JPS5811813A - Flow meter - Google Patents

Flow meter

Info

Publication number
JPS5811813A
JPS5811813A JP11025981A JP11025981A JPS5811813A JP S5811813 A JPS5811813 A JP S5811813A JP 11025981 A JP11025981 A JP 11025981A JP 11025981 A JP11025981 A JP 11025981A JP S5811813 A JPS5811813 A JP S5811813A
Authority
JP
Japan
Prior art keywords
fluid
flow
pipe
tube
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11025981A
Other languages
Japanese (ja)
Inventor
Katsuyuki Osawa
大沢 克幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP11025981A priority Critical patent/JPS5811813A/en
Publication of JPS5811813A publication Critical patent/JPS5811813A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/44Venturi tubes

Abstract

PURPOSE:To prevent the influence of disturbance upon a flow of fluid in a flow passage, and to improve measurement precision, by arranging a splitter vane on the fluid exit side of the 2nd pipe with a slight interval to the flow passage wall of the pipe. CONSTITUTION:A splitter vane 18 has its upstream-side edge more at the downstream side in the flow passage of the 2nd pipe 7 than the opening 14 of a flow passage 16, and also has its one flank 20 at slight distance from the flow passage wall of the pipe 7. Further, its downstream-side edge is provided a little bit more on the upstream side than the opening 15 of the passage 16 in the flow passage wall of the 1st pipe in such a way that one flank 20 faces the opening 15. Then, even if disturbance is generated on the upstream or downstream side of the flow passage, a flow of fluid specially near the fluid exit 9 of the pipe 7 is stabilized without the influence of the disturbance.

Description

【発明の詳細な説明】 本発明は流量計の内部流路を流nる流体の振動全利用し
て流足ヲ計測する流titの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a flowmeter that measures the flow rate by fully utilizing vibrations of a fluid flowing through an internal flow path of a flowmeter.

かかる流を針は流路内に発生せしめた流体のfii動現
象が流体の流速とほぼ比例関係にある性質を利用し、そ
の振動数を計測することによって流速を知り、間接的に
流ltを測矩するものであって、従来カルマン渦全安定
、フルイブイック流量計、渦才差型流倉計が知らtして
いる。
The needle uses the property that the fii dynamic phenomenon of the fluid generated in the flow path is almost proportional to the flow velocity of the fluid, measures the frequency of the vibration, determines the flow velocity, and indirectly calculates the flow lt. These are conventionally known as Karman vortex fully stabilized, full buoyancy flowmeters, and vortex precession type flowmeters.

これら流体振動を、vU用する流量計は他の型式の流量
針、例えは絞り流量計や熱線式流量計に比較すると、測
定誤差が少い特長を有する0即ち絞シ流重計においては
絞シ部での圧力全検出するために、圧力センサの出力と
流量との関係が二次の関係となシ、低流蓋域での検出誤
差か大きいo筺た熱線式流量計は熱線を利用して流4を
直接測定するので時間的応答性を重視すnばセンサは細
い小型のものとなり耐久性が悪く、また直線化器等の電
気的演算全必要とするなど、計算表示処理が複雑になる
Compared to other types of flowmeters, such as iris flowmeters and hot wire flowmeters, flow meters that use vU have the advantage of having fewer measurement errors. In order to detect the entire pressure at the bottom, the relationship between the output of the pressure sensor and the flow rate is quadratic, and the detection error in the low flow area is large.The hot wire flowmeter uses a hot wire. Since the flow 4 is directly measured, emphasis is placed on temporal response.If the sensor is thin and small, its durability is poor, and the calculation display process is complicated, as it requires all electrical calculations such as a linearizer. become.

こ几に対して流体振動をオ0用1−た流量計に2いては
、圧力全検出する場合でも流速を検出する場付でも、そ
の時間的変動の周期全測定すnはよいため、センサ自身
の出力精度は要求さnず、しかも測定した時間的変動の
周期は流速または流量に一次的に比例する関係にあるた
め、流1の演算は極めて簡単であシ、装置も安価に構成
することができる0 ところでカルマン渦流量計は、流路中に鈍wj4物体會
設け、その背後に発生するカルマン渦の発生周期を計測
する方式のものであ勾ため、カルマン渦を安定して発生
させるためには鈍v4物体の形状、構造全流路や流体に
仕わせて設計筐たは選択した)、場合によつCは鈍頭物
体内に流体通路を設け、あるいは鈍頭物体と流路壁との
関係全適切化するなど、理論的には極めて明快であって
も、実際にカルマン渦全安定して発生させるための構成
に困難を伴う。フルイブイック流量計は主流体の流路の
側壁にR象的にフィードバックルーズの開口を設け、該
フィードバックループを通じて主流体の流路に噴出せし
める制御流によ′り”C主流体を流路の左右側室に盪動
的に付層するように流し、七の振動周Mk検出する方式
であるため、流体振動は安定するが、左右側壁への付層
流を安定して発振させるためにはフィードバックループ
を通じて噴出する制御流が主流に対して十分な影響力t
もつ必要があるため、−主流路の径は比較的小径の小流
量用の流量針には適するが大流重用には適さない。
When using a flow meter that uses fluid vibrations for this device, it is good to measure the entire cycle of temporal fluctuations, whether the sensor is detecting the entire pressure or the flow velocity. Since output accuracy is not required, and the period of the measured temporal fluctuation is linearly proportional to the flow velocity or flow rate, calculation of flow 1 is extremely simple, and the device can be constructed at low cost. By the way, the Karman vortex flowmeter is a method that measures the generation period of the Karman vortex that is generated behind a blunt wj4 body in the flow path. For this purpose, the shape of the blunt V4 body, the structure of the entire flow path and the fluid must be designed or selected), depending on the case. Even if it is very clear in theory, such as optimizing the relationship with the wall, it is actually difficult to configure the structure to generate a Karman vortex in a completely stable manner. A full-width flowmeter has a feedback loose opening in the side wall of the main fluid flow path in an R-shaped pattern, and uses a controlled flow to jet the main fluid into the main fluid flow path through the feedback loop. The fluid vibration is stable because the flow is dynamically layered in the side chamber and the vibration frequency Mk is detected, but a feedback loop is required to stably oscillate the layered flow to the left and right side walls. The control flow ejected through has sufficient influence on the mainstream t
Since the diameter of the main flow path is relatively small, it is suitable for a flow rate needle for a small flow rate, but is not suitable for a large flow rate.

また渦才差型流量計な、ベンチュリ円に旋回流全発生さ
せる必要がるることから、入口部に旋回流発生用ガイド
を設けるため、このガ・fドが流体の流nの抵抗となフ
、構造的にも複雑となる。
In addition, since it is necessary for a vortex precess flowmeter to generate all the swirling flow in the Venturi circle, a guide for generating swirling flow is provided at the inlet, and this guide acts as a resistance to the fluid flow n. , it becomes structurally complex.

