powder (#, , ), the permittivity of water (8w
) is known, the brightness temperature (T1) is the measurement target (1)
It is determined by the temperature (T), moisture content (W), and observation angle (θ).
次に、平行偏波を用いる場合、第2図に示すごとく、観
測角のある範囲11では、水分(W) O影響を受けK
くく、平行偏波での放射率(It)がほとんど1に近く
、対象の温度(T)変化のみをとらえることができる。Next, when parallel polarization is used, as shown in Figure 2, in a certain observation angle range 11, K
However, the emissivity (It) for parallel polarized waves is almost 1, and it is possible to capture only changes in the temperature (T) of the object.
また、垂直偏波を用いる場合の垂直−波での放射率(ε
ρは第3図に示すととく、観測角全体にわたって水分(
W)の影響を受ける。そこで、垂直偏波および平行偏波
での輝度温度(それぞれTTI)を測定することKより
、11 ・ 12
7 ccr@a□(V)
1↓
7、cc7・町、(■)
1
から両者の差を用いて、対象物の温度変化の影響を除去
して対象物の放射率、すなわち水分含有量を測定するこ
とができる。In addition, when using vertical polarization, the emissivity (ε
As shown in Figure 3, ρ is the moisture content (
W). Therefore, by measuring the brightness temperature (TTI) in vertically polarized waves and parallel polarized waves, 11 ・ 12 7 ccr@a□ (V) 1↓ 7, cc7・machi, (■) 1 The difference can be used to measure the emissivity, or moisture content, of the object, removing the effects of temperature changes on the object.
なお、前記(1)式T1Q:T11εは、Ra+ylt
igh J@aaaO法測が成り立つ範囲で適用され
、Ray 1 @i gh−J @amsの法則 =、
、&T(、:放射輝度、λ:波長、k:ホルツマlン定
数)が1嘔以内OwI&差で成り立つ条件がほぼλ≧O
AMkである丸め、この発明では波長O#以上での熱放
射(輝度温度)を測定することとした。Note that the above formula (1) T1Q:T11ε is Ra+ylt
Ray 1 @i gh-J @ams law =,
, &T (,: radiance, λ: wavelength, k: Holtzmann's constant) is within 1 OwI & difference, and the condition is approximately λ≧O
In this invention, we decided to measure the thermal radiation (brightness temperature) at a wavelength of O# or more.
次に、この発明法を実施する丸めの装置の一例を第4図
に基づいて説明する。Next, an example of a rounding device for carrying out the method of this invention will be explained based on FIG.
(2)は前記と同じ測定対象物(1)からの熱放射を受
(iする円形ホーンアンテナで、測定対象物(1)に対
して観測角(#、)で設置される。(3)はフェリ41
回転子、(4)は受信器、(5)は同期検波器、(6)
は同期発振器を示す、すなわち、アンテナ(2)で受信
された熱放射電力はアエフイ1回転子(S)、受信器(
4)および同期検波器(5)で増幅管検波される。そし
て、同期発振i! (6)により、フェライト回転子(
3)と同期検波器(5)が一定周波数で垂直偏波、水平
偏波の切換えを行ない、両者の差を検出し、該検出値よ
り水分含有量を測定する。(2) is a circular horn antenna that receives thermal radiation from the measurement object (1) as described above, and is installed at an observation angle (#, ) with respect to the measurement object (1). (3) is Ferri 41
Rotor, (4) receiver, (5) synchronous detector, (6)
indicates a synchronous oscillator, that is, the thermal radiation power received by the antenna (2) is distributed between the AFI 1 rotor (S), the receiver (
4) and a synchronous detector (5) for amplification tube detection. And synchronous oscillation i! (6), the ferrite rotor (
3) and a synchronous detector (5) switch between vertical polarization and horizontal polarization at a constant frequency, detect the difference between the two, and measure the moisture content from the detected value.
なお、受信器(4)は受信電力が10−〜10 W程
度の微小電力であることから、一般にフVオメ−タと称
される高感度受信器が使用される。Since the receiver (4) has a very small reception power of about 10-10 W, a high-sensitivity receiver generally called a voltage meter is used.
ここで、上記装置を用い、石炭を対象にした場合の実施
例について説明する。Here, an example in which the above-mentioned apparatus is used to target coal will be described.
