JPS58118220A - Preparation of biaxial orientated polyethylen terephthalate film - Google Patents

Preparation of biaxial orientated polyethylen terephthalate film

Info

Publication number
JPS58118220A
JPS58118220A JP67082A JP67082A JPS58118220A JP S58118220 A JPS58118220 A JP S58118220A JP 67082 A JP67082 A JP 67082A JP 67082 A JP67082 A JP 67082A JP S58118220 A JPS58118220 A JP S58118220A
Authority
JP
Japan
Prior art keywords
stretching
film
longitudinal
stage
extension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP67082A
Other languages
Japanese (ja)
Inventor
Tomoyuki Minami
智幸 南
Kazuhiro Tanaka
一博 田中
Takeshi Nishioka
健 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP67082A priority Critical patent/JPS58118220A/en
Publication of JPS58118220A publication Critical patent/JPS58118220A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Abstract

PURPOSE:To obtain a film of which mechanical strength in longitudinal direction is high by such an arrangement wherein a substantially non-orientation polyethylene terephthalate film is multistage extended under certain conditions, and next, the film is extended laterally, and then it is further extended longitudinally again, and at this time, the product of an extension multiple of each extension shall be made larger than 25 times. CONSTITUTION:A film made of substantially non-oriented polyethylene terephthalate is multi-stage extended so that its non-crystal orientation coefficient becomes 0.6-1.0, and its double refraction rate becomes 0.02-0.1, and next it is extended laterally at an extension multiple of 2.5-4.5 times, and further it is extended longitudinally again at an extension multiple of 1.5-2.5 times and further the product of those multiples of multi-stage extension, lateral extension and longitudinal extension shall be made larger than 25 times. By this arrangement, it is possible to stably manufacture polyethylene terephthalate film of which mechanical strength in the longitudinal direction is high.

Description

【発明の詳細な説明】 本発明は、縦方向(長さ方向)の機械的強度が高いポリ
エチレンテレフタレートフィルムを安定して製造する製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a manufacturing method for stably manufacturing a polyethylene terephthalate film having high mechanical strength in the machine direction (longitudinal direction).

従来、縦方向の機械的強度が高いフィルムを製造する方
法としては、縦、横2軸方向に延伸した二軸延伸フィル
ムを再縦延伸する方法が知られている。
Conventionally, as a method for manufacturing a film having high mechanical strength in the longitudinal direction, a method is known in which a biaxially stretched film that has been stretched in both longitudinal and transverse directions is longitudinally stretched again.

しかし、かかる従来の方法では、製造されたフィルムの
機械的強度、すなわち、F−5値は、約20[10kg
/a”で、それ以上のF−5値を有するものは安定した
製造が困難であった。
However, in such conventional methods, the mechanical strength of the produced film, that is, the F-5 value, is about 20 [10 kg
/a'' and those having an F-5 value higher than that were difficult to produce stably.

本発明の目的は、かかる従来技術の欠点を解消し、F−
5値が2500kg/の1以上のフィルムを安定して製
造することのできる方法を提供せんとするものである。
The object of the present invention is to eliminate the drawbacks of the prior art and to
It is an object of the present invention to provide a method that can stably produce one or more films having a 5 value of 2500 kg/.

CF−5(直−ワ3伸蚤時め入力)本発明は、上記目的
を達成するため次の構成。
CF-5 (direct wire 3 extension time input) The present invention has the following configuration to achieve the above object.

すなわち、実質的に配向されてないポリエチレンテレフ
タレートからなるフィルムを、非晶配向係数が0.6〜
1.0.複屈折率が0.02〜0.1となるように多段
延伸し3次いで延伸倍率2.5〜4.5倍で横延伸し、
さらに延伸倍率1.5〜2.5倍で再縦延伸し、かつ、
該多段延伸、横延伸、再縦延伸の各延伸倍数の積を25
倍以上とする二軸配向ポリエチレンテレフタレートフィ
ルムの製造方法を特徴とするものである。
That is, a film made of substantially unoriented polyethylene terephthalate has an amorphous orientation coefficient of 0.6 to
1.0. Multi-stage stretching so that the birefringence index is 0.02 to 0.1, followed by lateral stretching at a stretching ratio of 2.5 to 4.5 times,
Further longitudinal stretching is performed again at a stretching ratio of 1.5 to 2.5 times, and
The product of each stretching ratio of the multi-stage stretching, horizontal stretching, and longitudinal re-stretching is 25
The present invention is characterized by a method for producing a biaxially oriented polyethylene terephthalate film having a biaxially oriented polyethylene terephthalate film of at least twice the size of the film.