本発明は上記流体振動を利用した流量針であって、構造
が簡単で安定した流体振動を発生せしめ、大流量にも小
流量にも適し、圧力損失が少く、かつ流体振動を安定的
に持続せしめる流量計を提供 5− すること全目的とする。
The present invention is a flow rate needle that utilizes the fluid vibration, which has a simple structure, generates stable fluid vibration, is suitable for both large and small flow rates, has little pressure loss, and stably maintains fluid vibration. The overall purpose is to provide a flow meter that will

さらに本発明は流体振動の周期を検出し、これを表示す
る小型@宜の流量計を提供すること金目的とするもので
ある。
A further object of the present invention is to provide a compact flow meter that detects and displays the period of fluid vibration.

第1図および第2図は本発明の流tItI′の原理を模
式的に示した断面図である。図において符号1は流体人
口2と流体出口6とを形成した第1の管であって、線管
1の流体人口2から流体出口3に至る流路は第1の円筒
状面4、截頭円錐面5、前記第1の円筒状面4よシ小径
の第2の円筒状面6がそ扛ぞn同心的に順次接続されて
形成さnている。符号7は流体人口8と流体出口9とを
形成した第2の管であって、線管7の流体人口8から流
体出口9に至る流路の壁は線管7の中心軸を含む面内で
弧状に彎曲した弧状壁10に形成さ扛ておシ、該弧状壁
10で囲まnた流路はその中心軸に垂直な面内に2ける
断面状が、流体人口8と流体出口9を結ぶ中心軸のほぼ
中央部に位置せしめらnている。前記第2の管7は前記
流路の敢小断面槓部の胃壁に、L字状に形成された支持
パイプ116− の一端全前記管7の直径方向の孔12に嵌合せしめると
ともに、前記支持パイプ11の他端を前記第1の管1に
穿設せしめた孔16に嵌合せしめ、前記第20管7を前
記第1の管1の流路内に同心的に位置せしめる0また前
記管1に穿設せしめた孔16は前記管1の截頭円錐面5
と第2の円筒状面6との接続部付近の円筒状面乙に形成
せしめた開口15に連通せしめらn、、該開口15と前
記開口14との間の支持パイプ11および孔16の内腔
に流体通路16全形成し、該流体通路16によp、前記
第2の管7の流路の最小前面横部と前記第1の管1の#
、IJ@の前記第2の管7の流体出口部付近と金結ぶ0
前記第2の管7の流体出口9は開口15付近に位置する
ように、宮7tl−叉持パイブ11により第1の菅1に
支持せしめるO上記のように構成さnfc流瀘計に2い
て、第1の管1の流路内金流体が滑らかに流tた1曾の
流線は第1図に示すようになシ、第2の管7の流路全光
nる流体はその流路の最小断面&都における流速が最大
となり、流体出口9に至るに従い流路断面積は次第に拡
大さn、流速は次第に減少する。
1 and 2 are cross-sectional views schematically showing the principle of the flow tItI' of the present invention. In the figure, reference numeral 1 denotes a first pipe forming a fluid outlet 2 and a fluid outlet 6, and a flow path from the fluid outlet 2 to the fluid outlet 3 of the line tube 1 has a first cylindrical surface 4, a truncated A conical surface 5 and a second cylindrical surface 6 having a smaller diameter than the first cylindrical surface 4 are successively connected concentrically. Reference numeral 7 denotes a second pipe that forms a fluid population 8 and a fluid outlet 9, and the wall of the flow path from the fluid population 8 to the fluid outlet 9 of the line tube 7 is in a plane that includes the central axis of the line tube 7. The flow passage surrounded by the arcuate wall 10 has a cross-sectional shape taken in a plane perpendicular to its central axis, which connects the fluid population 8 and the fluid outlet 9. It is located approximately at the center of the connecting central axis. The second tube 7 has an L-shaped support pipe 116 formed in the gastric wall of the narrow cross-section part of the flow path, and one end of the second tube 7 is fitted into the diametrical hole 12 of the tube 7. The other end of the support pipe 11 is fitted into a hole 16 made in the first pipe 1, and the twentieth pipe 7 is positioned concentrically within the flow path of the first pipe 1. The hole 16 made in the tube 1 is formed on the truncated conical surface 5 of the tube 1.
and the inside of the support pipe 11 and the hole 16 between the opening 15 and the opening 14 are communicated with the opening 15 formed in the cylindrical surface B near the connection part between the opening 15 and the second cylindrical surface 6. A fluid passage 16 is entirely formed in the cavity, and the fluid passage 16 connects the smallest front side of the flow passage of the second tube 7 and the # of the first tube 1.
, the vicinity of the fluid outlet of the second pipe 7 of IJ@ and the metal connection 0
The fluid outlet 9 of the second pipe 7 is supported in the first pipe 1 by a pipe 11 so that the fluid outlet 9 is located near the opening 15. , the flow line in which the gold fluid flows smoothly in the flow path of the first tube 1 is as shown in FIG. The flow velocity at the smallest cross section of the channel is maximum, and as it reaches the fluid outlet 9, the flow channel cross-sectional area gradually expands and the flow velocity gradually decreases.

従って前記最少断面横部の流体の静圧P、と流体出口9
における流体の静圧P。ならびに第1の管1の円筒壁6
における開口15付近の流体の静圧Po′ と金考祭す
ると、 Pt<P。、Po中P。′  従ってPt<Po′1・
(1)の関係となることがわかる。
Therefore, the static pressure P of the fluid at the horizontal portion of the minimum cross section and the fluid outlet 9
Static pressure P of the fluid at . as well as the cylindrical wall 6 of the first tube 1
When the static pressure Po' of the fluid near the opening 15 and Kinkosai, Pt<P. , P in Po. ' Therefore, Pt<Po'1・
It can be seen that the relationship (1) is established.

従って管7の流路の最小面積部における圧力Pr。Therefore, the pressure Pr at the smallest area part of the flow path of the tube 7.