粉炭の誘電率は、周波数10GHz (波長30鵬)で
、gm : u、 gm =0.1 (gms= go
/−jε2)であり、水分を含んだ場合の等価誘電率#
tと水分関係は、第5図に示すごとくなる。また、観測
角θ−60”の時の垂直偏波の場合の輝度温度TBと水
分Wの関係は第6図に示すごとくなり、輝度温度分解能
ΔTN中IKの受信器での測定によl) 0.2LII
程度の精度で水分測定ができる。また、平行偏波の場合
の輝度温IQ: TBl□より石炭の温度を測定するこ
とができる。The dielectric constant of powdered coal is gm: u, gm = 0.1 (gms = go) at a frequency of 10 GHz (wavelength of 30 GHz).
/−jε2), and the equivalent permittivity when containing water is #
The relationship between t and water content is as shown in FIG. In addition, the relationship between brightness temperature TB and moisture W in the case of vertical polarization when the observation angle is θ-60'' is as shown in Figure 6, and is determined by measurement with a receiver with brightness temperature resolution ΔTN of IK. 0.2LII
Moisture can be measured with a certain degree of accuracy. In addition, the temperature of coal can be measured from the brightness temperature IQ: TBI□ in the case of parallel polarization.
以上説明したごとく、この発明法によれば、非接触で原
料の水分および温度を同時に測定することができ、特に
ヤード等野積み原料に対して長い波長帯域を用いること
により、内部状況を含めた測定も可能である。また、熱
放射受信用アンテナをスキャニングすることにより、広
範囲の測定も6倚に行なえ、原料の水分、温度適正管理
に大きく貢献し得る。As explained above, according to the method of this invention, it is possible to simultaneously measure the moisture content and temperature of raw materials without contact, and by using a long wavelength band, especially for raw materials piled up in yards, it is possible to measure the moisture content and temperature of raw materials, including internal conditions. Measurement is also possible. Furthermore, by scanning the thermal radiation receiving antenna, measurements over a wide range can be easily performed, which can greatly contribute to the proper management of moisture and temperature of raw materials.
′!A1図はこの発明の詳細説明図、@2図および第3
図はこの発明法における観測角と放射率の関係を示す図
表、第4図はこの発明法を実施するための装置の一例を
示すブロック図、第5図は同上実施例におけろ水分値と
誘電率のr!@係を示す図表、第6図は同上実施例にお
ける水分値と輝度温度の関係を示す図表である。
1・・・測定対11物、2・・・アンテナ、3・・・7
工フイト回転子、4・・・受信器、5・・・同期横波器
、6・・・同期発振4゜
出願人 住友金属工業株式会社
第1図
第2図
観遺り角θ
第3図
親却角θ
3%5図
第6図
水分W(%)′! Figure A1 is a detailed explanatory diagram of this invention, @Figure 2 and Figure 3
The figure is a chart showing the relationship between observation angle and emissivity in this invention method, Figure 4 is a block diagram showing an example of a device for implementing this invention method, and Figure 5 is a diagram showing the relationship between the observation angle and emissivity in the same example. Dielectric constant r! Figure 6 is a diagram showing the relationship between moisture value and brightness temperature in the same example. 1...Measurement pair 11 objects, 2...Antenna, 3...7
Equipment rotor, 4... Receiver, 5... Synchronous transverse wave device, 6... Synchronous oscillation 4° Applicant: Sumitomo Metal Industries, Ltd. Figure 1 Figure 2 Viewpoint angle θ Figure 3 Parent Angle of deflection θ 3% 5 Figure 6 Moisture W (%)
Claims (1)
波長が0.4■以上での熱放射を測定することにより検
出し、該検出値から測定対象物中の水分含有緻および温
度を測定することを特徴とする製鉄、dr IIA料の
水分測定方法。 2 測定対象物の誘電率変化に伴なう放射率の変化を、
波長0.4111以上での平行偏波と垂直偏波を交互に
測定することKより検出し、両者の値およびそれらの斧
を用いて測定対象物中の水分含有蓋および温度を測道す
ることを特徴とする製鉄原料の水分測定方法。[Claims] 1. Change in emissivity due to change in dielectric constant of the object to be measured,
A method for measuring moisture in steelmaking and dr IIA materials, characterized by detecting by measuring thermal radiation with a wavelength of 0.4 cm or more, and measuring the moisture content and temperature in the object to be measured from the detected value. . 2 The change in emissivity due to the change in dielectric constant of the object to be measured is expressed as
Alternately measuring parallel polarized waves and vertically polarized waves with a wavelength of 0.4111 or more. Detecting from K and measuring the moisture content and temperature in the object to be measured using both values and their axes. A method for measuring the moisture content of raw materials for steelmaking, which is characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP201382A JPS58118950A (en) | 1982-01-08 | 1982-01-08 | Method for measuring moisture of raw material of iron manufacturing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP201382A JPS58118950A (en) | 1982-01-08 | 1982-01-08 | Method for measuring moisture of raw material of iron manufacturing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58118950A true JPS58118950A (en) | 1983-07-15 |