本発明に適用されるポリエチレンテレフタレートとは、
ポリエチレンテレフタレート及び20チ以下の第3成分
を含むポリエチレンテレフタレートである。また、ポリ
エチレンテレフタレートはテレフタル酸又はその機能的
誘導体及びエチレングリコール又はその機能的誘導体と
を触媒の存在下で適当な反応条件の下に結合せしめるこ
とによって合成されるが、そのポリエチレンテレフタレ
ートの重合完結前あるいは後に適当な1種又は2種以上
の第5成分を添加し、共重合又は混合ポリエステルとな
したものでもよい。共重合の適当な第3成分としてはエ
ステル形成官能基を有する化合物を挙げることができる
。又、該ポリエステル中にリン酸、亜リン酸及びそれら
のエステルなどの安定剤、酸化チタン、微粒子シリカ、
炭酸カルシウムなどの滑剤等が含まれていてもよい。な
お。
The polyethylene terephthalate applied to the present invention is
A polyethylene terephthalate containing polyethylene terephthalate and a third component of 20 or less. Furthermore, polyethylene terephthalate is synthesized by combining terephthalic acid or its functional derivative with ethylene glycol or its functional derivative in the presence of a catalyst under appropriate reaction conditions, but before the polymerization of the polyethylene terephthalate is completed, Alternatively, one or more appropriate fifth components may be added later to form a copolymerized or mixed polyester. Suitable third components for copolymerization include compounds having ester-forming functional groups. In addition, stabilizers such as phosphoric acid, phosphorous acid and their esters, titanium oxide, fine particle silica,
It may also contain a lubricant such as calcium carbonate. In addition.

ポリエチレンテレフタレートの好ましい固有粘度は04
〜1.0であり、更に好ましくは0855〜0.8であ
る。
The preferred intrinsic viscosity of polyethylene terephthalate is 04
-1.0, more preferably 0855-0.8.

実質的に配向されてないフィルムとは、溶融した上記ポ
リエチレンテレ7タレートをフィルム(またはシート)
状として冷却ドラム上に押出し冷却固化せしめたもので
、配向を付与するための延伸がなされてないものである
A film that is not substantially oriented is a film (or sheet) made of the above-mentioned melted polyethylene tere-7 tallate.
It is extruded onto a cooling drum as a shape, cooled and solidified, and is not stretched to impart orientation.

実質的に配向されてないポリエチレンテレフタとなるよ
うに多段延伸するには、ロールの周速差を利用する多段
延伸において、最初の1段目は。
In order to carry out multi-stage stretching to obtain substantially unoriented polyethylene terephthalate, in the multi-stage stretching that utilizes the difference in circumferential speed of the rolls, the first stage is as follows.

延伸温度を110〜150°C1好ましくは115〜1
65°C9延伸倍率を1.3〜3,0倍、好ましくは1
,5〜2.5倍とし、続く2段目または2段目以温度よ
り低い、温度、延伸倍率を2.0〜40倍、好ましくは
2.0〜3.0倍の範囲内として延伸する。
The stretching temperature is 110-150°C, preferably 115-1
65°C9 stretching ratio 1.3 to 3.0 times, preferably 1
, 5 to 2.5 times, and the temperature and stretching ratio are lower than the temperature of the subsequent second or second stage, and the stretching ratio is within the range of 2.0 to 40 times, preferably 2.0 to 3.0 times. .

最初の1段目の温度および/あるいは2段目の温度を、
該温度範囲以下に低下させると複屈折率が0,1を越え
る。また、最初の1段目の温度および/あるいは2段目
の温度を、該温度範囲以上に上昇させると、非晶配向係
数は0.6以下になる。
The temperature of the first stage and/or the temperature of the second stage,
When the temperature is lowered below this range, the birefringence index exceeds 0.1. Further, when the temperature of the first stage and/or the temperature of the second stage is increased above the above temperature range, the amorphous orientation coefficient becomes 0.6 or less.