と開口15付近の圧力P。′との差によって、第2図に
示すように、流体通路16内に開口15から開口14に
向う矢印Aに示す流体の流牡が形成さn1開口14より
管7の流16に横切る方向の流れが生ずる。この開口1
4より噴出する流体流は管7の流Wrk流nる流体全前
記開口14に関し直径方向反対側の管壁に付着するよう
な偏向を与え、そのため開口14の下流に図ボのように
弧状壁10からの剥離全件う流1jL B i発生せし
める0管1の流路内を流する流体の流線が第2図図示の
状態となると、流体通路16を介して管7の最小面積部
に供給さnる成体のため P、 閂同二 P。 キ P。′          
       響 ・ 拳(2)とな)、流体通路16
内を矢印A方向に流体全駆動する圧力差がなくなり、矢
印入方向の流坏逃略16内の流′nv′iなくなり、剥
離全件う流ft Bも消滅するため、管1の流路全光n
る流体の流線は第1囚図示の形に戻るQそうすると再び
前記(1)式に示す圧力差が生ずることとなシ、管7の
流路内金流扛る流体は第1図および第2図に示す状態を
交互に繰返し、v7の流路の最小面積部、流体出口9付
近および流体通路16内には成体圧力および/または流
体静圧の変化が周期的に繰返さnゐこととなゐ0 このような周期的な流扛の状態の周期的変動即ち流体振
動が第1の管1と第2の管7および流体通路16により
発生せしめらnるときは、この流速または圧力の変動の
周波数fと、′#7の流路を流れる流体の流tG″とが
一次的に比例する関係にあることは前記流体振動全オU
用した流量計のW、理から自明であシ、本発明はこの流
体振動の周波数fを検出して泥倉G<求めようとTる流
量計でめ 9− るO ところでこの種の流量計においては、流量測定の幻象で
ある流体が安定した状態で流匙ている場曾には、前記流
速または圧力の変動は第6図(流速に対応する熱線セン
サの出力の時間的変化を示す)のように周期的変化か明
確にあられ;nるが、流量計の流路の上流箇たは下流に
おいて外乱が発生した楊せには、外乱によって生じた流
体の乱れが第2図に示した剥離を伴う流fiBの発生位
置全不安定にし、このため第41暮(第3図と同様に熱
線センサの出力の時間的変化を示す)に示すように、流
体振動の周期的変化の時間的変動が大きくなることがあ
シ、周波数fのカウントミスを生じ検出誤差を発生する
場合がある。
and the pressure P near the opening 15. As shown in FIG. A flow occurs. This opening 1
The fluid flow ejected from the pipe 7 is deflected so that the entire fluid flowing through the pipe 7 adheres to the pipe wall on the diametrically opposite side with respect to the opening 14, so that an arcuate wall is formed downstream of the opening 14 as shown in the figure. When the flow line of the fluid flowing in the flow path of the pipe 1 is in the state shown in FIG. P for the adults supplied, P for the same two P. Ki P. ′
Hibiki・Fist (2) and Na), fluid passage 16
The pressure difference that completely drives the fluid in the direction of arrow A disappears, the flow 'nv'i in the flowing relief 16 in the direction of arrow entry disappears, and the flow ftB in the separation process also disappears. All light n
The flow line of the fluid returns to the shape shown in the first diagram.Then, the pressure difference shown in equation (1) above will occur again. The state shown in Figure 2 is repeated alternately, and changes in the body pressure and/or fluid static pressure are periodically repeated in the minimum area part of the flow path of v7, near the fluid outlet 9, and in the fluid passage 16.ゐWhen such periodic fluctuations in the flow state, that is, fluid vibrations, are generated by the first pipe 1, the second pipe 7, and the fluid passage 16, this fluctuation in flow velocity or pressure The fact that there is a linearly proportional relationship between the frequency f and the flow tG of the fluid flowing through the channel #7 means that the total frequency of the fluid vibration U
It is self-evident from the theory that W of the flowmeter used is self-evident, and the present invention detects the frequency f of this fluid vibration and uses a flowmeter to determine the mud tank G<T. In this case, when the fluid is flowing in a stable state, which is the illusion of flow rate measurement, the fluctuation in the flow velocity or pressure is as shown in Figure 6 (showing the temporal change in the output of the hot wire sensor corresponding to the flow velocity). However, when a disturbance occurs upstream or downstream of the flow path of a flowmeter, the turbulence of the fluid caused by the disturbance is shown in Figure 2. The generation position of the flow fiB accompanied by separation is made completely unstable, and therefore, as shown in Fig. 41 (which shows the temporal change in the output of the hot wire sensor in the same way as in Fig. 3), the temporal change in the periodic change in the fluid vibration is Fluctuations may become large, resulting in a miscount of the frequency f and a detection error.

本%明は前記流体振動の発生を安定化せしめ、もって流
体振動の周波数fの検出全正確にして流量Gの検出誤差
全可及的になくすことを目的とするものであって、上記
の第1の管j’yよび第2の管冷らひに泥棒通路全具備
する流量計に、ざらに前記第2の管の出口側中心軸を含
む面内に2ける断−10= 面金薄肉の流線形としたスプリッタ・ベーン?11−該
管の内壁と若干の間隔を隔゛Cて配置し、前記管内の流
体流の流へ万同に関し前記スプリッタ・ベーンの上流側
の端縁を前記第2の管の流路壁の開口よシ下流側に菫だ
その下流側の端縁全前記第1の管の流路壁の開口より上
流側に位置せしめ、その幅方向のほぼ中央部を前記流体
通路に対向せしめるように配置し、前記第2の管の流体
出口付近の流体の流nを安定化せしめるようにしたこと
七待倣とするものである。
The purpose of this invention is to stabilize the occurrence of the fluid vibration, thereby making the detection of the frequency f of the fluid vibration completely accurate and eliminating the detection error of the flow rate G as much as possible. In a flowmeter that is equipped with a full passageway for cooling the first pipe j'y and the second pipe, a cross section of 2 points in a plane roughly including the central axis on the outlet side of the second pipe - 10 = thin wall of the face plate. Streamlined splitter vanes? 11 - The upstream end of the splitter vane is spaced a certain distance from the inner wall of the second tube so that the upstream edge of the splitter vane is connected to the flow of the fluid flow in the second tube. The entire downstream end of the violet is located upstream of the opening in the flow path wall of the first pipe, and the approximately central portion in the width direction thereof is arranged to face the fluid path. Further, the fluid flow n near the fluid outlet of the second pipe is stabilized.

第51に本発明の一夾軸例金示す。図において第1の管
1は内管101ンよび外管102の二重構造に形成さn
、内管101は円筒状面4、截頭円錐状面5、円節状面
4の内径よシ小なる内径をMする円筒状面6全中心軸方
向に流体人口2から流体出口3に至る間に接続せしめて
形成したアルミ合金のダイキャストにより作製したもの
で、アルミ合金製外管102の内腔に嵌装さfL、%内
径を前記円節状面4の内径と等しくした環体21の関口
に螢流格子22全支持せしめたアルミ合金線の歪流子2
3全尚接せしめた状態で、前記外筒102の両端部にキ
ャップ103,104を螺装せしめることによシ内外管
101,102足一体化せしめてめる。キャップ105
,104にはそnぞれ内管101に流入またはこnよシ
流出する流体に抵ftr、を与えないように開口が設け
らnてい心ことは勿論である。
No. 51 shows an example of one aspect of the present invention. In the figure, the first tube 1 is formed into a double structure of an inner tube 101 and an outer tube 102.
, the inner tube 101 has a cylindrical surface 4, a frusto-conical surface 5, and a cylindrical surface 6 whose inner diameter is smaller than the inner diameter of the cylindrical surface 4, all extending from the fluid outlet 2 to the fluid outlet 3 in the central axis direction. An annular body 21 whose inner diameter is equal to the inner diameter of the cylindrical surface 4, which is manufactured by die-casting an aluminum alloy and is fitted into the inner cavity of the aluminum alloy outer tube 102. A strained flow element 2 made of aluminum alloy wire is fully supported at the checkpoint of the lattice 22.
With all three still in contact, caps 103 and 104 are screwed onto both ends of the outer tube 102, thereby integrating the inner and outer tubes 101 and 102. cap 105
, 104 should, of course, be provided with openings so as not to create any resistance to the fluid flowing into or out of the inner pipe 101.

