JPS58117875A - Treatment for inside surface of blank material for cylinder - Google Patents

Treatment for inside surface of blank material for cylinder

Info

Publication number
JPS58117875A
JPS58117875A JP42882A JP42882A JPS58117875A JP S58117875 A JPS58117875 A JP S58117875A JP 42882 A JP42882 A JP 42882A JP 42882 A JP42882 A JP 42882A JP S58117875 A JPS58117875 A JP S58117875A
Authority
JP
Japan
Prior art keywords
self
cylinder
inside surface
thereafter
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP42882A
Other languages
Japanese (ja)
Inventor
Hiroshi Kobayashi
弘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP42882A priority Critical patent/JPS58117875A/en
Publication of JPS58117875A publication Critical patent/JPS58117875A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate

Abstract

PURPOSE:To improve corrosion resistance and abrasion resistance of the inside surface of a blank material of cylinder easily and inexpensively, by heating a pipe-like steel material while rotating the same and dispersing and sticking powder of a self-fluxing alloy uniformly on the inside surface and further remelting the same with laser beams. CONSTITUTION:The inside surface of a blank material 1 for cylinders consisting of iron or steel material is applied with a rust preventive treatment and is further defatted and washed; thereafter, an end plate 5 having a shaft 7 for transmission of rotating force is bolted 6 to said material to close one end. Powder 9 of a self-fluxing alloy of Ni base or the like consisting of Ni, Cr, B, Si, etc. is dispersed uniformly in the material 1 and the open end is closed by bolting 11 an end plate 10 thereto. While the material 1 is rotated horizontally, the material is heated from the outside circumference to melt the alloy 9, whereby a uniform lining layer 2 is formed. Thereafter, the end plate 10 is removed, and the laser light 13 generated with a laser light source 12 of CO2 from the open end part is irradiated by using a reflecting mirror 4 to the layer 2 cause zone fusing again; thereafter, the material is cooled at the lowest rate, whereby the film of the uniform metallic compsn. is obtained.

Description

【発明の詳細な説明】 本発明は、シリンダ素材の内面処理方法に関し、特にシ
リンダの耐食、耐摩耗性を大規模な設備を用いることな
く強化する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating the inner surface of a cylinder material, and particularly to a method for enhancing the corrosion resistance and wear resistance of a cylinder without using large-scale equipment.

合成樹脂の成形、押出、フィルム作製等に用いられる樹
脂成形機および押出機等は、シリンダとスクリュが一対
となっており、スクリュによって、成形する樹脂の供給
、輸送、加熱、混練、可塑化、押し出し圧力の蓄積、調
整、押し山号の規制等多くの用途と役割をはたしている
Resin molding machines and extruders used for molding, extruding, and making films of synthetic resins have a cylinder and a screw as a pair, and the screws supply, transport, heat, knead, plasticize, etc. It has many uses and roles, such as accumulating and adjusting extrusion pressure, and regulating the number of push piles.

これらの役割を支えているのがシリンダであり、使用中
は樹脂が高圧になるだめこの圧力を支える耐圧力が必要
である。
The cylinder supports these roles, and since the resin becomes under high pressure during use, it must be able to withstand pressure to support this pressure.

シリンダとスクリュのフライトとは、運転中に接触し摩
耗するため耐摩耗性が要求される。
The cylinder and screw flights contact and wear during operation, so wear resistance is required.

また使用樹脂によっては運転中に腐食性物質が発生する
ため耐食訃も要求される。
Also, depending on the resin used, corrosive substances are generated during operation, so corrosion resistance is also required.

そのためにはシリンダは鋼材に各種表面処理を施こした
ものが使用されている。各種表面処理のうち窒化処理は
、処理時間が72時間と陛い割には窒化処理層の深さは
0.1 wn程度と浅いため、摩耗により減肉しはじめ
ると寿命が短かい。また、浸炭処理は、窒化処理時間よ
り短かくて層は深いが、窒化処理より耐摩耗性が劣る。
For this purpose, cylinders are made of steel that has been subjected to various surface treatments. Among various surface treatments, nitriding requires a long treatment time of 72 hours, but the depth of the nitriding layer is as shallow as 0.1 wn, so once the thickness begins to decrease due to wear, the lifespan is short. Further, carburizing treatment takes a shorter time than nitriding treatment and the layer is deeper, but the wear resistance is inferior to that of nitriding treatment.