非晶配向係数および複屈折率が先に述べた範囲外となる
場合は、続く横、再縦延伸時に破断のためフィルムが得
られないか、フィルムが得られても物性的1品質的に不
十分であったり、不均一であったりする。
If the amorphous orientation coefficient and birefringence index are outside the ranges mentioned above, the film may not be obtained due to breakage during the subsequent transverse and longitudinal stretching, or even if a film is obtained, it may be defective in physical properties or quality. It may be sufficient or it may be uneven.

での延伸を組み合せることにより、一方向延伸膜の結晶
化は進まないが、非晶部のみを高配向にできたものと推
定され、これが高強力化と、安定した製造に寄与してい
ると考えられる。
Although the crystallization of the unidirectionally stretched film does not proceed, it is presumed that only the amorphous portion can be highly oriented by combining the stretching with the unidirectionally stretched film, which contributes to high strength and stable manufacturing. it is conceivable that.

なお、非晶配向係数、複屈折率は次の測定方法による。Note that the amorphous orientation coefficient and birefringence are determined by the following measurement method.

(1)非晶配向係数 ポリエステルフィルムを螢光剤(Mikephor F
!’rN)を含む水浴中に55℃で浸漬、風乾し、この
サンプルを日本分光■製F OM −1偏光光度計でフ
ィルム面内における偏光螢光強度を求め、以下の定義に
従って非晶配向係数(F)を求めたものである。
(1) The amorphous orientation coefficient polyester film was coated with a fluorescent agent (Mikephor F
! The sample was immersed in a water bath containing 'rN) at 55°C and air-dried, and the polarized fluorescence intensity in the film plane was determined using a JASCO ■ FOM-1 polarimeter, and the amorphous orientation coefficient was determined according to the definition below. (F) was obtained.

F:非晶配向係数 A:縦方向の偏光螢光強度 B:横方向の偏光螢光強度 (2)  複屈折率 偏光顕微鏡にペレックコンペンセーターヲ使用して、サ
ンプル採取後温度25℃、相対湿度65チで測定したも
のである。
F: Amorphous orientation coefficient A: Vertical polarized fluorescence intensity B: Lateral polarized fluorescence intensity (2) Birefringence Using a Pellec compensator on a polarizing microscope, the sample was collected at a temperature of 25°C and relative humidity. It was measured at 65 inches.

横延伸は、フィルムの両端をり替ツブではさんで延伸す
るいわゆるテンターを用いるが、その延伸倍率を2.5
〜4.5倍、延伸温度をフィルムの2次転移点から5℃
高い温度〜13(]’0の範囲内として延伸する。
For transverse stretching, a so-called tenter is used, which stretches the film by sandwiching both ends of the film between replacement tubes, and the stretching ratio is set to 2.5.
~4.5 times, stretching temperature 5℃ from the second transition point of the film
Stretch at a high temperature to 13(]'0).

再縦延伸は、°多段縦延伸と同様に、ロール間の周速差
を利用して延伸するが、その延伸倍率を1.5なお、再
縦延伸の延伸段数は1段でよいが、多段とするのがより
好ましい。また、全縦延伸倍率(多段縦と前縦の両延伸
倍率の積)を6.0〜12.0倍とするのが好ましい。
Re-longitudinal stretching is performed using the difference in circumferential speed between rolls in the same way as multi-stage longitudinal stretching, but the stretching ratio is 1.5.The number of stretching stages for re-longitudinal stretching may be one, but multi-stage It is more preferable that Further, it is preferable that the total longitudinal stretching ratio (the product of both the multi-stage longitudinal stretching ratio and the front longitudinal stretching ratio) is 6.0 to 12.0 times.

捷た。多段延伸、横延伸、再縦延伸の各延伸倍数の積(
全面積延伸倍率)は25倍以上、好ましくは28倍以上
でなければならない。この倍率以下では、高強力化のフ
ィルムが得られない。
I cut it. Product of each stretching ratio of multi-stage stretching, horizontal stretching, and longitudinal re-stretching (
The total area stretching ratio) must be 25 times or more, preferably 28 times or more. Below this magnification, a film with high strength cannot be obtained.