前記内管101の截頭円錐面5の一部には中心軸に垂直
な面内にある底壁105全弔゛する中心軸に平行な切欠
き106が形成さ牡るとともに、該切欠き106より中
心軸方向に流体出口3に近接した位置に、内管101の
直径方向に線管101の管壁全切欠いた矩形状の孔10
7を穿設し、前記切欠さ106の底壁105に前記孔1
3全円管101の中心軸に平行に孔107に遅過ずるよ
うに穿設するとともに、該孔107内に6・よ、−面に
前記内管101の截頭円錐面5および/″f、たは円筒
状面6と同一面の流路面108を形成し、Ii対面に内
管101の外周面109を形成し、かつ前記流路面10
8に開口15を形成し該開口14と前記孔16と全連通
させる通路110′f:形成した電気絶縁性の合成樹脂
ダイキャストで作製した駒111全そに嵌合ぜしめる。
A notch 106 is formed in a part of the truncated conical surface 5 of the inner tube 101 in a plane perpendicular to the central axis and is parallel to the central axis of which the bottom wall 105 extends. At a position closer to the fluid outlet 3 in the direction of the central axis, a rectangular hole 10 is formed by cutting out the entire tube wall of the wire tube 101 in the diametrical direction of the inner tube 101.
7, and the hole 1 is formed in the bottom wall 105 of the notch 106.
3. A hole 107 is bored parallel to the central axis of the full circular tube 101, and a truncated conical surface 5 and /″f of the inner tube 101 are formed in the hole 107 on the − plane. , or the flow path surface 108 is formed on the same plane as the cylindrical surface 6, and the outer circumferential surface 109 of the inner tube 101 is formed on the opposite side of Ii, and the flow path surface 10
8, an opening 15 is formed in the hole 16, and a passage 110'f is made to fully communicate with the opening 14 and the hole 16. The entire length of the piece 111 made of die-cast electrically insulating synthetic resin is fitted into the passage 110'f.

第2の管7は第1図と同一形状にアルミ台金により形成
し、支持パイプ11は前記切欠@1o6の底壁105と
同一形状の7ランジ17を形成したアルミ合金製のもの
であって、その開口14をMする一方端を管7の孔12
に嵌合し、かつ他方端を孔13に挿入嵌合せしめ、その
7ランジ17を介して切欠き106のJM、@107に
ビス止めして固足さ扛ることにより、第2の管7は第1
因と同様に管1に支承される。両開口14.15間には
支持パイプ11の内腔、孔13、通w!r110による
流体通路16が形成さnる。
The second pipe 7 is formed of an aluminum base metal in the same shape as in FIG. , its opening 14 is M, and one end thereof is connected to the hole 12 of the tube 7.
and the other end is inserted and fitted into the hole 13, and the second tube 7 is the first
It is supported on the tube 1 in the same way as the case. Between both openings 14 and 15, the inner cavity of the support pipe 11, the hole 13, and the passage w! A fluid passageway 16 is formed by r110.

スプリッタ・ベー718は前記第2の管7と同心的に環
状または弧状に形成ざn、第2の管7の流体出口付近に
おいてその上流側の端縁全前記管7の流路壁に開口せし
めた開口14より下流側に位置するように、脚片19に
より前記管7の内壁と若干の距離を隔ててほぼ平行に位
置するように、−13− 前記管7と一体に形成、もしくはアルミ合金により別体
に形成せしめて脚片19によシ管7に向足さf′Lる。
The splitter bay 718 is formed in an annular or arcuate shape concentrically with the second pipe 7, and its upstream end is entirely opened into the channel wall of the pipe 7 near the fluid outlet of the second pipe 7. -13- integrally formed with the tube 7, or made of aluminum alloy so as to be located downstream of the opening 14 and approximately parallel to the inner wall of the tube 7 with a slight distance between the leg pieces 19; The leg piece 19 is formed as a separate body and is attached to the pipe 7 f'L.

スプリッタ・ベー718の−F流側のiMは第1の管1
の流路壁に開口せしめた流体通路16の開口15より上
流側にあ勺、該ベーン18の一側面20を適宜の間隔を
隔てて前記−口15の正面に侃Tit−+!:しめ、前
記脚片19(は剥離全件う流21の発生に影響のない位
置に2いて前記管7に接続固定せしめらnている。スプ
リッタ・ベー718の前記中心軸全室む面内における断
面は、薄肉の突形または凸レンズ形等の流線形とする。
iM on the -F flow side of the splitter bay 718 is the first pipe 1
One side 20 of the vane 18 is placed in front of the opening 15 at an appropriate distance from the opening 15 of the fluid passage 16, which is opened in the flow path wall of the vane 16. : The leg piece 19 (is connected and fixed to the pipe 7 at a position that does not affect the occurrence of filtration 21 in the case of separation). The cross-section at is a streamlined shape such as a thin protruding shape or a convex lens shape.

前記駒111には通路110内に露呈するように熱i!
Ili!60がこnに接続された電線にょシ懸架され該
電線は該駒111の外周面109に立植せしめた接続タ
ーミナル31.31に接続さnている。
The piece 111 is exposed to heat i! inside the passage 110!
Ili! 60 is suspended on an electric wire connected to this, and the electric wire is connected to a connection terminal 31.31 set upright on the outer peripheral surface 109 of the piece 111.

こnら熱蔵30、電源および接続ターミナル51は前記
駒111のダイキャスト成形時に配設さ扛る。前記外宮
102には接続ターミナル31.31と対向する位置に
孔112が穿設さn1該孔112−14− 内において後述する検出用′電気回路のソケット52が
前記接続ターミナル31.31に接続され、同時に外W
102に対する内管101の回り止めとして役立つ。
The thermal storage 30, power supply and connection terminal 51 are provided when the piece 111 is die-cast. A hole 112 is bored in the outer shrine 102 at a position facing the connection terminal 31.31, and inside the hole 112-14- a socket 52 for a detection electric circuit, which will be described later, is connected to the connection terminal 31.31. , at the same time outside W
It serves as a rotation stopper for inner tube 101 relative to 102 .

検出用電気回路は前自己ソケット62會入力端とする歪
波用フィルタと比較パルス発生器3 、’5%該発生器
33にエリ出力さする矩形パルス全計数すイハルス・カ
ウンタ34:J?よび該ハルス参カウンタ34を直接表
示もしくは眞倉に演算して表示する表示器35および適
当な電源とから成る。
The detection electric circuit includes a distortion wave filter and a comparison pulse generator 3 which are connected to the input terminal of the self-socket 62, and a square pulse counter 34 that counts all the rectangular pulses that are outputted to the generator 33 by 5%. and a display 35 for directly displaying or calculating and displaying the Hals reference counter 34, and a suitable power source.