しかも、この画処理とも耐食Kf−は一般欄材並で腐食
生成物の発生する樹脂には使用できず、使用が限定され
る。その他に、CO系やN1系などの耐食、耐摩耗性の
ある材料をシリンダ内面に遠心鋳造法によシ鋳造ライニ
ングする処理方法があるが、これらのライニングは溶解
設備、鋳造設備など大がかりな設備を必要とし、特殊な
\ 工場での殉工しかできない欠点を有する。またシリンダ
l/こ耐摩、耐食性のある材料を薄肉として圧入する処
理方法が開発されているが、薄肉の加工が困難なためコ
スト高となる。
In addition, with this image treatment, corrosion-resistant Kf- cannot be used with resins that generate corrosion products at the same level as general column materials, and its use is therefore limited. Another treatment method is to line the inner surface of the cylinder with corrosion-resistant and wear-resistant materials such as CO-based or N1-based materials using centrifugal casting, but these linings require large-scale equipment such as melting equipment and casting equipment. It requires special \ It has the drawback that it can only be destroyed in a factory. Furthermore, a treatment method has been developed in which a wear-resistant and corrosion-resistant material is press-fitted into the cylinder as a thin wall, but this increases the cost because it is difficult to process thin walls.

本発明lは、上記のような欠点のないシリンダ素材の内
面処理方法を提供するものである。
The present invention 1 provides a method for treating the inner surface of a cylinder material without the above-mentioned drawbacks.

ところで、前記したCo系やNi系等の耐食、耐摩耗性
のある材料は、自溶性合金として従来から溶射用に用い
られていた。しかし、シリンダ、特に長尺(10〜60
00+mn程度)で直径ガ50〜800φ程度のシリン
ダの内面に溶射を行うことは、極めて困難か、不可能で
ある。
By the way, the above-described Co-based and Ni-based materials having corrosion resistance and wear resistance have been conventionally used as self-fluxing alloys for thermal spraying. However, cylinders, especially long ones (10 to 60
It is extremely difficult or impossible to perform thermal spraying on the inner surface of a cylinder with a diameter of about 50 to 800 mm.

そこで本発明では、上記のような自溶性0今:: 03
 ’村によらずにシリンダ内面にライニング−rる方法
を提供し、これにより前記した鋳造ライニングと同程度
の耐輩耗PIE、耐食性を有するシリンダを製造しよう
とするものである。
Therefore, in the present invention, the above-mentioned self-soluble 0:: 03
It is an object of the present invention to provide a method for lining the inner surface of a cylinder without depending on the size, and thereby to manufacture a cylinder having wear resistance PIE and corrosion resistance comparable to those of the above-mentioned cast lining.

すなわち本発明は、パイプ状1−材の内面へ自溶性合囮
の粉末を封入後、パイプを回転させて前記粉末を内面(
′こ均一に分散させ、同時Vこパイプの外面から加熱し
て前記nm性合金を固4fさせ、しかる後この固着した
自溶性合てρをレーザ光線で加熱しド)溶融すること(
・てよって自溶1午合金層を形成することを特徴とする
シリンダ素材の内面処理方法に関するものでのる。
That is, in the present invention, after filling the inner surface of a pipe-shaped material with a powder of a self-soluble synthetic decoy, the pipe is rotated to transfer the powder to the inner surface (
Disperse this uniformly and simultaneously heat it from the outer surface of the pipe to solidify the nanometer alloy, and then heat the fixed self-fusing alloy with a laser beam and melt it.
- This relates to a method for treating the inner surface of a cylinder material, which is characterized by forming a self-melting alloy layer.

なお本発明方法は、前記した樹ハ旨成形機甲ンリンダに
限らず、土砂成形機甲、油圧ポンプ、コンクリートポン
プ等のシリンダ、あるいけ化学配管用パイプJT、各種
の7リング様のものに適用することができる。
The method of the present invention is not limited to the cylinders of the above-mentioned wood forming machine, but can also be applied to cylinders of earth and sand forming machines, hydraulic pumps, concrete pumps, etc., pipes for chemical piping JT, and various 7-ring types. Can be done.