JPS6356492B2 JPS6356492B2 (en) | 1988-11-08 |
Family
ID=11517473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP201382A Granted JPS58118950A (en) | 1982-01-08 | 1982-01-08 | Method for measuring moisture of raw material of iron manufacturing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58118950A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019032165A (en) * | 2017-08-04 | 2019-02-28 | 日本アビオニクス株式会社 | Temperature monitoring system and temperature monitoring method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220034719A1 (en) * | 2016-08-12 | 2022-02-03 | Thermowand Technologies, Inc. | Temperature Measurement by Infrared Analysis |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56145970A (en) * | 1980-04-15 | 1981-11-13 | Nippon Steel Corp | Measurement of moisture content of coke and quenching of red-hot coke by use of said measurement |
-
1982
- 1982-01-08 JP JP201382A patent/JPS58118950A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56145970A (en) * | 1980-04-15 | 1981-11-13 | Nippon Steel Corp | Measurement of moisture content of coke and quenching of red-hot coke by use of said measurement |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019032165A (en) * | 2017-08-04 | 2019-02-28 | 日本アビオニクス株式会社 | Temperature monitoring system and temperature monitoring method |
Also Published As
Publication number | Publication date |
---|---|
JPS6356492B2 (en) | 1988-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10073074B1 (en) | Low RF-band impedance spectroscopy based sensor for in-situ, wireless soil sensing | |
WO2020113671A1 (en) | System and method for detecting electromagnetic characteristic of object by using terahertz electromagnetic wave | |
Arnold et al. | Paramagnetic resonance absorption in two sulfates of copper | |
JPS58118950A (en) | Method for measuring moisture of raw material of iron manufacturing | |
Trabelsi et al. | Microwave moisture meter for granular and particulate materials | |
CN107884625A (en) | A kind of terahertz detection method based on cross-polarized antennas on piece | |
US3109988A (en) | Electromagnetic radiation monitor utilizing means responsive to all types of polarization | |
Balanis et al. | Electrical properties of eastern bituminous coal as a function of frequency, polarization and direction of the electromagnetic wave, and temperature of the sample | |
CN205404449U (en) | Grain moisture detecting system based on super broadband signal | |
O'young et al. | Survey of techniques for measuring RF shielding enclosures | |
SU1569748A1 (en) | Method of determining dielectric permittivity of sheet dielectrics | |
Vermeulen et al. | Continuous measurement of moisture in nonconducting materials | |
Hoeft et al. | Predicted shielding effectiveness of apertures in large enclosures as measured by MIL-STD-285 and other methods | |
CN107884424A (en) | A kind of detection method of core oil content and moisture content based on electromagnetic signal processing | |
Stuckey et al. | Preliminary interpretation of near-field effects on measurement accuracy in shielded enclosures | |
SU363937A1 (en) | DEVICE FOR AUTOMATIC MEASUREMENT OF PARAMETERS OF SECTION TRACTS | |
JPS57142575A (en) | Distance measuring device | |
SU1332242A1 (en) | Device for measuring the reflection factor | |
SU508760A1 (en) | "A non-contact method for measuring the concentration of charge carriers in semi-conductors on microwave 4 | |
Firdose | Electrical Parameters of the Black Soil of Marathwada Region at S-Band Microwave Frequency | |
Andrews | Omnidirectional detectors of microwaves | |
Toropainen | The use of depolarized Rayleigh scattering for measurement applications in process industry | |
Kotovich | Errors in standard devices for measuring field strength in the 30 to 600 Mc band | |
Envall et al. | Measurement of electromagnetic radiation levels from selected transmitters operating between 54 and 220 MHz in the Las Vegas, Nevada, area(Measurements of electromagnetic radiation levels from selected transmitters operating between 54 and 220 MHz and hazards analysis) | |
RU9528U1 (en) | MICROWAVE HYDROGEN OF FOOD AND BULK MATERIALS |