上記構成の実施例においては、被測定流体は姫ηL子2
3より第1の管1の流体入口2を経て前記管1の流路内
に導入さn、流体出口5より流出する際に、第1図およ
び第2図にそnぞn示した流n状態を周期的に発生する
。そしてこの周期的な流体のiA夏変化により、流体通
路16内に露呈せしめて懸架した熱線30は、流体通路
16内の流体流nの発生および解消の変化の周波数に寺
しい出力を接続ターミナル31に発生する。比較パルス
発生器36はこの出力を整流して波形とし′fC,後こ
n全矩形波のパルスに変換し、パルス・カウンタ34は
矩形波を計数して表示器65に前記周波数または該周波
数から演算さni流tを懺示する〇スプリッタ・ベーン
18は、その上N、側端縁が第2の管7の流路内におい
て流体通路16の開口14よシ下流側に位置するように
、かつその−側面20が前記管7の流@壁よシ肴干の距
離全隔ててほぼ平行するように配置さn、その下流側端
鍬は第1の管の流W!r壁に開口する流体通路16の開
口15よシ僅かに上流側に位置し、前記−側面20が前
記開口15と対向する位置にあるので、流路の上流ない
し下流で外乱が発生しても、流路中の、特に第2の管7
の流体出口9付近の流体の流2tに前記外乱の影響全党
けさせることなく安定させ、剥隠を伴う流jLBの発生
位a’i:安定化し、流体通路16内の流体流れの発生
および解消を外乱の兄生にほとんど影響されることなく
肌割化させるので、熱線30の出力は第3図に示すよう
にほぼ規則的な周J4J]t−’fするものとし、外乱
の発生による時間的変動(第4図診照)をなくし、ミス
カウント寺の元生倉なく丁ことかで@る。
In the embodiment with the above configuration, the fluid to be measured is
3 through the fluid inlet 2 of the first tube 1 into the flow path of the tube 1, and when flowing out from the fluid outlet 5, the flow n shown in FIGS. 1 and 2 respectively. Occurs periodically. Due to this periodic fluid change, the hot wire 30 exposed and suspended within the fluid passage 16 connects the terminal 31 with a special output at the frequency of the change in generation and cancellation of the fluid flow n within the fluid passage 16. occurs in The comparison pulse generator 36 rectifies this output and converts it into a waveform 'fC,' and then converts it into a full square wave pulse.The pulse counter 34 counts the square waves and displays the frequency on the display 65. The splitter vane 18 exhibiting the calculated flow t is arranged such that its upper N side edge is located downstream of the opening 14 of the fluid passage 16 in the flow path of the second tube 7. and its side surface 20 is arranged substantially parallel to the flow of the pipe 7 at the full distance apart from the wall of the pipe 7, and its downstream end is parallel to the flow of the first pipe W! Since it is located slightly upstream of the opening 15 of the fluid passage 16 that opens in the r wall, and the side surface 20 is located opposite the opening 15, even if a disturbance occurs upstream or downstream of the flow path, , in the flow path, especially the second tube 7
The fluid flow 2t in the vicinity of the fluid outlet 9 is stabilized without any influence of the disturbance, and the generation position a'i of the flow jLB with separation is stabilized, and the fluid flow in the fluid passage 16 is generated and Since the resolution is made to be almost unaffected by the disturbance, the output of the heating wire 30 is assumed to have an approximately regular circumference J4J]t-'f as shown in FIG. Eliminate temporal fluctuations (Fig. 4 Diagnosis), and make it into the original storehouse of Miscount Temple.

上配芙施例VCよって#、IIkの知らnて^る流体に
、cj)%流菫G (g1ヅθea)と、その流量の訛
γLにより熱蔵セ/すの検出した流tの変Itsの周波
数f(珈)とt対応せしめると、第6図に示すとおりは
ぼ直線状の関係にるることが確認さIした。測定筐の焼
りかを例ボすると、Gが12 gr/aecのとさfは
235Hz、Gが20 Hr/seaのときfは400
Hv、Gが66 gr/seaのときfは710Hz 
lzボレ周改欽fと流電Gとζlニー次的に比例し、周
波数fから流io金演算表示了ることも極めて容易Cめ
ることが蓚I!!さ乳た。
According to the above example VC, for the fluid known by It was confirmed that when the frequency f (c) of Its corresponds to t, there is a substantially linear relationship as shown in FIG. Taking the measurement case as an example, when G is 12 gr/aec, f is 235 Hz, and when G is 20 Hr/sea, f is 400.
When Hv and G are 66 gr/sea, f is 710Hz
It is linearly proportional to f and current G, and it is extremely easy to calculate and display current from frequency f. ! I expressed breast milk.

まlこ上記実施例にJ?IAで前記駒111の流路面1
08の円筒状面の前記開口15附近に、′または前ml
第2の17の弧状面10の前記開口14の付近上流部に
、そnぞn圧力センサ41、またば42?、その受MA
面が流路壁面とほぼ同一面tなすように埋設せしtof
ci合にも、前記周波数fの伊イ17− て流友辰示全なし得りことが確認さtた。まに前記圧カ
センザ41,42の位置にマイクロホン音センサとして
設けでも同様の成果を得。こと〃・でき、この場曾にお
いてもスプリッタ・ベーン18による外乱の影響除云の
幼木は絶大でめつ1こ。
J to the above example? Flow path surface 1 of the piece 111 at IA
08 near the opening 15 of the cylindrical surface, ' or the front ml
On the upstream side of the second 17 arcuate surfaces 10 near the opening 14, there are pressure sensors 41 and 42? , the receiving MA
Bury it so that the surface is almost flush with the channel wall surface.
It was also confirmed that, in the case of ci, it was possible to completely eliminate the current flow at the frequency f. Similar results can also be obtained by providing microphone sound sensors at the positions of the pressure sensors 41 and 42. Even in this case, the splitter vane 18 was able to remove the influence of disturbance to a large number of young trees.

なお第5図中二点@腺で示す把+115を外管102に
同足し、前記検出用電気回路および逸尚l電源を該把+
115内に装置iすると手持す用の流意酊tk敢するこ
とができる。
Note that the group +115 shown by the two points @ gland in FIG.
If you install the device in 115, you can use it for hand-held use.