以下、添付図面を参照して本発明方雪を詳細に説明する
Hereinafter, the method of the present invention will be described in detail with reference to the accompanying drawings.

第1図i、ま本発tl:i 75法に適用される/リノ
ダ東材1の断面図である。ここでj −#llと[7−
C1外径φ450關、内眞φ16Aran、長さ280
0輔のJIS SCM、11  の累月より内径を加工
したものを示すが、本発明の素材は自溶殴合、σの浴融
温度の950°〜1100℃程度の温度に耐え、かつ自
溶性合療と化合物をつくることができる素Fオでゆれ(
tfよいので、7・1とんどの鉄鋼材料は使用可能であ
る。なお、シリンダの強度上の而かC)考えれ(ゲ、ラ
イニング後の低温の熱処理で強IW向ヒ可能な析出硬化
)与りの材料を使用することもできる。
Figure 1 i is a cross-sectional view of Renoda Tozai 1 applied to the 75 method. Here, j −#ll and [7−
C1 outer diameter φ450, inner diameter φ16Aran, length 280
The material of the present invention is self-fusing, can withstand temperatures of about 950° to 1100°C, which is the bath melting temperature of σ, and is self-fusing. Yure with a basic F-o that can create combination therapy and compounds (
Since the tf is good, most of the 7.1 steel materials can be used. Note that depending on the strength of the cylinder, a given material can also be used (C) given that precipitation hardening can be achieved through low-temperature heat treatment after lining.

加工した内径側は、錆の発生があるとライニング1程で
好ましくないので、加工後の放置によって錆が発生しな
いように防錆処理を施こしておく。まだ、シリンダ素材
1は両端が端板で閉糞できるように端板固定用のボルト
穴4が加工されている。
If rust occurs on the processed inner diameter side, it is not as desirable as in lining 1, so rust prevention treatment is applied to prevent rust from occurring if left after processing. The cylinder material 1 is still machined with bolt holes 4 for fixing the end plates so that both ends can be closed with the end plates.

以ヒのように加工されているシリンダ素材1をトリクレ
ン等の洗浄剤により脱脂洗浄する。
The cylinder material 1 that has been processed as described below is degreased and cleaned using a cleaning agent such as Triclean.

ただし、内径側(て錆の発生がある場合はブラスト、・
浚洗などにより内径表面を除錆す・る。
However, if there is rust on the inner diameter side, please blast it.
Remove rust from the inner diameter surface by dredging, etc.

その1装填2図に示すように、シリンダ素材1を回転す
るだめの動力を伝さする軸7と、シリンダ素材1の片端
を閉鎖できる端板5をボルト6により取りつげる。この
時、シリンダ素材1の池の一端は開放した捷ま七する1
、この/リング素材1を、図示省略の回転数調整可能な
回転駆@源に、@7を介して取りつける。この時、シリ
ンダ素材1は、その内径がト也面とiV−行となるよう
に取りつけると同時に、そのI!I’ i・;を支える
べく長手方向の1〜3ケ所を下から図4′、香略の冶具
により回転可能に支える。
1. As shown in Figure 2, a shaft 7 that transmits the power for rotating the cylinder material 1 and an end plate 5 that can close one end of the cylinder material 1 are attached with bolts 6. At this time, one end of the pond of the cylinder material 1 is opened and the 1
This /ring material 1 is attached to a rotary drive source (not shown) whose rotational speed can be adjusted via @7. At this time, the cylinder material 1 is installed so that its inner diameter is in the iV- line with the toya surface, and at the same time, the cylinder material 1 is attached so that its I! In order to support I'i;, one to three locations in the longitudinal direction are rotatably supported from below by a jig shown in FIG. 4'.