なお、上記条件で延伸されたフィルムは1次いで処理温
度を150〜240℃の範囲内として熱固定すると、1
0Ω゛Cにおける縦方向の熱収縮率が25係以下となり
、さらに縦方向の剛性を高めることができる。
In addition, the film stretched under the above conditions is then heat-set at a treatment temperature within the range of 150 to 240°C.
The thermal shrinkage rate in the longitudinal direction at 0Ω゛C is 25 coefficients or less, and the rigidity in the longitudinal direction can be further increased.

上述した方法を取る本発明の製造方法は9次のごとき優
れた効果を奏する。
The manufacturing method of the present invention, which employs the above-mentioned method, has the following excellent effects.

11)  縦方向のF−5値2500kg/■3以上の
フィルムが安定して製造できる。
11) Films with a longitudinal F-5 value of 2500 kg/■3 or more can be stably produced.

+21  熱固定を施すことによって、高強力で寸法安
定性のよいフィルムとすることができる。
+21 By applying heat setting, a film with high strength and good dimensional stability can be obtained.

本発明によって得られたフィルムは、磁気記録H料のベ
ース、コンデンサーの誘電体、印字用材料等の極めて薄
いフィルムを要する用途に適しているが、特に磁性材を
蒸着するタイプの磁気記録体のベースフィルムに適して
いる。
The film obtained by the present invention is suitable for applications requiring extremely thin films such as bases for magnetic recording materials, dielectrics for capacitors, and printing materials, but is particularly suitable for applications requiring extremely thin films such as bases for magnetic recording materials, dielectric materials for capacitors, and printing materials. Suitable for base film.

以下に実施例によって本発明を更に詳細に説明するが1
本発明はこれらの実施例のみに限定されるものではない
The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited only to these examples.

実施例1〜3 IVo、65のポリエチレンテレフタレートを290℃
で溶融押出後、急冷し実質的に非晶状のンートを作った
。これを多段のニップロールの周速差を利用して、lず
縦方向に第1段目として130°Cで1.・7倍延伸後
、連続して縦方向に第2段目として110 ’Cで2.
3倍延伸した。
Examples 1-3 Polyethylene terephthalate with IVo of 65 at 290°C
After melt extrusion, it was rapidly cooled to produce a substantially amorphous piece. Using the difference in circumferential speed of the multi-stage nip rolls, this was processed as the first stage in the longitudinal direction at 130°C.・After stretching 7 times, it was continuously stretched in the longitudinal direction for 2.
It was stretched 3 times.

得られた縦延伸フィルムの非晶配向係数は0.72 。The amorphous orientation coefficient of the obtained longitudinally stretched film was 0.72.

複屈折率Δnは0.028.密度は1.3435であっ
た。次にテンター内で110℃で横方向に55倍延伸し
た。これを更に2対のニップロールで。
Birefringence Δn is 0.028. The density was 1.3435. Next, it was stretched 55 times in the transverse direction at 110° C. in a tenter. Do this with two more pairs of nip rolls.

150℃、3000チ/分の条件下で第1表−1の実施
例1〜3に示す倍率に相当する所定の延伸を行ない、2
00℃で緊張熱固定を施した。フィルムの最終厚みは7
〜9ミクロンであった(全面積延伸倍率によって変動)
A predetermined stretching process corresponding to the magnification shown in Examples 1 to 3 in Table 1-1 was carried out at 150°C and 3000 inches/min.
Tension heat fixation was performed at 00°C. The final thickness of the film is 7
~9 microns (varies depending on total area stretching ratio)
.

第1表−2に示すように再縦延伸倍率と共に縦方向のF
 −5値は向上し、2500襠/l!l ’以上の高強
力フィルムが得られる。また100℃、30分加熱時の
熱収縮率は2,5チ以下であった。再縦延伸倍率は2.
3倍でもほとんど破れかなく安定して製造できだが、2
,7倍以上で破れが多発する。実施例1〜3の全面積倍
率はいずれも25倍以上に達し、実施例6では61.5
倍に達している。
As shown in Table 1-2, along with the longitudinal re-stretching ratio, F
-5 value has improved to 2500/l! A high strength film with a strength of 1' or more can be obtained. Further, the thermal shrinkage rate when heated at 100° C. for 30 minutes was 2.5 inches or less. The re-longitudinal stretching ratio is 2.
Although it can be manufactured stably with almost no tearing even at 3 times the size, 2
, ruptures occur frequently at 7 times or more. The total area magnification of Examples 1 to 3 all reached 25 times or more, and in Example 6 it was 61.5.
It has doubled.