第7図は上記実施例の変形例を示し、第1の管1t−5
個のアルミニウム台釡のダイキャスト成形品の部分20
1,202,203に分割し、部分201に切欠き20
4を形成し、部分202の面205に前記孔16を穿設
し、かつ第2の管7の流体出口2の下流側に超音波発振
装置50の超音波発信子51と受信器52と全直径方向
対向位置に配設し、環状溝209内に配設したift!
3鍬リング210にターミナル55.5(Sを植立し、
ターミナル55全超音波発振装置50とその作製用回路
54とに連結し、ターミナル56に受信#52お18− よび該受信器52の出力波形葡すイン阪に変える慣出器
57、暖サイン波を矩形波に変換する矩形パルス発生器
58、該矩形パルス金計叙するパルスカウンタ592よ
び該カウンタ59の計叙企周阪数fまたは流ZWに変換
して衣示する表示鰺60とから成る検出用電気囲路とに
接続している。
FIG. 7 shows a modification of the above embodiment, in which the first pipe 1t-5
Part 20 of die-cast molded aluminum pot
Divided into parts 1, 202, and 203, with a cutout 20 in part 201.
4, the hole 16 is bored in the surface 205 of the portion 202, and the ultrasonic transmitter 51 and receiver 52 of the ultrasonic oscillator 50 are connected downstream of the fluid outlet 2 of the second pipe 7. ift! arranged at diametrically opposed positions and arranged within the annular groove 209.
3 Plant the terminal 55.5 (S) on the hoe ring 210,
A terminal 55 is connected to the ultrasonic oscillator 50 and its production circuit 54, and a terminal 56 receives the signal #52 and a generator 57 that changes the output waveform of the receiver 52 into a warm sine wave. It consists of a rectangular pulse generator 58 that converts the rectangular pulse into a rectangular wave, a pulse counter 592 that measures the rectangular pulse, and a display 60 that converts the measured frequency f or flow ZW of the counter 59 and displays it. It is connected to the detection electric enclosure.

この変形例においてはスプリッタ・ベーン18の下流9
UI端腺は超音波発信子51および受信器52を結ぶ線
よりも上流側にりるように配設さ扛、超曾波信号の受信
慣用を阻簀しないようにW欣さ扛ているほかは第5図と
同一であり、第5凶と同一部分は同一符号で示さ扛てい
る。なお図中56は発g子sio、4結偉、207,2
08は孔、61162tよプラ、グ、206はキャップ
全そnぞt示すものである。
In this variant, the downstream 9 of the splitter vanes 18
The UI end gland is arranged so as to be on the upstream side of the line connecting the ultrasonic transmitter 51 and the receiver 52, and is W-shaped so as not to obstruct the reception of the ultrasonic signal. is the same as that in FIG. 5, and the same parts as in the fifth part are indicated by the same reference numerals. In addition, 56 in the figure is Goshi sio, 4 Keiwei, 207,2
08 shows the hole, 61162t shows the plug, and 206 shows the entire cap.

不発明においては、中心軸方同両端部に流体入口および
流体用口金開口し、中心軸に世直な面内における流路断
面積が少くとも流体出口側において小さくさnた流W5
 ”x Mする第1の管と、該第1の管の流路内にkよ
ぼ同心的に目己設され、その中心軸方同両端部に流体入
口と流体出口とt開口し、前記vltl人体と流体出口
との間に#L路断面槓の最小部を有する流路を形成した
ベンチュリ管状の第2の管と、前記第2の管の流路断面
積の最小部付近の流路壁に形成した開口と、前記第2Q
盲の流体出口付近などの前記第1の管の流路−〇通肖な
位置に形成した開口とt連通せしめる流体通路とを有し
、前記M1の管の流体入口から導入ざ扛流体出口に導か
れる加俸が前記第2の管の流路の断面積の最小部とその
流体用1コとにおけイ)静圧の変化により前記流体通路
に随坏が流れまfcは該流体流れが停止する現象が反覆
して発生すること企オU用し、その流体の状態の周期的
変化km出して出力するセンサ企前記流体通路内、前記
第1の管の流M壁または前記第2の管の流wr壁に配設
し、前記変化の周波数全検出する流量酊に係るものであ
って、流体の圧力、速度等の流体状悪全示す物理量全直
接検出するものではなく、その物理量の変化の周波数を
検出するものであるから、前記センサとして流体の状態
金示す物理量ヲ慣用するものを使用しても検出やその出
力の積属は重要でな(、物理量の変化の周波数が検知で
きる程度の応答性があイLば足9るので、センサとして
は原価なものが1史用でき、流体振動上発生せしめる構
成としては、第1の管と第2の管および第2の管の流路
断面積の最小部流路壁の開口と第2の管の流体出口付近
などの第1の宮の流路壁の適当な位置に設けた開口とt
連通せしめる流体通路とにより、流体流れの周期的変化
全安定して発生させ、維持させることができるとともに
、流源の大小を問わず流体流れの周期的変化全発生せし
め得ら扛るので、その構造は簡単で、第1および第2の
管の流路面積比′ItiM当に選択することにjり、任
意の流菫域に使用でき、かつ前記流体振動は流体通路内
に発生する流体流れt利用して第2の管のvrr、休出
口における静圧全変化せしめて生じさせるので、流体流
n状態の変化を圧力変化として把えることができるとと
もに、流体通路中の流扛の2g度変化としても把えるこ
とができるので、圧力センサ、速度センサ等広範囲のセ
ンサが利用できる。
In the present invention, a fluid inlet and a fluid mouth opening are provided at both ends of the central axis, and the flow passage cross-sectional area in a plane perpendicular to the central axis is reduced at least on the fluid outlet side.
A first tube of ``x M'' is installed approximately concentrically in the flow path of the first tube, with a fluid inlet and a fluid outlet opening at both ends of the first tube in the same central axis direction, and the vltl A venturi-shaped second tube forming a flow path having a minimum section of #L channel cross-section between the human body and the fluid outlet, and a flow path wall near the minimum section of the flow path cross-sectional area of the second tube. an opening formed in the second Q.
The flow path of the first pipe, such as near the blind fluid outlet, has a fluid passage communicating with an opening formed at a suitable position, and the fluid is introduced from the fluid inlet of the M1 pipe to the fluid outlet. When the introduced pressure is at the minimum cross-sectional area of the flow path of the second pipe and its fluid channel a) due to a change in static pressure, the fluid flows into the fluid passage. A sensor is designed to detect and output periodic changes in the state of the fluid due to repeated occurrence of the phenomenon of stopping. It is installed on the flow wall of the pipe and detects all the frequencies of the changes.It does not directly detect all the physical quantities that indicate the fluid condition such as pressure and velocity of the fluid. Since the sensor detects the frequency of change, even if a sensor that conventionally uses a physical quantity that indicates the state of the fluid is used, the detection and the integration of its output are not important (the frequency of change in the physical quantity can be detected). As long as the responsiveness is at a certain level, a low-cost sensor can be used for a long time, and the structure that generates fluid vibrations is the first pipe, the second pipe, and the second pipe. An opening in the flow path wall at the minimum cross-sectional area of the flow path and an opening provided at an appropriate position on the flow path wall in the first hole, such as near the fluid outlet of the second pipe.
By communicating with the fluid passages, periodic changes in fluid flow can be stably generated and maintained, and periodic changes in fluid flow can be prevented regardless of the size of the flow source. The structure is simple and can be used in any flow area by appropriately selecting the flow path area ratio 'ItiM of the first and second pipes, and the fluid vibration is caused by the fluid flow generated in the fluid passage. Since the vrr of the second pipe and the static pressure at the exit port are completely changed by using the t, it is possible to understand the change in the fluid flow n state as a pressure change, and the 2g degree of flow in the fluid passage can be understood as a change in the fluid flow n state. Since it can be detected as a change, a wide range of sensors such as pressure sensors and speed sensors can be used.