一方、自溶性合金1勿末、例えばNl+r’r→−H+
S 1等のNl系、Co+Ni+Cr+B+Si 等の
Co系、こ1tらにセラミック粉末(wc、Nbc :
?F )  を!−5合したもの等を、シリンダ素材1
の内径や皮膜厚さ等を勘案して秤叶しておく。ここでは
、67%!+1−16%cr−a%B−a%81  を
26Kg秤晴した。
On the other hand, a self-fusing alloy 1, for example, Nl+r'r→-H+
Nl-based materials such as S1, Co-based materials such as Co+Ni+Cr+B+Si, and ceramic powders (wc, Nbc:
? F)! -Cylinder material 1
The scale should be determined taking into consideration the inner diameter of the tube, coating thickness, etc. Here, 67%! 26 kg of +1-16% cr-a% B-a%81 was weighed out.

なお、皮膜厚さは、余り薄いと不均一になり易いため、
01〜5祁稈度となるようにすることが好ましく、ここ
で・°寸如工代を含め2間(奇るように設計した。
Note that if the film thickness is too thin, it tends to become uneven.
It is preferable to have a culm degree of 01 to 5, where the length is 2 meters (designed to be odd) including the construction cost.

次い゛で、秤齢した自溶性合Q 19末丁、・153図
に示すような10mma度の径のパイプ8の先端にラッ
パ状部8′を有する自溶性合釜粉未導入手段により、シ
リンダ素材1の内部に導入し、第4図に示すように該自
溶性合金粉末9をシリンダ末ト」−1の内部に均一に分
散する。
Next, the aged self-soluble synthetic powder Q19 is introduced into the self-soluble synthetic pot powder, which has a trumpet-shaped part 8' at the tip of a pipe 8 with a diameter of 10 mm as shown in Fig. 153. The self-fusing alloy powder 9 is introduced into the cylinder blank 1 and is uniformly dispersed inside the cylinder end 1 as shown in FIG.

その後、シリンダ素材1の開放端に、;14図に示すよ
うに端板10をボルト11により取りつけ、該開放端を
閉塞させる。
Thereafter, the end plate 10 is attached to the open end of the cylinder material 1 with bolts 11, as shown in FIG. 14, and the open end is closed.

そして、例えば6Or、p、mでシリンダ素材1を回転
させながらシリンダ素材1の外周8より例えl・ず酸基
−アセチレン多孔トーチを用いてシリンダ素材1の内径
がト記自溶性合金の溶融温度1050℃になるように加
熱する。この温度イーl、使用する自溶性合金によって
異なるが、その合金のヒユージングポイントより10℃
程度高い11i古度までは許容される。しかし、それ以
上温度が畠くなると自溶性合金の粘度が低くなり、tこ
れ流れろ゛ため、あまり高い、鼎度の加熱は好ましくな
い。加熱熱源としてrよ上記の酸素−アセチレンの外に
、酸紫−プロパン、 ”its巾ガス、フ“ロパンガス
、屯気(高、低周波、抵抗加熱などを含む)、明細、軽
油前が用いられる。
Then, while rotating the cylinder material 1 at, for example, 6 Or, p, m, the inner diameter of the cylinder material 1 is measured from the outer periphery 8 of the cylinder material 1 using, for example, a l-sulfuric acid group-acetylene porous torch, and the melting temperature of the self-fusing alloy is measured. Heat to 1050°C. This temperature differs depending on the self-fusing alloy used, but it is 10°C below the fusing point of the alloy.
It is permissible up to a high degree of 11i antiquity. However, if the temperature becomes too high, the viscosity of the self-fusing alloy decreases and it will not flow, so heating at too high a rate is not preferred. In addition to the above-mentioned oxygen-acetylene, as a heating heat source, acid purple-propane, "its width gas", fluoropane gas, ton air (including high, low frequency, resistance heating, etc.), light oil, etc. are used. .

まだ、シリンダ素材1の回転速度は、/す/ダ素材1の
内径寸法や外径寸法によって顕なるが、シリンダ素材1
を均一に加熱でさ、かつ溶融しだ自溶性金子が均一な皮
膜になるよう(こ8定すればよいのである。
Still, the rotational speed of the cylinder material 1 is determined by the inner and outer diameter dimensions of the cylinder material 1.
It is only necessary to heat the metal evenly, and to make sure that the self-fusing metal is melted to form a uniform film.