実施例4〜6 実施例1〜6と同様に延伸を行なった。但し。Examples 4-6 Stretching was performed in the same manner as in Examples 1 to 6. however.

最初の縦延伸において第1段目として130℃で18倍
、第2段目として116℃で2.5倍延伸した。得られ
た縦延伸フィルムの非晶配向係数は081、複屈折率Δ
nは0.041.密度は1.3446であった。再縦延
伸倍率は、第1表−1に示す倍率にした。再縦延伸倍率
が2.5倍以上で破れが多発するが、実施例4〜乙に示
すように全面積倍率はいずれも25倍以上であり、実施
例6では36.2倍であった。
In the first longitudinal stretching, the first stage was 18 times stretching at 130°C, and the second stage was 2.5 times stretching at 116°C. The obtained longitudinally stretched film had an amorphous orientation coefficient of 081 and a birefringence Δ
n is 0.041. The density was 1.3446. The longitudinal re-stretching ratio was as shown in Table 1-1. When the longitudinal re-stretching magnification was 2.5 times or more, tearing occurred frequently, but as shown in Examples 4 to B, the total area magnification was all 25 times or more, and in Example 6 it was 36.2 times.

第1表−2に示すように再縦延伸倍率と共に縦方向のF
−5値は向上し、いずれも縦方向のF−5値が2500
kg/■2以上の高強力フィルムが安定して得られる。
As shown in Table 1-2, along with the longitudinal re-stretching ratio, F
-5 value has improved, both vertical F-5 values are 2500
A high strength film with a strength of 2 kg/cm2 or more can be stably obtained.

また100℃、60分加熱時の熱収縮率は2,5チ以下
であった。
Further, the thermal shrinkage rate when heated at 100° C. for 60 minutes was 2.5 inches or less.

比較例1,2.7 いずれも縦(−膜性)−横一前縦延伸法で、最初の縦延
伸を一段で実施したものである。比較例1は縦−横延伸
で実施される縦延伸条件、すなわち低温で一挙に高倍率
延伸する場合を示しているが、得られた縦延伸フィルム
は複屈折率Δnが0、1を越えるため、再縦延伸時の延
伸性が劣り。
Comparative Examples 1 and 2.7 In both cases, the first longitudinal stretching was carried out in one step using the longitudinal (-membrane)-lateral longitudinal stretching method. Comparative Example 1 shows the longitudinal stretching conditions carried out in longitudinal-lateral stretching, that is, the case of high-magnification stretching at a low temperature, but since the obtained longitudinally stretched film has a birefringence Δn exceeding 0.1. , poor stretchability during longitudinal re-stretching.

高強力フィルムが得られない。比較例2は、最初の縦延
伸倍率を抑え、再縦延伸倍率を上昇させることを試みた
ものであるが、非晶配向係数が低く高強力フィルムが得
られない。比較例7は、最初の延伸を高温度で高延伸倍
率で実施した例であるが、非晶配向係数、複屈折率とも
低く、高強力フィルムが得られない。いずれも全縦倍率
6倍以下でフィルム破れが発生し、全面積倍率も25倍
に達しない。
High strength film cannot be obtained. In Comparative Example 2, an attempt was made to suppress the initial longitudinal stretching ratio and increase the re-longitudinal stretching ratio, but the amorphous orientation coefficient was low and a high strength film could not be obtained. Comparative Example 7 is an example in which the initial stretching was performed at a high temperature and a high stretching ratio, but both the amorphous orientation coefficient and the birefringence were low, and a high strength film could not be obtained. In all cases, film tearing occurred at a total vertical magnification of 6x or less, and the total area magnification did not reach 25x.

比較例3〜6 縦(2段)−横一前縦延伸法で、縦延伸フィルムの特性
が本発明の条件を満足させない例である。
Comparative Examples 3 to 6 These are examples in which the characteristics of the longitudinally stretched film do not satisfy the conditions of the present invention in the longitudinal (two-stage) - transverse one-front longitudinal stretching method.