−21− 特に本発明においては、前記第2の管の流体出口側にお
いて鎖管の流路壁に若干の間隔を隔ててスプリッタ・ベ
ーンを配置し、該ベーンに中心軸を含む面内における断
面全薄肉の流線形′t−呈する断面に形成さn1管内の
流体の流れ方間に胸して上流側のスプリッタ・ベー7の
端縁は比2の管の流路壁に曲目せしめた前記流体通路の
開口よりド流側において少くとも第2の管の流路内にお
かn、該ベーンの一側面は前記′tf、1の管の流路壁
に1口せしめた前記流体通路の開口の上流側に位置せし
めらnて該開口と対向せしめら扛、そnによって第2の
管の流体出口付近の流体の流れ全安定化せしめるもので
あるから、流路の上流側または下流側に外乱が発生した
としても、スプリッタ・ベヘンが第1の管および第2の
管の流路壁と協同して生ずる流体流nの安定化作用にニ
ジ、前記流体通路に流体が流nまたは流nが停止する反
6f現象の原因となる前記第2の管の流lNr壁の開口
の下流に周期的に発生しかつ消滅する剥離を伴う流体流
nの発生立置を安定化し、剥離流線の位tを外乱に22
− より、μ鯛せしめないので、前記セッサの出iに外乱に
よる影#紫与えることなく、従ってスプリッタ管ベーン
の設置は、比収的小流点かり大流産に至る広い流を範囲
で精度が良く安定した出力を得らn、測距精度の同上と
測定町餌泥倉域を拡げる効果をイするものである。
-21- In particular, in the present invention, splitter vanes are arranged at a slight interval on the flow path wall of the chain pipe on the fluid outlet side of the second pipe, and a cross section in a plane including the central axis of the vane is provided. The end edge of the splitter bay 7 on the upstream side is formed to have a cross section exhibiting a completely thin streamlined shape. The vane is located in the flow path of at least the second pipe on the downstream side of the opening of the passage, and one side of the vane is connected to the opening of the fluid passage having one opening in the flow passage wall of the first pipe. The opening is located on the upstream side and faces the opening, thereby completely stabilizing the flow of the fluid near the fluid outlet of the second pipe, so that no disturbance occurs on the upstream or downstream side of the flow path. Even if this occurs, the splitter behen does not maintain the fluid flow n or flow n in the fluid passage due to the stabilizing effect of the fluid flow n produced in cooperation with the flow passage walls of the first pipe and the second pipe. The flow of the second pipe that causes the anti-6f phenomenon that stops INrThe generation of the fluid flow n accompanied by separation that periodically occurs and disappears downstream of the opening in the wall.The vertical position is stabilized, and the position of the separation streamline is t to disturbance 22
- Since it does not cause μ sea bream, there is no disturbance caused by disturbance on the output of the sessa, and therefore, the installation of the splitter tube vanes is accurate over a wide range of flow ranging from a small flow point to a large miscarriage. It is possible to obtain a good and stable output, improve distance measurement accuracy, and have the effect of expanding the area of bait storage area for measurement.

ナオ本珀明においてスプリッタ・ベーンを設ける位置は
、第2図に示した剥離全件う流れBに関して中心軸寄り
とすると流n′$、愈の規則的な変化金阻否する場合が
あり、第2図に示す剥離を伴う流れBの流産の最外側の
剥離流線よシ第2の管の流路壁寄9とすることが好まし
く、また咳ぴL路壁に近接しすぎゐと剥ym*伴う匠f
′L、Bの形成を阻得し匠n状態の変化を不明確にする
0 ′iたスプリッタ・ベーンの第2の管の流路壁に対間す
る一側面は、第2の管と同心的に形成され、かつ前記流
路壁にほぼ平行状に延在することが好ましく、該スプリ
ッタ・ベーンは前記剥離を仔う流nの形成2よび消滅全
安定して行わせるためのものである7ハら、前記中上@
’l:中心とする環状に形成さ扛てもよいが、前記流体
通路が第1および第2の管の流m壁に開口する一口τ中
心として弧状に配設さ扛ることが好ましい。この場合、
脣にに形成さt″しるのが好ましい。
If the splitter vane is placed closer to the center axis with respect to the flow B shown in Fig. 2, regular changes in the flow n'$ and y may be blocked. It is preferable that the outermost separation streamline of the miscarriage of flow B with separation shown in FIG. ym* accompanying craftsman f
One side of the splitter vane facing the channel wall of the second tube is concentric with the second tube. Preferably, the splitter vanes are formed as shown in FIG. 7 ha, said Nakagami@
'l: It may be formed in an annular shape with a center, but it is preferable that the fluid passage is arranged in an arc shape with a mouth τ opening at the flow wall of the first and second tubes. in this case,
Preferably, it is formed at the back of the body.

またスプリッターベーンは実施例に示したようVCC2
0管と一体に形成筒たは第2の管に回足する代りに、第
1の管に脚片で同疋ぜしのでもよい。
In addition, the splitter vane is connected to VCC2 as shown in the example.
Instead of being integrally formed with the zero tube or adding it to the second tube, it may be attached to the first tube with a leg piece.

例nのる甘においてもスプリッタ・ベーンを第11だに
第2の管に固定する脚片は、前記剥離を伴う九rしの形
成を阻害しない場H[に設りゐへきことは勿−である0 そして本発明によ・いでは、上記のよりに安価で簡単な
構造のセンサが利用でき、かつIt体振動の周波数が流
量と一次的な関連をもつことにより、周波数から流量に
演算する電気回路も簡単であり、把手にこれら電気回路
や適当な電源を収容した手持ち式の流菫計を提供するこ
ともできる。
Even in the case of example n, the leg piece fixing the splitter vane to the 11th pipe and the 2nd pipe is, of course, provided in the case where it does not inhibit the formation of the splitter vane that accompanies the above-mentioned separation. According to the present invention, a sensor with a cheaper and simpler structure than the above can be used, and since the frequency of It body vibration has a primary relationship with the flow rate, it is possible to calculate the flow rate from the frequency. The electrical circuits used are simple, and it is also possible to provide a hand-held flow meter that houses these electrical circuits and a suitable power source in its handle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本蛇明の原理を示す侯弐図、第3
図および第4図はそのセンサ出力の一例葡そnぞれ示す
艇図、第5図は不発明の一矢施例の断面図、第6図ぼそ
の構出周波数と流電との関係を下す線図、第7図は第5
図の変形例の断面図である。 なお図中 1は第1の管 2はその流体入口 3はその流体出口 アは第2の管 8はその流体入口 9はその流体出口 11は支持パイプ 14.15は開口 16は流体通路 18はスプリッタ・ベーン 30.41,42はセンサ 50は趨性波発振装置 全それぞれ示すものである。 =25− 111   図 第5図 113   図 第  4  図
Figures 1 and 2 are Hou Ni diagram and Figure 3 are
Figures 4 and 4 are boat diagrams showing an example of the sensor output, Figure 5 is a cross-sectional view of an example of the uninvented Kazuya, and Figure 6 shows the relationship between the component frequency and current. Diagram, Figure 7 is the 5th
FIG. 7 is a cross-sectional view of a modification of the figure. In the figure, 1 is the first pipe 2, its fluid inlet 3 is its fluid outlet, the second pipe 8 is its fluid inlet 9, its fluid outlet 11 is the support pipe 14, 15 is the opening 16, and the fluid passage 18 is The splitter vanes 30, 41, 42 and the sensor 50 are representative of all the trailing wave oscillation devices, respectively. =25- 111 Figure 5 Figure 113 Figure 4