以上の操作により自溶性合金ケま溶融し、/リンダ素材
の内径に固着し、均一なライニング1→となる。この状
態を7゛15図に示す。、IS5図中、11まシリンダ
素材、2はシリンダg f−)、1の内面にライニング
された自溶性合金層であり、5はシリンダ固定用のフラ
ンジを示し、溶接″、1%; ((こよりシリンダ素材
1に取りつけられるものである1、な寂、上記の自溶性
合金層2の顧做焙′tア員を・′套6図に示す。第6図
において、各粒子イの酸化皮膜Oi+よ除かl′しるこ
となく残り、し〃・も気孔口の残留もj!ぬられるが、
各粒子イ間″土↑、−合している。この−、+−,4で
1φ用可能なもの1.こついて1、硅藻土やバーミック
スの中で、めるい(は高調に加熱された炉による炉冷な
どの方法を用いて「1゜徐冷し、冷Llj後所望の寸法
に加工す4)ことができるっ 一方、押出機や射出成形機等のシリンダでは、この気孔
口等に樹1指が残留したりするので好捷しくない。そこ
で、シリンダを加熱したまま第4図の端板10をはずし
、この開放端部より、1)。
Through the above operations, the self-fusing alloy melts and adheres to the inner diameter of the cylinder material, forming a uniform lining 1. This state is shown in Figure 7-15. , IS5 In the figure, 11 is the cylinder material, 2 is the cylinder gf-), a self-fusing alloy layer lined on the inner surface of 1, 5 is the flange for fixing the cylinder, welding'', 1%; (( The components of the self-fusing alloy layer 2 attached to the cylinder material 1 are shown in Figure 6.In Figure 6, the oxide film of each particle is shown. Oi+ is removed without leaving any residue, and the residue at the pore opening is also wetted, but
Between each particle, soil ↑, - are combined. This -, +-, 4 can be used for 1φ. On the other hand, in cylinders such as extruders and injection molding machines, this pore opening is This is not a good idea since a finger of wood may remain in the cylinder etc.Therefore, while the cylinder is still heated, remove the end plate 10 shown in Fig. 4, and from this open end, 1).

7図に示すようkCCO2のレーザ光・原12により発
生さJ−”たレーザ光15を照射し、シリンダ1を回転
させながら反射鏡14を開放VjM部側へ引き出し、自
溶性合金2を呵びゾーンヒユージングさせる(レーザ光
13により8礫された部分を市ね合すながら溶融部分を
拡大して行き全曲r4溶4坤する)。この時、シリンダ
に材1′バ冷却し7てし寸うノシリンダ母材1とライニ
ング皮膜2の幀膨Q ’:、!’、 曾の違いによりラ
イニング皮膜2にき裂が入るので、シリンダ久1第1を
も加熱して800℃以上1.で保つことが好ましい。こ
うして再ヒユージングされたンリンダ七材を上記と同じ
よう(〆こ硅礫土やバーミックス、保温材や炉中/rど
にて最徐冷し、?:i 、2、l 匈、所定の寸法に加
工する。この珠にして曲玉したシリンダを射出成形哉の
シリンダとして用いたところ、約2・1[重用後の点検
結束で(d、とくシC’+’l、常が、44.1/)ら
Lし1′、良好な耐久性が確認された。
As shown in Fig. 7, the self-fusing alloy 2 is irradiated with a J-'' laser beam 15 generated by the kCCO2 laser beam source 12, and while rotating the cylinder 1, the reflector 14 is pulled out toward the open VjM section. Zone fusing is carried out (the molten part is enlarged while joining the part 8 crushed by the laser beam 13, and the whole curve is r4 melted). At this time, the material is cooled in the cylinder by 1' and then 7. Due to the difference in the expansion of the cylinder base material 1 and the lining film 2, cracks will occur in the lining film 2, so heat the cylinder 1 first and heat it to 800℃ or higher. It is preferable to keep the reused materials in the same manner as above (i.e., silica gravel, var mix, heat insulating material, furnace/r, etc.). , and processed to the specified dimensions. When this beaded and curved cylinder was used as a cylinder for injection molding, it was approximately 2.1 [d, special C'+'l, normal However, the durability was confirmed to be 44.1/) to 1'.

なお、第8図1は再ヒユージングしたライニング皮膜の
511i微枠写6であり、核図より均一な争属組成の皮
膜が得られていることが刊る。
Incidentally, FIG. 8 1 is a 511i fine frame copy 6 of the refused lining film, and the nuclear diagram shows that a film with a uniform composition has been obtained.