比較例5は低温度で最初の縦延伸を2段で実施した例を
示すが、複屈折率が上昇しすぎて再縦延伸時の延伸性が
劣り、高強力化フィルムが得られない。比較例4は最初
の縦延伸を2段とも高温度にしたため非晶配向係数、複
屈折率ともに低く、高強力化フィルムが得られない。比
較例5は第1段の縦延伸を低温に、第1段目を高温にし
たため。
Comparative Example 5 shows an example in which the first longitudinal stretching was carried out in two stages at a low temperature, but the birefringence increased too much and the stretchability upon re-longitudinal stretching was poor, making it impossible to obtain a highly strong film. In Comparative Example 4, the initial longitudinal stretching was carried out at a high temperature in both stages, so both the amorphous orientation coefficient and the birefringence were low, and a highly strong film could not be obtained. In Comparative Example 5, the first stage longitudinal stretching was performed at a low temperature and the first stage was performed at a high temperature.

非晶配向係数があがらなく、高強力化フイ−ルムが得ら
れない。比較例6は、最初の縦延伸倍率が低いため、複
屈折率が低く、高強力フィルムが得られない。なお比較
例1〜7のいずれも熱収縮率が大きく、好ましくない。
The amorphous orientation coefficient does not increase, and a highly strengthened film cannot be obtained. In Comparative Example 6, since the initial longitudinal stretching ratio is low, the birefringence is low and a high strength film cannot be obtained. Note that all of Comparative Examples 1 to 7 have large thermal shrinkage rates, which is not preferable.

実施例7 実施例6と同様の方法の延伸条件で2段縦延伸−横延伸
を実施した。続いて多段の再縦延伸ロールで、第1段目
の再縦延伸を150 ’cで1・5倍。
Example 7 Two-stage longitudinal stretching and transverse stretching were carried out under the same stretching conditions as in Example 6. Next, with multi-stage longitudinal re-stretching rolls, the first stage longitudinal re-stretching was performed at 150'c to 1.5 times.

第2段目の再縦延伸を155°Cで1.6倍延伸した。The second stage of longitudinal re-stretching was carried out at 155°C by 1.6 times.

全縦倍率は108倍、全面積倍率は37.8倍であった
。縦方向のF−5値は5960kg/。箕であり。
The total longitudinal magnification was 108 times, and the total area magnification was 37.8 times. The F-5 value in the longitudinal direction is 5960 kg/. It's a winnow.

縦方向の熱収縮率は2.24 %であり、高強力フィル
ムが得られた。
The heat shrinkage rate in the machine direction was 2.24%, and a high strength film was obtained.

手  続  補  正  書 畦 ”167、’A、29” 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和57年特許願第  670 号 2、発明の名称 二軸配向ポリエチレンテレフタレートフィルムの製造方
法3、補正をする者 事件との関係 特許出願人 住 所  東京都中央区日本橋室町2丁目2番地名称 
(515)東し株長会社 4、補正命令の日付 自発 5、補正により増加する発明の数 なしく1)  明細
書 第6頁下から2行目「150℃」を「170℃」と
補正する。
Procedural amendments ``167, 'A, 29'' Director of the Patent Office Kazuo Wakasugi 1, Indication of the case Patent Application No. 670 of 1982 2, Name of the invention Method for manufacturing biaxially oriented polyethylene terephthalate film 3 , Relationship to the case of the person making the amendment Patent applicant address 2-2 Nihonbashi Muromachi, Chuo-ku, Tokyo Name
(515) Toshi Stock Company 4, Date of amendment order Voluntary 5, Number of inventions increased by amendment None 1) Specification, page 6, second line from the bottom, “150°C” is amended to “170°C” .

(2)  同 第13頁第1表−1“非晶配向係数″の
欄の”比較例1″の行 [0,51Jを「0.96Jと補正する。
(2) Correct the row [0.51J of ``Comparative Example 1'' in the ``Amorphous Orientation Coefficient'' column of Table 1-1 on page 13 to ``0.96J''.

(3)同 第13頁第1表−1“非晶配向係数″の欄の
“比較例3″の行 「0.54Jを[0,87Jと補正する。
(3) The line "0.54J" in "Comparative Example 3" in the "Amorphous Orientation Coefficient" column of Table 1-1 on page 13 is corrected to [0.87J.