Claims (1)

【特許請求の範囲】 (1)中心軸方向両端に流体入口および流体出口を開ロ
レ、中心軸に垂直な面内に2ける流wrlf!fr面槓
が少くとも流体出口側において小さくさnた流路を形成
しfc第1の管と、 前記第1の宮の流路面にはぼ同心的に配置さn、その中
心軸方向両端部に流体入口および流体出口を諸口し、中
心軸方向はぼ中央部に流路断面積の最小部を有する流w
rヲ形成したベンチュリ管状の第2の管と、 前記第2の管の前記流wrVr面償の最小部付近の流路
壁と、前記第1の管の流wr壁とにそnぞn開口せしめ
た開口とを連絡する流体通路と、前記流体通路内、・前
記第1の管の流路壁または前記第2の管の流路壁に配役
さね、前記流体通路または流路を流nる流体の状態の周
期的変化を検出して出力するセンサと、 前記′i!c2の管内の流体出口側において該管の内壁
との間に若干の間隔′(i−隔てて配置さn、前記中心
軸を含む面内における断面は薄肉の訛巌形を呈しかつ前
記第2の管の内壁に沿ってi3T足の幅を有する薄板状
のスプリッタ・ベーンとから成り、前記スプリッタ・ベ
ーンの前記流路上流れる流体の流れ方向に関する下流側
端縁は前記流体通路の第2の管の流路壁に開口せしめた
開口よシ下流側に、その下流側端縁は前記v(t、体通
路の第1の管の流路壁に開口せしめた開口よシ上流側に
位置せしめられ、かつその幅方向のほぼ中央部を前記流
体通路に対向せしめら扛て、前記流路を流しる流体の流
nを安定化せしめることt−%黴とする流量計0 (2)前記スプリッタ・ベーンは前記第2の管と同軸的
に配直さ7″L、かつ前記第2の管と一体に形成されて
いること19像とする特許請求の範囲第1項に記載の流
量計。 (8)前記スプリッタ・ベー7は前記第2の管と同軸的
に配置さ扛、かつ前記中心軸に垂直な面内において中心
軸と前記第1の管の開口の中心とを結 −ぶaを中心と
して、#Iぼ30°〜180°の中心用を有する弧状に
形成さ扛ていることt特徴とする特許請求の範囲第1項
または第2項に記載の流量計。
[Claims] (1) A fluid inlet and a fluid outlet are opened at both ends in the direction of the central axis, and the flow wrlf in two directions in a plane perpendicular to the central axis! The fr surface ram forms a small flow path at least on the fluid outlet side, and is arranged approximately concentrically with the flow path surface of the first pipe and the first pipe, and both ends in the direction of the central axis thereof. A fluid inlet and a fluid outlet are provided at each side, and the flow path has a minimum cross-sectional area approximately at the center in the direction of the central axis.
a venturi-like second tube formed with a venturi tube, a flow path wall near the minimum part of the flow surface compensation of the second tube, and an opening in the flow path wall of the first tube; a fluid passageway communicating with the opening of the fluid passageway; a sensor that detects and outputs periodic changes in the state of the fluid; C2 is arranged at a slight interval '(i-n) from the inner wall of the tube on the fluid outlet side of the tube, and the cross section in a plane including the central axis has a thin-walled slender shape, and the second a thin plate-like splitter vane having a width of i3T along the inner wall of the pipe, and the downstream edge of the splitter vane in the flow direction of the fluid flowing on the flow path is connected to the second pipe of the fluid passage. The downstream edge thereof is located upstream of the opening opened in the flow path wall of the first tube of the body passageway. , and its substantially central portion in the width direction is arranged to face the fluid passage to stabilize the flow n of the fluid flowing through the flow passage. (2) The splitter. 19. The flowmeter according to claim 1, wherein the vane is arranged coaxially with the second pipe and has a length of 7″L, and is formed integrally with the second pipe. ) The splitter bay 7 is disposed coaxially with the second tube, and is centered at a point a connecting the central axis and the center of the opening of the first tube in a plane perpendicular to the central axis. The flowmeter according to claim 1 or 2, wherein the flowmeter is formed in an arc shape having a central angle of about 30° to 180°.
JP11025981A 1981-07-15 1981-07-15 Flow meter Pending JPS5811813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11025981A JPS5811813A (en) 1981-07-15 1981-07-15 Flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11025981A JPS5811813A (en) 1981-07-15 1981-07-15 Flow meter

Publications (1)

Publication Number Publication Date
JPS5811813A true JPS5811813A (en) 1983-01-22

Family

ID=14531151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11025981A Pending JPS5811813A (en) 1981-07-15 1981-07-15 Flow meter

Country Status (1)

Country Link
JP (1) JPS5811813A (en)

Similar Documents

Publication Publication Date Title
US3732731A (en) Bluff body flowmeter with internal sensor
US8079271B2 (en) Measuring system with a flow conditioner arranged at an inlet of a measuring tube
JP2602110B2 (en) Fluid flow meter
JPH0464020A (en) Flowmeter
JPH04248466A (en) Speed measuring device for fluid
WO1988008516A1 (en) Ultrasonic fluid flowmeter
JPS6047973B2 (en) Flowmeter
GB2161941A (en) Mass flow meter
JPH10142017A (en) Karman&#39;s vortex flow meter
JP2781063B2 (en) Fluidic flow meter
JP3511959B2 (en) Inlet / outlet symmetric flow meter
JPS5811813A (en) Flow meter
CN103674146A (en) Mass flow meter based on ultrasonic flow meter
RU2057295C1 (en) Flowmeter
JP3142015B2 (en) Vortex flow meter
RU1776996C (en) Method of indication of given value of discharge of continuous medium
Sanford et al. GAS MASS FLOW METERING AN ALTERNATIVE APPROACH
JP4438119B2 (en) Flow measuring device
JP3500516B2 (en) Vortex flow meter
KR0133625Y1 (en) Vibration type flow meter
JPH0747701Y2 (en) Orifice type flow meter
JPS6040914A (en) Vortex flowmeter
KR920009907B1 (en) Swirling flow meter
JPH05180677A (en) Ultrasonic flow meter
JPS5811814A (en) Flow meter