【図面の簡単な説明】[Brief explanation of drawings]

・へ1〜4図は本発明方法の一実M ;+l:様りiの
手順を示す図、第5図はこの方法でイ;tらjl、 t
S’/ ’)ンダを示す図、・96図・7:L本発明方
法Cijjられた自溶性合金ライニング、の−例の+1
7微境、写り鴇 47図I土本発明り法で得られ乙自量
白、rヤθライニノグの熱処理方、去の一例を示す図、
・S f3 p/1.rl:嶋7図の熱処理方法で処理
したi、;)の自−1; l’l t−F 11ライニ
ングの一列の゛・ld微鶴写へである。 復代理人  内 [B   明 閤代理人   萩  原  ・祐  −第5図
・Figures 1 to 4 are diagrams showing the steps of the method of the present invention, and Figure 5 is a diagram showing the procedure of the method of the present invention.
S'/') Figure 96 Figure 7: Self-fusing alloy lining produced by the method of the present invention, -Example +1
Figure 7. A diagram showing an example of the heat treatment method for the 2000 yen obtained by the method invented by Tsuchimoto.
・S f3 p/1. rl: A photo of i,;) treated by the heat treatment method shown in Figure 7. A photo of a row of l'l t-F 11 linings. Sub-agent [B Meiko agent Yu Hagiwara - Figure 5

Claims (1)

【特許請求の範囲】[Claims] パイプ状鋼材の内面へ自溶性合金の粉末を封入後、パイ
プを回転させて前記粉末を内面に均一に分散させ、同時
にパイプの外面から加熱して前記自溶性合金を固着させ
、しかる後この固着した自溶性合金をレーザ光線で加熱
し再溶融することによって自溶性合金層を形成すること
を特徴とするシリンダ素材の内面処理方法。
After sealing the self-fusing alloy powder into the inner surface of the pipe-shaped steel material, the pipe is rotated to uniformly disperse the powder on the inner surface, and at the same time, the pipe is heated from the outside surface to fix the self-fusing alloy, and then this fixation is performed. A method for treating the inner surface of a cylinder material, characterized by forming a self-fusing alloy layer by heating and remelting the self-fusing alloy with a laser beam.
JP42882A 1982-01-06 1982-01-06 Treatment for inside surface of blank material for cylinder Pending JPS58117875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP42882A JPS58117875A (en) 1982-01-06 1982-01-06 Treatment for inside surface of blank material for cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP42882A JPS58117875A (en) 1982-01-06 1982-01-06 Treatment for inside surface of blank material for cylinder

Publications (1)

Publication Number Publication Date
JPS58117875A true JPS58117875A (en) 1983-07-13

Family

ID=11473535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP42882A Pending JPS58117875A (en) 1982-01-06 1982-01-06 Treatment for inside surface of blank material for cylinder

Country Status (1)

Country Link
JP (1) JPS58117875A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2563130A1 (en) * 1984-04-21 1985-10-25 Kabel Metallwerke Ghh METHOD FOR MANUFACTURING CONTINUOUS CASTING SHELL WITH WEAR-RESISTANT LAYER
JPS6123772A (en) * 1984-07-09 1986-02-01 Dai Ichi High Frequency Co Ltd Method for performing metallic lining on inside surface of metallic pipe or the like
JPS6141780A (en) * 1984-07-31 1986-02-28 Mie Kounetsu Kk Method and device for welding ceramic material to inside surface of tubular metallic blank material
JPS61159577A (en) * 1985-01-08 1986-07-19 Mitsubishi Heavy Ind Ltd Method for coating inside of pipe
JPS62167889A (en) * 1986-01-21 1987-07-24 Dai Ichi High Frequency Co Ltd Method for forming metallic lining on inside surface of metallic pipe or the like
JPS6417875A (en) * 1987-07-14 1989-01-20 Dai Ichi High Frequency Co Ltd Formation of surface film
JPS6425989A (en) * 1987-07-21 1989-01-27 Dai Ichi High Frequency Co Ltd Production of internally metal lined pipe
FR2721842A1 (en) * 1994-06-30 1996-01-05 Balleret Hubert Method of coating small diameter openings in workpiece or tube
JPH0925582A (en) * 1996-08-05 1997-01-28 Dai Ichi High Frequency Co Ltd Production of pipe lined with metal on inside surface
WO2004004923A3 (en) * 2002-07-02 2004-02-26 Jr Kenneth Casner Method for coating metallic tubes with corrosion-resistant alloys
CN111974971A (en) * 2020-08-19 2020-11-24 郑州机械研究所有限公司 Device and method for manufacturing babbitt metal bush