Claims (1)

【特許請求の範囲】[Claims] fil  実質的に配向されてないポリエチレンテレフ
タレートからなるフィルムを、非晶配向係数が06〜1
.0.複屈折率が0.02〜0.1となるように多段延
伸し9次いで延伸倍率2.5〜4.5倍で横延伸し、さ
らに延伸倍率1.5〜2.5倍で再縦延伸し、かつ、該
多段延伸、横延伸、再縦延伸の各延伸倍数の積を25倍
以上とすることを特徴とする二軸配向ポリエチレンテレ
フタレートフィルムの製造方法。
fil A film made of substantially unoriented polyethylene terephthalate has an amorphous orientation coefficient of 06 to 1.
.. 0. Multi-stage stretching so that the birefringence index is 0.02 to 0.1, then transverse stretching at a stretching ratio of 2.5 to 4.5 times, and further longitudinal stretching at a stretching ratio of 1.5 to 2.5 times. A method for producing a biaxially oriented polyethylene terephthalate film, characterized in that the product of each stretching ratio of the multi-stage stretching, transverse stretching, and longitudinal re-stretching is 25 times or more.
JP67082A 1982-01-06 1982-01-06 Preparation of biaxial orientated polyethylen terephthalate film Pending JPS58118220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP67082A JPS58118220A (en) 1982-01-06 1982-01-06 Preparation of biaxial orientated polyethylen terephthalate film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP67082A JPS58118220A (en) 1982-01-06 1982-01-06 Preparation of biaxial orientated polyethylen terephthalate film

Publications (1)

Publication Number Publication Date
JPS58118220A true JPS58118220A (en) 1983-07-14

Family

ID=11480174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP67082A Pending JPS58118220A (en) 1982-01-06 1982-01-06 Preparation of biaxial orientated polyethylen terephthalate film

Country Status (1)

Country Link
JP (1) JPS58118220A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140028A (en) * 1983-01-18 1984-08-11 Diafoil Co Ltd Preparation of polyester film
JPS6061233A (en) * 1983-09-13 1985-04-09 Diafoil Co Ltd Manufacture of biaxially oriented polyester film
JPS60176743A (en) * 1984-02-23 1985-09-10 Diafoil Co Ltd Manufacture of biaxially oriented polyester film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140028A (en) * 1983-01-18 1984-08-11 Diafoil Co Ltd Preparation of polyester film
JPH0379178B2 (en) * 1983-01-18 1991-12-18 Daiafoil
JPS6061233A (en) * 1983-09-13 1985-04-09 Diafoil Co Ltd Manufacture of biaxially oriented polyester film
JPH0427016B2 (en) * 1983-09-13 1992-05-08 Daiafoil
JPS60176743A (en) * 1984-02-23 1985-09-10 Diafoil Co Ltd Manufacture of biaxially oriented polyester film

Similar Documents

Publication Publication Date Title
JPS58118220A (en) Preparation of biaxial orientated polyethylen terephthalate film
JPS60262624A (en) Stretching method of polyester film
KR0140299B1 (en) Process for preparing biaxially oriented polyester film
KR0173730B1 (en) Manufacturing method of biaxially oriented polyester film
JP2992586B2 (en) Method for producing biaxially oriented polyester film
JPS59159319A (en) Manufacture of uniaxially stretched polyester film
JP2569471B2 (en) Method for producing toughened polyester film
KR0140300B1 (en) Process for preparing biaxially oriented polyester film
KR0140294B1 (en) Process for preparing biaxially oriented polyester film
KR0140295B1 (en) Process for preparing biaxially oriented polyester film
JP2611413B2 (en) Method for producing high-strength polyester film
KR0140309B1 (en) Process for preparing biaxially oriented polyester film
KR0140311B1 (en) Process for preparing biaxially oriented polyester film
JPS5843253B2 (en) Polyester fig film
JPH02130125A (en) Production of polyester film
KR0140310B1 (en) Process for preparing biaxially oriented polyester film
JPS58140221A (en) Manufacture of polyethyleneterephtharate film
JP2679234B2 (en) Method for producing polyester film
KR0173728B1 (en) Manufacturing method of biaxially oriented polyester film
KR0173727B1 (en) Manufacturing method of biaxially oriented polyester film
KR100258571B1 (en) Process for the preparation of biaxially oriented polyester film having good thickness uniformity
JPH01188322A (en) Stretching molding method of polyester film
JPH0369294B2 (en)
KR100258569B1 (en) Process for the preparation of biaxially oriented polyester film having good thickness uniformity
KR100258568B1 (en) Process for the preparation of biaxially oriented polyester film having good thickness uniformity