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2563130A1 (en) * 1984-04-21 1985-10-25 Kabel Metallwerke Ghh METHOD FOR MANUFACTURING CONTINUOUS CASTING SHELL WITH WEAR-RESISTANT LAYER
JPS6123772A (en) * 1984-07-09 1986-02-01 Dai Ichi High Frequency Co Ltd Method for performing metallic lining on inside surface of metallic pipe or the like
JPS6141780A (en) * 1984-07-31 1986-02-28 Mie Kounetsu Kk Method and device for welding ceramic material to inside surface of tubular metallic blank material
JPS61159577A (en) * 1985-01-08 1986-07-19 Mitsubishi Heavy Ind Ltd Method for coating inside of pipe
JPS62167889A (en) * 1986-01-21 1987-07-24 Dai Ichi High Frequency Co Ltd Method for forming metallic lining on inside surface of metallic pipe or the like
JPH0533307B2 (en) * 1986-01-21 1993-05-19 Daiichi Koshuha Kogyo Kk
JPS6417875A (en) * 1987-07-14 1989-01-20 Dai Ichi High Frequency Co Ltd Formation of surface film
JPS6425989A (en) * 1987-07-21 1989-01-27 Dai Ichi High Frequency Co Ltd Production of internally metal lined pipe
FR2721842A1 (en) * 1994-06-30 1996-01-05 Balleret Hubert Method of coating small diameter openings in workpiece or tube
JPH0925582A (en) * 1996-08-05 1997-01-28 Dai Ichi High Frequency Co Ltd Production of pipe lined with metal on inside surface
WO2004004923A3 (en) * 2002-07-02 2004-02-26 Jr Kenneth Casner Method for coating metallic tubes with corrosion-resistant alloys
CN111974971A (en) * 2020-08-19 2020-11-24 郑州机械研究所有限公司 Device and method for manufacturing babbitt metal bush

Similar Documents

Publication Publication Date Title
US4953612A (en) Composite metal articles
JPS58117875A (en) Treatment for inside surface of blank material for cylinder
US20140147600A1 (en) Method and Apparatus for Lining Pipe and Similar Structures
JPS5910466Y2 (en) Pipeline tubular reinforcement members
CN1272075A (en) Thermal shock resistant apparatus for molding thixotropic materials
JPS5936580B2 (en) Method for abrasion-resistant lining of the working chamber of a screw extruder
US4103800A (en) Backing material
US4004790A (en) Plate-type radiator suitable for shaft furnaces, particularly for blast furnaces, and a method for fabrication of this radiator
US4766042A (en) Plastics processing machine components and alloy for use therein
Koshy Laser cladding techniques for application to wear and corrosion resistant coatings
JP2001047235A (en) Hollow member for plastic molding machine and manufacture therefor
CN114311277A (en) Manufacturing method of concrete conveying pipe, concrete conveying pipe and concrete pump truck
Szajnar et al. Manufacturing methods of alloy layers on casting surfaces
JP2000120939A (en) Wear resistant metallic pipe and manufacture thereof
JPS58141388A (en) Manufacture of cylinder
JPS5820349A (en) Mold for casting
JPS5973150A (en) Production of composite steel ingot
US2190050A (en) Method of treating metallic articles
AU562569B2 (en) Composite metal articles
JPH0576383B2 (en)
JP3329529B2 (en) Composite cylinder for plastic molding machine
JP2001200931A (en) Heating cylinder for plastic molding with composite alloy sleeve
JPH08109405A (en) Production of wear resistant composite pipe
JP3405481B2 (en) Composite cylinder for molding machine
JPS59159262A (en) Casting for cooling furnace body and its production